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ABSTRACT

Lateral gene transfer (LGT) is a common mechanism of nonvertical evolution, during which
genetic material is transferred between two more or less distantly related organisms. It is
particularly common in bacteria where it contributes to adaptive evolution with important
medical implications. In evolutionary studies, LGT has been shown to create widespread
discordance between gene trees as genomes become mosaics of gene histories. In particular,
the Tree of Life has been questioned as an appropriate representation of bacterial evolu-
tionary history. Nevertheless a common hypothesis is that prokaryotic evolution is primarily
treelike, but that the underlying trend is obscured by LGT. Extensive empirical work has
sought to extract a common treelike signal from conflicting gene trees. Here we give a
probabilistic perspective on the problem of recovering the treelike trend despite LGT.
Under a model of randomly distributed LGT, we show that the species phylogeny can be
reconstructed even in the presence of surprisingly many (almost linear number of) LGT
events per gene tree. Our results, which are optimal up to logarithmic factors, are based on
the analysis of a robust, computationally efficient reconstruction method and provides in-
sight into the design of such methods. Finally, we show that our results have implications for
the discovery of highways of gene sharing.
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1. INTRODUCTION

H igh-throughput sequencing is transforming the study of evolution by allowing the integration of

genome analysis and systematic studies, an area called phylogenomics (Eisen and Fraser, 2003; Delsuc

et al., 2005). An important step in most phylogenomic analyses is the reconstruction of a tree of ancestor-

descendant relationships—a gene tree—for each family of orthologous genes in a dataset. Such analyses have

revealed widespread discordance among gene trees (Galtier and Daubin, 2008), leading some to question the
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meaningfulness of the Tree of Life (Gogarten et al., 2002; Zhaxybayeva et al., 2004; Gogarten and Town-

send, 2005; Bapteste et al., 2005; Doolittle and Bapteste, 2007; Koonin, 2007). In addition to statistical errors

in gene tree estimation, various mechanisms commonly lead to incongruences between inferred gene his-

tories, including hybridization events, duplications and losses in gene families, incomplete lineage sorting,

and lateral genetic transfers (Maddison, 1997).

Here we study specifically lateral gene transfer (LGT), that is, the nonvertical transfer of genes between

more or less distantly related organisms (as opposed to the standard vertical transmission between parent

and offspring). Estimates of the fraction of genes that have undergone LGT vary widely—with some as

high as 99% (see, e.g., Dagan and Martin, 2006; Galtier and Daubin, 2008; and references therein). LGT is

particularly common in bacterial evolution and it has been recognized to play an important role in mi-

crobial adaptation, selection, and evolution, with implications in the study of infectious diseases (Smets and

Barkay, 2005). As a result, the bacterial phylogeny is usually inferred from genes that are thought to be

immune to LGT, typically ribosomal RNA genes. However, there is growing evidence that even such genes

have in fact experienced LGT (Yap et al., 1999; van Berkum et al., 2003; Schouls et al., 2003; Dewhirst

et al., 2005). In any case, LGT appears to be a major source of conflict between gene trees that must be

taken into account appropriately in phylogenomic analyses, in particular when building phylogenies. This is

the problem we address in this article.

Despite the confounding effect of LGT, we operate under the prevailing assumption that the evolution of

organisms is governed primarily by vertical inheritance. In particular, we ask the following:

1. How much genetic transfer can be handled before the treelike signal is completely erased?

2. What phylogenetic reconstruction methods are most effective under this hypothesis?

These questions, and other related issues, have been the subject of some empirical and simulation-based

work (Beiko et al., 2005; Ge et al., 2005; Galtier, 2007; Puigbo et al., 2009, 2010; Koonin et al., 2011). See

also Galtier and Daubin (2008) and Ragan and Beiko (2009) for enlightening discussions. In particular,

there is ample evidence that a strong treelike signal can be extracted in the presence of extensive LGT

[although some debate remains on this question (Gogarten et al., 2002)].

In this article, we provide the first (to our knowledge) mathematical analysis of the issues above. We

work under a stochastic model of gene-tree topologies positing that LGT events occur at more or less

random locations on the species phylogeny (Galtier, 2007). In our main result, we establish quantitative

bounds implying that surprisingly high levels of LGT—almost linear in the number of branches for each

gene—can be handled by simple, computationally efficient inference procedures. That amount of genetic

transfer appears to be much higher than known empirical estimates of LGT frequency based on genomic

datasets in prokaryotes.1 Hence, our results indicate that an accurate, reliable bacterial phylogeny should be

reconstructible if the vertical inheritance hypothesis is correct. We prove that our bound on the achievable

rate of LGT is tight up to logarithmic factors. We also show that constraining LGT to closely related

species makes the tree reconstruction problem significantly easier.

Our theoretical approach complements simulation-based studies by allowing a broad range of parameters

and tree shapes to be considered. Moreover, our analysis provides new insights into the design of effective

reconstruction methods in the presence of LGT. More precisely, we focus on methodologies—both

distance-based (Kim and Salisbury, 2001) and quartet-based (Zhaxybayeva et al., 2006)—that derive their

statistical power from the aggregation of basic topological information across genes.

