
HAL Id: hal-00903794
https://inria.hal.science/hal-00903794

Submitted on 13 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graphics Processing Unit-Accelerated Quantitative
Trait Loci Detection

Guillaume Chapuis, Olivier Filangi, Jean Michel J. M. Elsen, Dominique
Lavenier, Pascale Le Roy

To cite this version:
Guillaume Chapuis, Olivier Filangi, Jean Michel J. M. Elsen, Dominique Lavenier, Pascale Le Roy.
Graphics Processing Unit-Accelerated Quantitative Trait Loci Detection. Journal of Computational
Biology, 2013, 20 (9), pp.672-686. �10.1089/cmb.2012.0136�. �hal-00903794�

https://inria.hal.science/hal-00903794
https://hal.archives-ouvertes.fr


Graphics Processing Unit–Accelerated Quantitative

Trait Loci Detection

GUILLAUME CHAPUIS,1,* OLIVIER FILANGI,2,* JEAN-MICHEL ELSEN,3

DOMINIQUE LAVENIER,4 and PASCALE LE ROY2

ABSTRACT

Mapping quantitative trait loci (QTL) using genetic marker information is a time-consuming

analysis that has interested the mapping community in recent decades. The increasing amount

of genetic marker data allows one to consider ever more precise QTL analyses while in-

creasing the demand for computation. Part of the difficulty of detecting QTLs resides in

finding appropriate critical values or threshold values, above which a QTL effect is considered

significant. Different approaches exist to determine these thresholds, using either empirical

methods or algebraic approximations. In this article, we present a new implementation of

existing software, QTLMap, which takes advantage of the data parallel nature of the problem

by offsetting heavy computations to a graphics processing unit (GPU). Developments on the

GPU were implemented using Cuda technology. This new implementation performs up to 75

times faster than the previous multicore implementation, while maintaining the same results

and level of precision (Double Precision) and computing both QTL values and thresholds.

This speedup allows one to perform more complex analyses, such as linkage disequilibrium

linkage analyses (LDLA) and multiQTL analyses, in a reasonable time frame.

Key words: Cuda, double-precision, GPGPU, GPU, linkage analysis, linkage disequilibrium,

multiQTL analysis, QTLMap, QTL mapping.

1. INTRODUCTION

Most of the traits characterizing individuals (their ‘‘phenotypes’’: performance level, suscep-

tibility to disease, etc.) are influenced by heredity. Geneticists are interested in detecting, localizing,

and identifying genes, the polymorphism of which explains a part of observed trait variability. Such genes are

often called QTLs (for quantitative trait locus), the term locus pointing to a physical position on the genome.

QTL detection procedures consist of a series of statistical hypotheses tests at successive putative loca-

tions on the genome. Many experimental designs, sampling protocols, and test statistics were proposed and

used. We focus here on regression approaches performed on sets of large families. These approaches were
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developed for exploiting the linkage disequilibrium—the discrepancy between a random distribution of

haplotypes and the observed distribution of haplotypes in the studied population—observed on a per family

basis and/or at the population level. Amongst the available software dealing with QTL regression tech-

niques, QTLMap was developed by some of the authors of the current article (Elsen et al., 1999).

The general principle of linkage analysis (LA) for detecting QTLs within a family is to correlate for each

tested genome position the performance trait measured in the progenies and the grand parental origins of

the piece of chromosome they received from a common parent. These origins are inferred from ‘‘genomic

marker information,’’ which describes the parental chromosomes (in diploid species, chromosomes are in

pairs and each individual carries two copies, or ‘‘alleles’’ of QTLs, say Q1 and Q2, and markers, say M1/

M2, N1/N2) and the way they are transmitted to their progenies (Fig. 1). Locations of QTLs are pointed on

chromosomal segments, which display high correlations.