In addition, we study the effect of so-called highways of gene sharing; roughly, preferred genetic exchanges

between specific groups of species. Beiko et al. (2005) provided empirical evidence for the existence of such

highways. To identify highways, they inferred LGT events by reconciling gene trees with a trusted species tree.

In subsequent work, Bansal et al. (2011) formalized the problem and designed a fast highway detection

algorithm that aggregates conflicting signal across genes rather than solving the difficult LGT inference

problem on each gene tree. Similarly to Beiko et al. (2005), Bansal et al. (2011) rely on a trusted species tree.

Here we show that a species phylogeny can be reliably estimated in the presence of both random LGT

events and highways of LGT, as long as such highways involve a small enough fraction of genes. Under

extra assumptions, we also design an algorithm for inferring the location of highways. Because we first

1Note that such estimates are typically based on small numbers of genomes, and, therefore, are probably lower than
reality (Galtier and Daubin, 2008).
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recover the species phylogeny, our highway reconstruction algorithm does not require a trusted species tree.

In essence, our results on highways indicate that robust phylogeny reconstruction in the presence of random

LGT extends to a phylogenetic network setting. For background on phylogenetic networks, see, for ex-

ample, Huson et al. (2010).

We note that there exist related lines of work in phylogenomics, addressing the issue of incomplete

lineage sorting (Degnan and Rosenberg, 2009) in the presence of gene transfers and hybridization events

(Than et al., 2007; Joly et al., 2009; Kubatko, 2009; Meng and Kubatko, 2009; Chung and Ane, 2011; Yu

et al., 2011) as well as work on probabilistic models involving gene duplications and losses (Arvestad et al.,

2009; Csürös and Miklós, 2006).

The rest of the article is organized as follows. In Section 2, we define a stochastic model of LGT and

state our main results. A high-level description of our analysis is given in Section 3. Finally, in Section 4,

we extend our results to highways of gene sharing. [The results presented here were announced without

proof in Roch and Snir (2012).]

2. MODEL AND MAIN RESULTS

Before stating our main results, we present a stochastic model of LGT. Roughly, following Galtier

(2007), we assume that LGT events occur more or less at random along the species phylogeny. Such a

model appears to be consistent with empirical evidence (Galtier and Daubin, 2008).

Notation Recall that, for functions f (n), g(n), f = O(g) means that there is constant C > 0 such that

f (n) £ Cg(n) for all n large enough. Similarly, f =O(g) indicates f (n) ‡ C0g(n) for C0 > 0. In addition

f =Y(g) is equivalent to f = O(g) and f =O(g). By polynomial in n, we mean O(nC00 ) for some constant

C† > 0. We use the notation P[E0jE1] for the conditional probability of E0 given E1.

2.1. Stochastic model of LGT

Gene trees and species phylogeny. A species phylogeny (or phylogeny for short) is a graphical

representation of the speciation history of a group of organisms. The leaves correspond to extant or extinct

species. Each branching indicates a speciation event. Moreover, we associate to each edge a positive value

corresponding to the time elapsed along that edge. For a tree T = (�‚ E) with leaf set L and a subset of leaves

X 4 L, we let T jX be the restriction of T to X, that is, the subtree of T where we keep only those vertices

and edges on paths connecting two leaves in X. We say that T agrees (or is consistent) with T jX.

Definition 1 (Phylogeny). A (species) phylogeny Ts = (Vs, Es, Ls; r, s) is a rooted tree with vertex set

Vs, edge set Es and n (labeled) leaves Ls = [n] = f1‚ . . . ‚ ng such that 1) the degree of all internal vertices

Vs - Ls is exactly 3 except the root r, which has degree 2; and 2) the edges are assigned interspeciation

times s : Es / (0, + N). We assume that Ts includes n + > 0 extant species L +
s and n - ‡ 0 extinct species

L -
s , where n = n + + n - . We also associate to each edge e 2 Es in Ts a rate of lateral gene transfer

0 < k(e) < +N. We denote by T +
s = (V +

s ‚ E +
s ‚ L +

s ; r‚ s + ), the subtree of Ts restricted to the extant leaves

L +
s , that is, T +

s = TsjL +
s rooted at the most recent common ancestor of L +

s . We further suppress vertices of

degree 2 in T +
s except the root (in which case we add up the branch lengths to obtain s + ). We call T +

s the

extant phylogeny. We assume that T +
s is ultrametric, that is, from every node, the path lengths from that

node to all its descendant leaves are equal.

Although we are ultimately interested in recovering the extant phylogeny, we include extinct species in

the model as they can be involved in LGT events that affect the extant restriction of the tree (see, for

example, Maddison, 1997).

To infer the species phylogeny, we first reconstruct gene trees, that is, trees of ancestor-descendant

relationships for orthologous genes or loci. Phylogenomic studies have revealed extensive discordance

between such gene trees (e.g., Bapteste et al., 2005; Doolittle and Bapteste, 2007).