Linkage disequilibrium analysis (LDA) does not exploit family structure but considers the whole pop-

ulation as a large sample of independent individuals. Because of various demographic events along the

population histories (selection, breeds mixtures, bottlenecks, etc.), allelic forms found at two close chro-

mosomal positions are generally not independent. A few measurements of this dependence were proposed

in the past (Lewontin, 1964; Hill and Robertson, 1968). This phenomenon is fully proven for markers,

which are easy to visualize (e.g., Farnir et al., 2000, for the bovine species) and certainly true between

FIG. 1. Repartition of mark-

ers M1/M2 and N1/N2 on al-

leles Q1 and Q2.
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markers and QTLs. In LDA, the direct effect of genetic information (to make presentation simple, say the

marker genotype effect) on the quantitative trait variability is tested at successive positions. The basic idea

is that groups of individuals defined by their genetic class (e.g., their genotype for the marker located at the

tested position) will display significant differences in their quantitative performance if a QTL is located

close to this position. The signal will be stronger if:

1. the linkage disequilibrium between markers and QTL is higher and

2. the QTL explains a larger part of the variability.

A third category of techniques combines LA and LDA. In ‘‘linkage disequilibrium linkage analysis’’

(LDLA), both the family structure and the population history are exploited. The population is described as a

set of ‘‘founders,’’ supposed unrelated, but subject to linkage disequilibrium, and ‘‘nonfounders,’’ which

inherited from the founders intact or recombinant chromosomes after one or more generations of trans-

mission. In LDLA, the performance trait measured in the nonfounders are correlated, as in the LA, with the

founder origins of the transmitted piece of chromosomes, and, as in the LDA, information about the

population history is extracted from the degree of similarity between founder pieces of chromosomes. Thus,

detecting QTLs is basically a three-step procedure:

1. Inferring from the marker information the ‘‘phase’’ of the parents (Elsen et al., 1999; Favier et al.,

2010), that is, the way the two alleles of each marker are positioned on the chromosomes. The output

is the haplotype pairs of each parent, that is, the list of successive marker alleles carried by each

chromosome (e.g., M1N1 and M2N2, or M1N2 and M2N1);

2. estimating parents to progenies transmission probabilities of chromosomal segments; and

3. evaluating the likelihood of performance traits observation under alternative hypotheses (a QTL is

present or not at the chromosomal segment location) and modeling (LA, LDA, LDLA).

A statistical test is operated at each genome location tested, and the best location for the QTL is given by

the most significant test. In terms of both theoretical developments and/or computation burden, a major

difficulty is to obtain correct statistical test rejection thresholds.

Different strategies exist to estimate these thresholds. Efforts were made to find the distribution of the

statistical process under the null hypothesis (no QTL on the chromosome), but they did not fully consider the

real-life situations in which unbalanced designs are the rules (e.g., Rabier et al., 2010). Alternatively, and this

is the usual procedure, thresholds can be estimated empirically after many permutations of the data breaking

the marker-phenotype correlations, or after many simulations under H0 (Churchill and Doerge, 1994).

QTL mapping analyses, such as LDLA, are computationally intensive. For QTLMap, run times increase

linearly with the size of the studied population, the exploration step of the studied genome region, and the

number of simulations required to determine the thresholds. As opposed to the sizes of studied populations,

which should remain rather stable, the density of marker data increases exponentially and allows a finer

exploration of the genome regions, with a higher number of tested positions. Current QTL mapping

analyses may take weeks to run in the most difficult cases (e.g., when looking for QTL interactions) on

modern computers, and run times will increase linearly with the density of available genetic markers.

Therefore, dividing run times by an order of magnitude would allow geneticists to run multiple analyses or

consider even more time-consuming analyses, such as multiQTL ones.

Despite the computational burden that QTL mapping represents, very few parallel tools exist. The first

attempt was made by Seaton et al. (2006) with gridQTL. This tool is derived from QTLexpress (Seaton

et al., 2002), a popular web-based tool for QTL analyses, and harnesses the power of computational grids to

try and reduce run times. Another approach was developed by Filangi et al. (2010) with a tool called

QTLMap. This tool takes advantage of modern CPUs by using all their cores simultaneously. Finally,

epiGPU (Hemani et al., 2011) uses any commercially available GPUs for QTL analyses but focuses on the

detection of epistasis—a complex interaction between genes in which the effect on a given phenotype of a

single gene is altered by one or more other genes. Other QTL software, such as eQTL, specialized in

detecting expression QTLs, still run on a single CPU core.

The empirical approach used in QTLMap makes it an ideal candidate for GPU computations. In order to

determine efficient relevance thresholds, the analysis not only needs to be performed at each genome

position but must also be repeated for each simulated dataset—typically 103 to 104 times. The increasing

density of genetic marker data allows for ever more precise analyses, meaning that more and more genome

locations need to be considered. Computations at neighboring genome locations are correlated; it is
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however more efficient in practice to consider them independant. Computations for each simulation are

independant. These computations can therefore be run in parallel.

In this article, we propose a new version of QTLMap, which performs about 70 times faster than the

previous multicore implementation, while maintaining the same level of precision. We first describe the

empirical methods for QTL Mapping ported to GPU in QTLMap and give details about the algorithms of

the methods. We then describe the implementation of these algorithms on the GPU. We finally show the

details of the experiments we ran to test our new implementation, and the results we obtained.

2. METHODS AND ALGORITHMS

QTLMap relies on three methods to determine possible QTL locations on linkage groups. The first

method, called linkage analysis (LA), aims at determining the transmission probability of each chromo-

somal segment based on available marker information in the studied population. The second method,

referred to as linkage disequilibrium analysis (LDA), relies on studying the discrepancy between an

expected random distribution of haplotypes in the studied population and the observed distribution. The

third method, referred to as linkage disequilibrium linkage analysis (LDLA) combines the first two ap-

proaches. Contrary to a linkage analysis, a linkage disequilibrium linkage analysis does not solely take into

account the length of chromosomal segments to determine transmission probabilities, it also takes into

account the more complex linkage disequilibrium effect.

Once transmission probabilities have been determined, QTLMap statistically computes the likelihood of

the observations under the hypothesis that a QTL is present at successive genome locations in the studied

linkage groups. QTLMap then uses an empirical approach to determine thresholds, above which a QTL effect

can be considered significant. The following two sections give a brief overview of the QTLmapping methods

implemented in QTLMap. A more detailed description of these methods can be found in Elsen et al. (1999).

2.1. Linkage analysis

In QTLMap, the hypothesis is tested that one QTL affecting a single trait is located at a position x in a

linkage group (e.g., a chromosome). Successive positions on this linkage group are scanned. The test is

performed with the interval mapping technique applied to an approximation of the likelihood of having a

QTL at a given location (Knott et al., 1996; Elsen et al., 1999; Le Roy et al., 1998).

Let ns and nd be the number of sires and dams, respectively, in the studied population. All parents are

supposed heterozygous at the QTL, with specific alleles, giving a total of 2(ns + nd) QTL genotypes.

Performance expectation of progeny k of parent i and j is described as the sum of parental mean values

li + lij and of the deviations – al to this mean because of the QTL. In this model, it is assumed that the

parents are unrelated, the markers in linkage equilibrium—i.e., a random distribution of haplotypes is

assumed—and the trait normally distributed.

As proposed by Goffinet and Didier (1999) and by Le Roy et al. (1998), the residual variance of the

quantitative trait is estimated within sire. Considering that subpopulations—in our case, descendants of a

given sire—can have different variances is called a heteroskedastic hypothesis. This heteroskedastic pa-

rametrization better fits different patterns (between sires) of segregation of other QTLs unlinked to the

tested position. The homoskedastic hypothesis, which considers that the variance is equal for any two

subpopulations, is also implemented.

Parameters maximizing the likelihood can be obtained in an iterative two-step procedure:

1. Solving a linear system (see Elsen et al., 1999, for details); and

2. estimating within sire family variances.

The steps are repeated until convergence, detected when the distance between the likelihood ratio test

(LRT) at iteration t and the likelihood ratio test at iteration t + 1 is arbitrarily small enough.

2.2. Linkage disequilibrium and LDL analyses

QTLMap implements the ‘‘LDA decay’’ regression approach described by Legarra and Fernando (2009).

This linkage disequilibrium analysis is particularly adapted to experimental populations characterized by a

family structure, the target of this software. In this approach, parental haplotypes are pooled in classes, the
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classification being open to the user decision. In QTLMap, only the most probable sire and dam phases are

considered, and the classes (following the example given by Legarra and Fernando, 2009) are simply

defined by the haplotype (to a class corresponds a single haplotype). To a given class corresponds a specific

effect on the quantitative trait. The quantitative performance of a progeny depends on the haplotypes as

found in the parental chromosomes from which the putative QTL alleles are originating and not to the

(possibly recombinated) haplotypes the progeny itself is carrying.