Definition 2 (Gene tree). A gene tree Tg = (Vg, Eg, Lg; xg) for gene g is an unrooted tree with vertex

set Vg, edge set Eg and 0 < ng £ n (labeled) leaves Lg � f1‚ . . . ‚ ng with rLgr = ng such that 1) the degree of

every internal vertex is either 2 or 3, and 2) the edges are assigned branch lengths xg : Eg / (0, +N). We

let T g = T [Tg] be the topology of Tg where each internal vertex of degree 2 is suppressed.

RECOVERING TREE-LIKE EVOLUTION DESPITE GENE TRANSFER 95



Remark 1 (Gene trees vs. species phylogeny). As we will discuss below, gene trees are derived from—

or ‘‘evolve’’ on—the species phlyogeny. They may differ from the species phylogeny for various reasons.

First, in our model, their branch lengths represent expected numbers of substitutions, instead of time elapsed.

Moreover, their topology may differ as a result, in our case, of LGT events. See more details below.

Remark 2 (Rooted vs. unrooted). Our stochastic model of LGT requires a rooted species phylogeny

as time plays an important role in constraining valid LGT events (see, e.g., Jin et al., 2009). In particular,

our results rely on the ultrametricity property of the extant phylogeny. In contrast, branch lengths in gene

trees correspond to expected numbers of substitutions. As a result, gene trees are typically unrooted and do

not satisfy ultrametricity.

Remark 3 (Taxon sampling). Each leaf in a gene tree corresponds to an extant species in the species

phylogeny. However, because of gene loss and taxon sampling, a taxon may not be represented in every

gene tree.

Remark 4 (Branch lengths). Each branch e in a gene tree Tg corresponds to a full or partial edge in the

species phylogeny Ts. In particular, we allow internal vertices of degree 2 in a gene tree to potentially delineate

between two consecutive species edges. We allow the branch lengths xg(e) to be arbitrary, but one could

easily consider cases where the branch lengths are determined by interspeciation times, lineage-specific

rates of substitution, and gene-specific rates of substitution. The branch lengths will play a role in Section 5.

Random LGT. We formalize a stochastic model of LGT similar to Galtier’s (Galtier, 2007). See also

Kim and Salisbury (2001); Suchard (2005); and Jin et al. (2006) for related models. The model accounts

for LGT events originating at random locations on the species phylogeny with LGT rate k(e) prevailing

along edge e.

We will need the following notation. Let Ts = (Vs, Es, Ls; r, s) be a fixed species phylogeny. By a location

in Ts, we mean any position along Ts seen as a continuous object (also called R-tree), that is, a point x along

an edge e 2 Es. We write x 2 e in that case. We denote the set of locations in Ts by X s. For any two

locations x, y in X s, we let MRCA(x, y) be their most recent common ancestor (MRCA) in Ts, and we let

s(x, y) be the length of the path connecting x and y in Ts under the metric naturally defined by the weights

fs(e)‚ e 2 Esg, interpolated linearly to locations along an edge. In words s(x, y), which we refer to as the s-

distance between x and y, is the sum of times to x and y from MRCA(x, y). We say that two locations x, y

are contemporaneous if their respective s-distance to the root r is identical, that is,

s(x‚ r) = s(y‚ r):

For R > 0, we let

C(R)
x = fy 2 X s : s(r‚ x) = s(r‚ y)‚ s(x‚ y)p2Rg

be the set of locations contemporaneous to x at s-distance at most 2R from x (or in other words, with MRCA

at s-distance at most R). In particular, C(1)
x denotes the set of all locations contemporaneous to x. We let

L(e) = k(e)s(e)‚ e 2 Es. We note that, since k(e) is the LGT rate on e, L(e) gives the expected number of

LGT events along e. Further, we let

Ltot =
X
e2Es

L(e)‚

be the total LGT weight of the phylogeny and

L =
X

e2E(TsjL +
s )

L(e)‚

be the total LGT weight of the extant phylogeny, where E(TsjL +
s ) denotes the edge set of TsjL +

s .

Our model of LGT is the following. Note first that, from a topological point of view, an LGT transfer is

equivalent to a subtree-prune-and-regraft (SPR) operation (Semple and Steel, 2003). The recipient

location—that is, the location receiving the genetic transfer—is the point of pruning. Similarly, the donor

location is the point of regrafting. In other words, on the gene tree, a new internal node is created at the
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donor location with two children nodes, one being the original endpoint of the corresponding edge and the

other being the node immediately under the recipient location in the species phylogeny. The original edge

going to the latter node is removed (Fig. 1).

Definition 3 (Random LGT). Let 0 < R £ +N possibly depending on n (i.e., not necessarily a

constant), and note that we explicitly allow R = +N. Let Ts = (Vs, Es, Ls; r, s) be a fixed species phylogeny.

Let 0 < p £ 1 be a sampling effort probability. A gene tree topology T g is generated according to the

following continuous-time stochastic process, which gradually modifies the species phylogeny starting at

the root. There are two components to the process:

1. LGT locations. The recipient and donor locations of LGT events are selected as follows:

� Recipient locations. Starting from the root, along each branch e of Ts, locations are selected as

recipient of a genetic tranfer according to a continuous-time Poisson process with rate k(e).