The LDLA approach described by Legarra and Fernando (2009) was also implemented. This approach com-

bines the previous LD ecay and LA models, the QTL effect being defined within the parental haplotype effect.

2.3. Thresholds detection

The QTL mapping procedures described in paragraphs 2.1 and 2.2 determine, for each position on the

studied chromosomal region(s), the likelihood of having a QTL related to a given trait. This score can only

be considered relevant if it is above a certain threshold that has yet to be determined.

We define H(n) as the hypothesis of having an n-QTL at n given positions. QTLMap uses an empirical

approach to determine relevance thresholds. In order to estimate the probability of having a QTL at a given

location ([H(1)]), it is compared to the null hypothesis, H(0). Distribution under H(0) is calculated by

running the previous algorithm on random sets of data. Randomly generated datasets share the same

architecture as the actual dataset. They contain the same population, but for each invidual, performance

vectors are randomly generated.

In order to compute the distribution under H(0), a user set number of simulations are randomly generated

and run. Efficient empirical thresholds can be obtained by computing a large number of simulations. A

single analysis with QTLMap explores npos genome positions; rejection thresholds are obtained by running

nsim analysis on simulated data, leading to a total of nsim.npos likelihood computations. Computations at

each genome position are correlated, but it is better in practice to consider them independent. Computations

for each simulation are independent. These computations can therefore be run in parallel.

2.4. Algorithms for QTL detection

QTLMap provides three types of analyses, presented in sections 2.1 and 2.2, and allows for two types of

parametrizations: hetero- and homoskedastic parametrizations. In a heteroskedastic analysis, the variance of

subpopulations can differ, whereas in a homoskedastic analysis, the variance is considered stable within the

studied population. This section gives information about the structure of the algorithm depending on the

analysis and on the parametrization. This section also describes the nature of the data used for computations.

Algorithm 1 describes the algorithm implemented in QTLMap for a heteroskedastic analysis. The listing

does not describe in details how to solve the linear system—line 7 of Algorithm 1—nor how to estimate the

variance—line 8 of Algorithm 1—(see Elsen et al., 1999, for details). Instead, attention is brought to the

structure of the computations and more precisely to the three loops—lines 2, 3, and 5 of Algorithm 1—that

are offset to the GPU. The type of analysis—LA, LDA, LDLA—does not change the structure of the

algorithm and will only affect the way the linear system is solved.

Iterations of the first two loops—lines 2 and 3 of Algorithm 1—are completely independent and can be

run in parallel. However, iteration n of the third loop—line 5 of Algorithm 1—depends on the result of

iteration n - 1, therefore, the third loop cannot be parallelized.

Algorithm 1: Algorithm for heteroskedastic analysis

1 Begin

2 for each genome_position

3 for each simulation

4 LRT = 0

5 do

6 LRTold = LRT

7 solve_linear_system()

8 LRT = estimate_variance()

9 while jLRT - LRToldj > e

10 End
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In the more specific case of a homoskedastic analysis, results can be obtained in one pass without waiting

for convergence. Details of the algorithm are given in Algorithm 2. As in Algorithm 1, iterations of the two

loops—lines 2 and 3 of Algorithm 2—are independent and can be run in parallel.

At each iteration of the two independent loops, a contingency matrix, described in Figure 2, is used for

computations. For each individual in the studied population—referred to as descendants—these matrices

contain values in various effects, some of which are independent of the current genome position (i.e., fixed)

and others are dependent of the position (i.e., variable) and a performance value, which describes their

performance with respect to the studied trait. Performance values are also independent of the current

genome position but change for each simulation. All matrices have strictly the same dimensions for every

iteration. Typical sizes for these matrices are about 102 for the number of descendants and 102 for the total

number of effects (including performance).

The properties exhibited by Algorithms 1 and 2 make them ideal candidates for computations on a GPU.

First, both algorithms mainly consist of two independent loops, meaning that all iterations can be processed

in any order or, in our case, simultaneously. Second, dimensions of input data (Fig. 2) are identical for

every iteration. This consistency of the dimensions of input data allows for regular data access patterns as

well as a stable number of instructions to process each iteration. Finally, input data for every iteration is

partly redundant, thus leaving room for optimization.

3. GPU IMPLEMENTATION

Computations offset to the GPU consist mainly in operations on matrices. Operations such as Cholesky

decompositions and matrix multiplications are ideally suited for execution on a GPU and can be achieved at

near peak performance on such devices (Volkov and Demmel, 2008). Several highly optimized libraries

exist, providing linear algebra routines benefitting from modern hybrid architecture (Humphrey et al., 2010;

FIG. 2. Description of a contingency matrix used for computations at each genome position and for each simulation.

Algorithm 2: Algorithm for homoskedastic analysis

1 Begin

2 for each genome_position

3 for each simulation

4 solve_linear_system()

5 End
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Tomov et al., 2009). However, these libraries specifically target operations on large matrices. In our case,

computations are done on a large number of rather small matrices, typically 102 * 102, therefore, no

performance would be gained from using these libraries for such small matrix sizes. Single instruction

multiple data (SIMD) parallelism can nevertheless be drawn from the large number of matrix operations

performed on different small matrices.

This section describes how the algorithms presented in Section 2.4 are mapped onto the GPU’s archi-

tecture and what otpimizations were applied to accelerate computations.

3.1. Mapping computations on the GPU

Parallelism is present at two levels on a GPU:

� SIMD cores running simultaneously on the GPU; and
� hardware threads running simultaneously within a single core.

Mapping computations on a GPU, a process also called gridification, consists therefore in separating the

given problem on these two levels of parallelism. The problem must first be broken down into blocks; each

block is executed on a single SIMD core. Each block must then be divided into threads, which will be

mapped to the hardware threads of the SIMD core.

Several gridifications are implemented in QTLMap depending on the nature of the computations and data

access paterns. Figure 3 shows an example of such a gridification. In this example, each block handles

computations on 32*16 matrices (described in 2) corresponding to different genome positions and simu-

lations. A single thread handles the computations for a single genome position and a single simulation.

3.2. Optimizing GPU memory usage

As mentioned in Section 2.3, the algorithm for QTL detection needs to be run on the actual input dataset

and a large number of randomly generated datasets in order to test the results against the null hypothesis. In

our case, these computations are independent and an obvious data parallelism pattern can be exploited. The

amount of available memory on a GPU is nevertheless limited when compared to a CPU’s memory.

Therefore, great care must be exercised when offsetting data to a GPU.

The amount of memory required for a single analysis can be divided into three categories:

� memory for input data;
� memory for intermediate results; and
� memory for end results.

Input data consist of contingency matrices at each position and simulation (Fig. 2). The amount of

memory M required for contingency matrices for a linkage analysis is given by the following formula:

M = nsim � npos � (1 + (1 + nqtl) � ns) � sizeof (DOUBLE)

Where nsim is a user set number of simulations to run, npos is the number of positions to test on the linkage

group, nqtl is the number of QTL to look for, ns is the number of sires, and sizeof (DOUBLE) is the size in bytes

of a double precision float on the given architecture. The previous formula is valid if one decides to store

integrally every incidence matrix. Memory optimizations can however be performed. Each matrix contains a

first set of population averages, which are independent of both the position in the genome and the family, and a

second set of polygenic effects, which are independent of the genome position. All these effects can be factored

out and stored only once. The resulting amount of memory required Minput is now:

Minput = nsim � npos � nqtl � ns � sizeof (DOUBLE)

The amount of memory required for intermediate results depends on the type of analysis and represents a

significant part of the total memory requirements. For large analyses, the input data can be sent to the GPU

but computations are limited by the low amount of memory available for intermediate results. In these

cases, computations are grouped into workloads, which are then handled sequentially on the GPU. Each

workload consists of a number of genome positions that can be computed together within the GPU’s global

memory. The optimal size Max_pos for a workload is calculated using the following formula:

Max pos = º(Free mem -Minput)=IRsizeß
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where Free_mem is the amount of memory available on the GPU, Minput is the total amount of memory

required for input data, and IRsize is the amount of memory required for intermediate results for a single

genome position.

Recent cuda versions allow data transfers between the CPU and the GPU to overlap with computations

on the GPU. A possible optimization would be to reduce the size of a workload to half the available

memory on the GPU and transfer a workload while the previous one is being computed. Another opti-

mization would be to partition the input data into workloads as is done with intermediate results.