Equivalently, the total number of LGT events is Poisson with mean Ktot and each such event is

located independently according to the following density. For a location x on branch e, the density at

x is L(e)/Ktot.
� Donor locations. If x is selected as a recipient location, the corresponding donor location y is chosen

uniformly at random in C(R)
x . The LGT transfer is then obtained by performing an SPR move from x

to y; that is, the subtree below x in Ts is moved to y in Tg. Note that we perform genetic transfers

chronologically from the root.

2. Taxon sampling. Each extant leaf is kept independently with probability p. (One could also con-

sider a different probability for each leaf. We use a fixed sampling effort p for simplicity.) The set of

leaves selected is denoted by Lg. The final gene tree Tg is then obtained by keeping the subtree

restricted to Lg.

The resulting (random) gene tree topology is denoted by T g.

When R < +N, a transfer can only occur between sufficiently closely related species. One could also

consider more general donor location distributions (see e.g., Puigbo et al., 2010). In Section 4, we consider

a different form of preferential exchange, highways of gene sharing.

2.2. Recovering the treelike trend: Main results

Problem statement Let Ts = (Vs, Es, Ls; r, s) be an unknown species phylogeny. Using ho-

mologous gene sequences for every gene at hand, we generate N independent gene tree topologies

T g1
‚ . . . ‚ T gN

as above. Given the gene trees (or their topologies), we seek to reconstruct the

topology T +
s = T [T +

s ] of the extant phylogeny Tþs . More precisely, we are interested in the amount

of LGT that can be sustained without obscuring the phylogenetic signal. To derive asymptotic

results about this question, we make some assumptions about the underlying phylogeny. We discuss

two cases in detail.

In practice, one estimates gene trees from sequence data. We come back to gene tree estimation issues below.

Bounded-rates model The following assumption was introduced in Daskalakis and Roch (2010) and is

related to a common assumption in the mathematical phylogenetics literature.

FIG. 1. An LGT event. On the left, the species

phylogeny is shown with the donor (D) and re-

cipient (R) locations. On the right, the resulting

(unweighted) gene tree is shown after the LGT

transfer.
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Definition 4 (Bounded-rates model). Let 0 < qk < 1 and 0 < qs < 1 be constants. Let further

0 < s < +1 be a constant and 0 < k < +1 be a value possibly depending on n + . Under the bounded-

rates model, we consider the set of phylogenies Ts = (Vs, Es, Ls; r, s) with n + > 0 extant leaves and n - ‡ 0

extinct leaves and extant phylogeny Tþs = (Vþs ‚ Eþs ‚ Lþs ; r‚ sþ) such that the following conditions are sat-

isfied:

k � qkkpk(e)pk‚ 8e 2 Es‚

and

s � qssps+ (e + )ps‚ 8eþ 2 E +
s :

Our result in this case follows. We use k to control the amount of LGT in the model.

Theorem 1 (Main result: Bounded-rates model, R = +N) Let R = +N. Under the Bounded-rates

model, it is possible to reconstruct the topology of the extant phylogeny with high probability (w.h.p.) from

N =O(log n + ) gene tree topologies if k is such that

K = O
n +

log n +

� �
:

In words, we can reconstruct the species phylogeny w.h.p. as long as the expected number of LGT events

K (as measured on the extant phylogeny) per gene is at most of the order of n +

log n + . This result is based on a

polynomial-time algorithm we describe in Section 3. Note that, in typical phylogenomic studies, the

number of genes is much larger than the number of species. Therefore, our assumption that the number of

genes should be at least of the order of the logarithm of the number of extant species is mild.

We also show that the bound on K in Theorem 1 is close to optimal, up to logarithmic factors.

Theorem 2 (Non-recoverability) Under the bounded-rates model, as above, with N = O(log n+ ), the to-

pology of the extant phylogeny cannot, in general, be reconstructed w.h.p. if k is such that K =O(n+ log log n+).

More generally, the species phylogeny cannot be reconstructed from N genes if K =O(n + log N).

Theorem 2 is proved by a coupling argument (Lindvall, 1992). In words we show that, with the order of

O(n+ log log n + ) expected LGT events, there is insufficient signal from the gene trees to distinguish

between two species phylogenies with high probability.

Yule process Branching processes are commonly used to model species phylogenies (Rannala and

Yang, 1996). In the continuous-time Yule process (or pure-birth process), one starts with two species

(representing the two branches emanating from the root). At any given time, each species generates a

new offspring at rate 0 < m < +N. We stop the process when the number of species is exactly n + 1 (and

ignore the n + 1st species). This process generates a species phylogeny with n = n + extant species with

branch lengths given by the interspeciation times in the above process. Note that n - = 0 by construction.

Let 0 < q k < 1 be a constant. We also assume that

k � qkkpk(e)pk‚ 8e 2 Es‚

for some 0 < k < +1, possibly depending on n. As above, we use k to control the amount of LGT in the

model.

An advantage of the Yule model is that, unlike the bounded-rates model, it does not place arbitrary

constraints on the interspeciation times. In particular, the following analog of Theorem 1 suggests that our

analysis does not rely on such constraints.

Theorem 3 (Main result: Yule process, R = +N) Let R = +N. Under the Yule model, the following

holds with probability arbitrarily close to 1. It is possible to reconstruct the topology of the extant

phylogeny w.h.p. from N =O(log n) gene tree topologies if k is such that

K = O
n

log n

� �
:
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Preferential LGT When R < +N, that is, when transfers occur only between sufficiently related

species, we obtain the following generalization, which implies that preferential LGT makes the tree-

building problem easier.

Theorem 4 (Preferential LGT) Let 0 < R < log n + possibly depending on n + . Under the bounded-

rates model, it is possible to reconstruct the topology of the extant phylogeny w.h.p. from N =O(log n + )

gene tree topologies if k is such that

K = O
n +

R

� �
:

A similar result holds under the Yule model.

Further results We also obtain results on highways of LGT as well as sequence-length requirements.

These results require additional background. See Sections 4 and 5 respectively.

3. PROBABILISTIC ANALYSIS

We assume that we are given N independent gene tree topologies T g1
‚ . . . ‚ T gN

as above. Our goal is to

reconstruct the extant phylogeny.

Different algorithms are possible. A simple approach is to take a majority vote over all gene-tree

topologies. But this approach is problematic under taxon sampling and cannot sustain the high levels of

LGT we consider below.

Instead, we consider approaches that aggregate partial information over all gene trees. We focus on

subtrees over four taxa whose topologies are called quartets (Semple and Steel, 2003). We show that

computationally efficient quartet-based approaches can sustain high levels of LGT. Although we prove

our results for the specific method described below, our analysis is likely to apply to related methods.

In Section 5.1, we also give a similar analysis for a distance-based method of Kim and Salisbury

(2001).

3.1. Algorithm

We consider the following approach related to an algorithm of Zhaxybayeva et al. (2006). Let X = {a, b,

c, d} be a four-tuple of extant species. The topology T jX of a tree T restricted to X can be summarized with

a quartet split, or quartet for short. There are three possible (resolved) quartets that we denote q1 = abjcd,

q2 = acjbd, and q3 = adjbc. We first compute the frequency of each quartet over all gene trees displaying X,

that is, over all gene trees g such that X 4 Lg,

fX(q1) =
jfgi : X � Lgi

‚ T gi
jX = q1gj

jfgi : X � Lgi
gj ‚

and similarly for q2, q3. (We set the frequency to 0 if the denominator is 0.) For each X, we choose the

quartet with highest frequency (breaking ties arbitrarily).

Definition 5. A set of quartets Q = {qi}, with Lqi the leaf set of qi, is compatible if there is a tree T
with leaf set LQ � [qi2QLqi

such that T agrees with every qi.

Quartet compatibility is, in general, NP-hard (Steel, 1992). However, when the set Q covers all possible

four-tuple of taxa (that is, exactly n
4

� �
quartets with no repeated four-tuple of taxa), there is a polynomial-

time algorithm for compatibility (Bandelt and Dress, 1986; Buneman, 1971; Berry and Gascuel, 2001). In

our procedure, for every four-tuple of taxa, there is a single quartet chosen, so we can check compatibility

easily and output the corresponding tree. In practice, if Q is not compatible, one can use instead a

heuristic supertree method such as MRP (Baum, 1992; Ragan, 1992) or Quartet MaxCut (Snir and Rao,

2010, 2012).

The algorithm, which we call QuartetPlurality (QP), is detailed in Figure 2.

RECOVERING TREE-LIKE EVOLUTION DESPITE GENE TRANSFER 99



3.2. A general formula

Our asymptotic analysis is based on the following claim. Recall that, for a subset of extant species X, we

let T sjX be the extant phylogeny topology restricted to X with corresponding edge set E(T sjX). Also recall

that L(e) = k(e)s(e) is the expected number of LGT events on edge e, which we refer to as the LGT weight,

or weight for short, of e. Let

KX =
X

e2E(T sjX)

K(e)‚

be the total weight of the subtree T sjX under the weights L(e)‚ e 2 Es. Define the maximum quartet weight

(MQW) as

U (4) = maxfKX : X � (Lþs )4g:

Lemma 1 (Probability of a miss). Let Tg be a gene tree topology distributed according to the random

LGT model such that X = {a, b, c, d} 4 Lg. Let qX
s (respectively qX

g ) be the quartet corresponding to T gjX
(respectively TgjX). Then

P[qX
g = qX

s jX � Lg]q exp(-U(4)):

Recall that K is the expected number of LGT events (as measured on the extant phylogeny) per gene. As a

comparison, note that the probability that a gene tree is LGT-free is e2K, which can be much smaller.

Proof (Lemma 1). We first note that, by our assumption that the species phylogeny is bifurcating, qX
s is

resolved. Similarly qX
g is resolved because under a Poisson process for the recipient location, the probability

that a vertex has degree higher than 2 (that is, that a pruning and re-grafting occurs exactly at the location of

an existing vertex) is 0.