3.3. Reducing CPU/GPU transfers

Data transfers between the host (CPU) and the accelerator (GPU) are rather time consuming and need to

be optimized. Part of solving the linear system, as mentioned in Algorithm 1, consists of determining

confounding effects, that is, effects correlated with other effects. These effects are identified by a Cholesky

decomposition and need to be removed from the dataset for further computations. Subsequent computations

are performed on a subset of each matrix—the structure of these matrices is described in Section 2—

excluding confounding effects. To avoid recopying the matrices, confounding effects are excluded using

conditional statements. Nevertheless, branching statements (such as ‘‘if’’ and while) can significantly

reduce performances on a GPU. This is because consecutive Cuda threads are grouped together in warps of

FIG. 3. Example of gridification on the GPU.
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16 threads. Whenever a branching statement occurs, if threads within a single warp take different paths,

both paths are executed sequentially, thus breaking parallelism at this level. However, due to the biological

nature of the problem, diverging branches never occur since confounding effects are identical for each

matrix. Therefore, the overhead induced by adding these branching statements is negligible compared to

the overhead induced by transferring the matrices back and forth between the CPU and the GPU.

3.4. Optimizing homoskedastic analyses

Each step of the analysis, either using real data or a simulated set, shares a small amount of computations

with other steps. This is because only performance vectors are randomly generated for simulations. In order

to avoid redundancy, matrix multiplications involved in solving the linear system, described at line 4 in

Algorithm 2 are split into three phases:

� multiplications solely involving fixed effects, shared by all matrices (i.e., without performance ef-

fects);
� multiplications involving performance effects that differ from one dataset to another, as well as fixed

effects; and
� multiplications solely involving performance effects.

The first phase is computed only once on the CPU, while the second and third phases are computed for

each dataset in parallel on the GPU. Computations that are common to each matrix multiplication are thus

factored out. This represents a very slight improvement over the previous CPU implementation and was

only relevant in the GPU implementation, where these computations are done simultaneously. Dividing

these computations also allows us to only keep one copy of the part common to all matrices while the rest is

stored on the GPU in a compact form; only the relevant halves of the triangular matrices are kept

contiguously in memory.

Phases two and three are computed in two distinct Cuda kernels on the GPU in order to optimize memory

accesses. Requirements imposed by the Cuda model on memory access patterns to the GPU’s global

memory are very strict and have a tremendous impact on performances. Memory accesses in these two

kernels are optimized for coalescing either by reorganizing data on the GPU or by preloading subsets of the

data into shared memory. When breaking coalescing is unavoidable, keeping data locality allows us to

benefit from the small cache available on recent graphics cards.

4. EXPERIMENTS AND RESULTS

Tests were run on machines with two quadcore Intel� Xeon� E5420 (12M Cache, 2.50 GHz, 1333MHz

FSB) processors. Multicore CPU tests were run on the Genotoul platform. GPU tests were run on a machine

equipped with an Nvidia� C2050 card. Each test consists of an LDLA analysis over simulated datasets

from the 2011 QTL-MAS workshop. Two versions of QTLMap are compared here:

� the previous multicore CPU version running with eight threads (Filangi et al., 2010); and
� the new GPU version in double precision.

For the CPU executions, each of the eight threads had a dedicated CPU core. Input parameters ranged

from 500 to 10000 for the number of simulations, from 9 to 998 for the number of genome positions, and

from 5 to 20 for the number of sires.

4.1. Execution times

Figures 4, 5, and 6 show the evolution of execution times for both the CPU and the GPU versions over

the number of simulations, the number of half-sib families, and the number of genome positions respec-

tively. Times for the CPU version are given on the left Y-axis, while times for the GPU version are given

on the right Y-axis.

The amount of computations required for the analysis grows linearly with the number of simulations

(Fig. 4) and the number of considered genome positions (Fig. 6). These linear growths were expected, given

the structure of the algorithm—lines 2 and 3 of Algorithm 1. On the other hand, run times grow poly-

nomially with the number of sires—the polynome depends on the type of analysis performed (Fig. 5).
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FIG. 4. Evolution of the execution time with respect to the number of simulations.

FIG. 5. Evolution of the execution time with respect to the number of half-sib families.
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Table 1 shows the values and ranges of values for fixed and variable parameters used in Figs. 4, 5, and 6.

The most time consuming analysis, using 10,000 simulations, 20 sires, and covering 998 genome positions,

took more than 3 weeks to compute on the CPU, and slightly more than 11 hours on the GPU.

4.2. Speedups

Figure 7 shows the evolution of the speedups between the two versions of QTLMap according to the

number of simulations (regarding the number of sires and the number of genome positions as shown in

Figs. 8 and 9, respectively). Figures 7, 8, and 9 show that speedups remain stable with increasing values in

all three dimensions—number of genome positions, number of simulations, and size of the population.

Overall, the GPU version performs about 70 times faster than the multicore CPU version. This speedup,

however, cannot entirely be attributed to the use of a graphics card. Indeed, the CPU version does not

benefit from certain optimizations applied specifically to the GPU version, one of which is described in

Section 3.4, nor does it take advantage of SSE instructions. Optimizing the CPU version would probably

reduce its run times by a factor of three or four.

Table 2 shows values and ranges of values for fixed and variable parameters used in Figures 7, 8, and 9.

The multicore CPU version of QTLMap is not designed to run optimally for low numbers of genome

positions. In the multicore CPU version of QTLMap, data structures are allocated and initialized for each

simulation and then amortized over computations for each genome position. On the contrary, in the GPU

version of QTLMap, a single set of data structures is allocated and initialized for a large set of simulations

FIG. 6. Evolution of the execution time with respect to the number of genome positions.

Table 1. Values and Ranges of Values for Fixed and Variable Parameters

Used in Figures 4, 5, and 6

No. of simulations No. of sires No. of genome positions

Figure 4 500–10000 20 998

Figure 5 10000 5–20 998

Figure 6 10000 20 9–998
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FIG. 7. Speedup with respect to the number of simulations.

FIG. 8. Speedup with respect to the number of half-sib families.
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and then amortized over both genome positions and simulations. Consequently, large speedups are ob-

served in Figure 9 between the GPU and the CPU versions for low numbers of genome positions. These

speedups are not representative of the true acceleration obtained by porting QTLMap on the GPU; they

simply illustrate the fact that the CPU version does not perform optimally for low numbers of genome

positions.

5. CONCLUDING REMARKS

In this article, we propose a new version of existing software, QTLMap. QTLMap is a tool for QTL

detection, a computationally heavy procedure. This new version takes advantage of GPUs to speed up

computations. Computations using this new version are between 50 and 75 times faster than computations

using the previous multicore implementation, while maintaining the same results and precision. Reduced

runtimes allow geneticists to consider more precise and time consuming analyses by increasing the number

FIG. 9. Speedup with respect to the number of genome positions.

Table 2. Values and Ranges of Values for Fixed and Variable Parameters

Used in Figures 7, 8, and 9

No. of simulations No. of sires No. of genome positions

Figure 7 500–10000 20 998

Figure 8 5000 5–20 998

Figure 9 5000 20 9–998
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of simulations or the number of studied genome positions. Reduced runtimes also allow geneticists to

consider new analyses, such as multiQTL analyses. All versions of QTLMap are available online under

CeCILL licences.

Future work includes the promotion and use of parallel computing in statistical genetics, focusing on two

applications of the single nucleotide polymorphism (SNP) chip technology:

� Dissection of the genetic architecture of characters through genome-wise association studies (GWAS)

and
� genomic selection (GS).

SNP chip technology now makes possible the genotyping of millions of SNPs for tens or hundreds of

thousands of individuals, thus increasing the demand for much faster computations. Faster computations

are needed both for implementing more precise genetic models in research of trait genetic determinants and

for the industrial exploitation of genomic data, with production of statistical information at regular time

intervals.

Three objects largely used in GWAS and GS are targeted:

� G-matrices, a molecular-based measure of between individual genetic relationships;
� c relationships;
� haplotype reconstruction, a problem modeled by hidden Markov chains; and
� identification of causal SNPs with the help of selection variables techniques.

The aim is to produce, when needed, new algorithms better suited for parallel architectures (GPUs and/or

clusters of computers).
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