Now we observe that if none of the recipient locations lands on T sjX then the corresponding quartet

remains intact. Indeed an SPR move can only (potentially) affect those quartets with at least one leaf in the

pruned subtree, and this happens with probability KX

K . The claim then follows by induction on the number of

LGT events.

Hence the probability that qX
g = qX

s is at least the probability that all LGT events (on the extant phylogeny)

miss T sjX, which is at least

P[qX
g = qX

s jX � Lg]q
X+1
i = 0

e - KKi

i!
1 -

KX

K

� �i

= e - K exp K 1 -
KX

K

� �� �
q exp -U (4)

� �
:

-

Algorithm QuartetPlurality

Input: Gene trees g1‚ . . . ‚ gN ;

Output: Estimated species phylogeny T̂ ;
� Set Q = ;
� For all four-tuple of taxa X = {a, b, c, d}, letting q1 = abjcd, compute

fX(q1) = jfgi:X�Lgi
‚ T gi

jX = q1gj
jfgi:X�Lgi

gj ‚

and similarly for q2 = acjbd and q3 = adjbc. Add the quartet with highest frequency (breaking ties arbitrarily) to Q.
� Using Buneman’s algorithm (Buneman, 1971) compute the tree T̂ compatible with Q (or abort if no such tree is

found).
� Output T̂ .

FIG. 2. Algorithm QuartetPlurality.
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3.3. Bounded-rates and Yule models

Next we argue that, under appropriate assumptions on the species phylogeny, the maximum quartet

weight is bounded in such a way that the plurality quartet topology for every four-tuple of taxa X = {a, b, c,

d}, which we denote by qX
� , satisfies qX

� = qX
s . As a result, our quartet set is compatible and T +

s can be

reconstructed efficiently.

3.3.1. Bounded-rates model. We bound the maximum quartet weight Y(4) in the bounded-rates

model.

Lemma 2 (Bound on quartet weight: Bounded-rates case). Under the Bounded-rates model, it holds

that

U(4) = O(k log n + )‚ K =Y(kn + ):

Proof (Lemma 2). The first part of the proof is taken from Daskalakis and Roch (2010). Let h

(respectively H) be the smallest (respectively largest) number of edges on a path between the root and an

extant leaf. Because the number of extant leaves is n+ and the extant phylogeny is bifurcating (recall that

we suppressed vertices of degree 2 after taking a restriction to the extant species), we must have 2h £ n+

and 2H ‡ n + . Since all extant leaves are contemporaneous it must be that Hsphs. Combining these

constraints gives

s
s

log2 n + phpHp s
s

log2 n + :

Hence

maxfKX : X � (L +
s )4gp4ks

s
s

log2 n + :

The total number of edges in the extant phylogeny is 2n+ - 3 so that

K =Y(kn + ):

Using Lemma 2, we prove Theorem 1. First recall the following standard concentration inequality (see,

e.g., Motwani and Raghavan, 1995):

Lemma 3 (Azuma-Hoeffding inequality). Suppose Z = (Z1‚ . . . ‚ Zm) are independent random variables

taking values in a set S, and h : Sm ! R is any t-Lipschitz function: jh(z) - h(z0)j £ t whenever z‚ z0 2 Sm

differ at just one coordinate. Then, cf > 0,

P[jh(Z) - E[h(Z)]jqf]p2 exp -
f2

2t2m

� �
:

Proof (Theorem 1). Consider the quartet-based approach described in Section 3.1. Take k = C1=
log n + with C1 > 0 small enough so that

K = O
n +

log n +

� �
‚

and using Lemmas 1 and 2, we have for any four-tuple X of extant species

P[X � Lg] = p4‚
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and

P[qX
g = qX

s j X � Lg]q exp( -U(4))q exp( - O(C1))q 2

3
‚

for C1 small enough. We choose C2 > 0 large enough with

NqC2 log n + ‚

and e < p4 so that, using Lemma 3, the following inequalities hold. Consider the following events

E0 = fjjfgi : X � Lgi
gj - Np4jpNeg

and

E1 = jfgi : X � Lgi
‚ T gi

jX = q1gj >
1

2
jfgi : X � Lgi

gj
� �

:

By Lemma 3,

P[Ec
0]p exp( - O(e2N))‚

and

P[Ec
1 j E0]p exp( - O(N(p4 - e))):

Hence, for a constant C2 large enough,

P[fX(qX
s ) < 1=2]pP[Ec

0] + P[Ec
1jE0]

pO
1

(n + )4

� �
:

Then the plurality vote is correct for every four-tuple of taxa, and the extant phylogeny is correctly

reconstructed. -

3.3.2. Yule process. We now consider the Yule model.

Lemma 4 (Bound on quartet weight: Yule case). Under the Yule model, it holds that

U(4) =Y(k log n)‚ K =Y(kn)

with probability approaching 1 as n / +N.

Proof (Lemma 4). We consider a pure-birth process with birth rate m starting from two species. For

background on branching processes, see Athreya and Ney (1972).

Let Zi be the (i - 1)-th interspeciation time. As a minimum of i independent exponential distributions

with mean 1/m, Zi is an exponential with mean 1/ (im). Moreover, the Zis are independent. Hence the height

of the phylogeny in time units, that is, the total time until n + 1 species are present [recall that we ignore the

(n + 1)-st species] is

Z =
Xn+1

i = 2

Zi‚

and we have

E[Z] =
Xn+1

i = 2

E[Zi] =
Xn+1

i = 2

1

i�
=Y(� - 1 log n)‚

and
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Var[Z] =
Xn + 1

i = 2

Var[Zi] =
Xn + 1

i = 2

1

i2�2
=Y(� - 2):

The total weight of the phylogeny in time units

Y =
Xn + 1

i = 2

iZi‚

is a sum of n independent exponential random variables with parameter m, and we have

E[Y] =
Xn + 1

i = 2

iE[Zi] =
Xn + 1

i = 2

i
1

i�
= � - 1n‚

and

Var[Y] =
Xn + 1

i = 2

i2Var[Zi] =
Xn + 1

i = 2

i2
1

i2�2
= � - 2n:

By Chebyshev’s inequality,

P[ZqC1 log n]p
C2

C3 log2 n
! 0‚

and

P[YpC4n]p
C5n

C6n2
! 0‚

for appropriately chosen Cs not depending on n. The same holds in the other direction so that

U(4) =Y(k log n) and K =Y(kn), with probability approaching 1. -

Proof (Theorem 3). Using Lemma 4, the proof of Theorem 3 follows from the same lines as that of

Theorem 1. -

3.4. Preferential LGT

We now prove Theorem 4.

Proof (Theorem 4). The proof is similar to that of Theorems 1 and 3. The main difference is in the

proof of Lemma 1. In that proof, note that if R < +N, then for an LGT to affect the quartet on X, it must be

that not only 1) the recipient location lands on T sjX, but also 2) that it lands on a location below either

branchings of the corresponding quartet tree within time R of the branching point. Indeed, these are the only

locations where the corresponding leg of the quartet tree can potentially jump to a subtree corresponding to

a different leg. (In fact, it must be that a leg on the other side of the internal branch of the quartet tree is

within time 2R.) The length of this region is at most 4R in s-distance. Hence, in the bound on the

probability of a miss we get

P[qX
g = qX

s jX � Lg]q exp - minfU(4)‚ 4Rkg
� �

:

The result then follows. -

3.5. Nonrecoverability

We now prove Theorem 2.

Proof (Theorem 2). We use a coupling argument (Lindvall, 1992). Fix d > 0 small. We construct two

species phylogenies with different topologies that cannot be distinguished with probability 1 - d from N

gene tree topologies when the total expected amount of LGT K is of the order of n + log log n + per gene. In
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particular, the reconstruction problem cannot be solved in that case. The idea of a coupling is to run the

stochastic processes of LGT on both phylogenies simultaneously so as to output the same gene trees with

high probability without changing the marginal distributions (that is, the probability distributions of gene

tree topologies on each phylogeny separately).

We proceed as follows. Consider a complete binary tree T 0s on a set of n leaves (all extant) and denote the

four children at height 2 from the root as a, b, c, d, where a and b are sisters and so are c and d. Let Tz be

the subtree with n/4 leaves rooted at z 2 fa‚ b‚ c‚ dg. Moreover, for simplicity, assume all edges of T 0s have

the same LGT weight. From T 0s, we construct T 00s by rewiring the four nodes {a, b, c, d} such that a is now

sister with c and b with d.

We generate N =Y(log n) gene trees on each of T 0s and T 00s as follows. We run the stochastic process of

LGT on T 0s as described in Definition 3. Let T 0g1
‚ . . . ‚ T 0gN

be the gene-tree topologies so obtained. For T 00s
and every gene, we use exactly the same LGT events as the ones generated on T 0s where we identify the two

edges adjacent to the roots in T 0s and T 00s arbitrarily. Let T 00g1
‚ . . . ‚ T 00gN

be the gene tree topologies so

obtained.

Since T 0s and T 00s are identical below, every z 2 fa‚ b‚ c‚ dg and LGT events occur only between con-

temporaneous points, the subtrees under {a, b, c, d} in T 0gi
and T 00gi

are identical for every gene i.

For z 2 Z, let ez be the edge adjacent to z and above it in T 0s (and in T 00s ). It remains to show that, for T 0gi

and T 00gi
to be identical under the joint construction above, it suffices that the following good event occurs:

three consecutive LGT moves start on the same edge in ea‚ . . . ‚ ed (donor location) and land on the other

three edges in ea‚ . . . ‚ ed (recipient location), for example, a / d, a / c, a / b. (Fig. 3). Indeed, in that

case, the first donor location above becomes the common ancestor to all nodes in the gene trees. From that

point on, we obtain the same gene tree for both phylogenies.

We claim that the probability that the good event does not occur is O(1/ log n). Under the assumption

that K =O(n log log n) and that the LGT weights are equal, the number of LGT events on any edge is

Poisson with mean O(log log n). Consider the time interval between the nodes at height 1 from the root and

the nodes at height 2. Divide this interval into m = O(log log n) equal subintervals I1‚ . . . ‚ I� such that the

number of LGT events on edge ez in Ii is Poisson with mean C0 for some constant C0 > 0. In Ii, the

probability that there is no LGT event originating from eb‚ . . . ‚ ed and that there is exactly three LGT

events originating from ea and landing on eb, ec, ed in that order is

~p = (e - C0 )3 e - C0
C3

0

3!

1

3

� �3
 !

� C1:

The subintervals are independent. The probability that the event above does not happen in any of I1‚ . . . ‚ I� , is

FIG. 3. Good event.

104 ROCH AND SNIR



~p� = (1 - C1)� = O
1

log n

� �
:

This gives an upper bound of O(1/ log n) on the probability that the good event does not happen.

Therefore, by a union bound over the genes, the probability that the good event does not occur on at least

one gene tree is Y(log n) $ O(1/ log n) = O(1), which is at most d if the constant in L is large enough. If the

good event occurs on every gene tree, then both phylogenies output the exact same set of gene tree

topologies. That concludes the proof. -

4. HIGHWAYS OF LGT

In this section, we add highways of gene sharing to the model. Highways are, in essence, nonrandom

patterns of LGT (Beiko et al., 2005). These can potentially take different shapes. Following Bansal et al.

(2011), we focus on pairs of edges in the phylogeny that undergo an unusually large number of LGT events

between them.

We give two results. As long as the frequency of genes affected by highways is low enough, the species

phylogeny can be reconstructed using the same approach as in Section 3. Moreover, with extra assumptions

on the positions of the highways with respect to each other, the highways themselves can be inferred.
In this section, we assume n - = 0.

4.1. Model

We generalize our model of LGT as follows.

Definition 6 (Highways of LGT). Let Ts = (Vs, Es, Ls; r, s) be a species phylogeny with LGT rates

0 < k(e) < +N, e 2 Es, and let 0 < p £ 1 be a taxon sampling probability. Assume n - = 0. For

b = 1‚ . . . ‚ B, let Hb = (eH
b‚0‚ eH

b‚1) be a pair of edges in Ts that share contemporaneous locations. We call Hb a

highway. Let g1‚ . . . ‚ gN be N genes. Each highway Hb involves a subset GH
b of the genes. If gene gi 2 GH

b ,

then it undergoes an LGT event between a pair of contemporaneous locations xH
b‚ i 2 eH

b‚0 and yH
b‚i 2 eH

b‚1. We

let cb be the fraction of genes such that gi 2 GH
b and we assume that cb > c for some c (chosen

below). In addition, independently from the above, we assume that each gene undergoes LGT events at

random locations as described in Definition 3. We denote by T g1
‚ . . . ‚ T gN

the gene tree topologies so

obtained.

Remark 5 (Deterministic setting). Note that the highways and which genes are involved in them are

deterministic in this setting. Only the random LGT events are governed by a stochastic process. Note

moreover that we allow highway events to go in either direction, that is, from eH
b‚0 to eH

b‚1 or vice versa.

4.2. Building the species tree in the presence of highways

We first prove that the species phylogeny can still be reconstructed in the presence of highways as long

as the fraction of genes involved in highways is low enough. We only discuss the Bounded-rates model

with R = +N.

Theorem 5 (Highways of LGT). Consider the bounded-rates model with R = +Nand assume that

B < +Nis constant. Assume further that there is a constant 0 < c < 1 such that

cb < c‚ b = 1‚ . . . ‚ B:

If

c <
1

2B
‚

then it is possible to reconstruct the topology of the extant phylogeny w.h.p. from N =O(log n + ) gene-tree

topologies if k is such that
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K = O
n +

log n +

� �
:

Proof (Theorem 5). The proof is similar to that of Theorem 1. Note that a quartet tree in the species

phylogeny can be affected by a highway in at most a fraction < B 1
2B

= 1
2

of the genes. Moreover, by the

proof of Lemma 1, choosing C1 small enough, a quartet tree is affected by a random LGT event in an

arbitrarily small fraction of genes. Therefore, the plurality vote will reconstruct the correct split with high

probability. The result follows. -

4.3. Inferring highways

The problem of inferring the highway locations is essentially a network reconstruction problem. Such

problems are often computationally intractable (see, e.g., Huson et al., 2010). Therefore, we require some extra

assumptions. Our goal here is not to provide the most general result but rather to illustrate that our analysis

extends naturally to certain network settings. The following assumption is related to so-called galled trees.

Assumption 1 We assume that no highway connects two edges in Ts separated by less than two edges

or edges adjacent to root edges. (Such cases cannot be reconstructed.) Seen as an edge superimposed on Ts,

a highway event (xH
b‚i‚ yH

b‚i) forms a cycle. We assume that all such cycles are disjoint, that is, they do not

share common locations.

We then prove the following. We use a computationally efficient algorithm, which we call RoadRoller,

described in Figure 4 and explained in the proof.

Theorem 6 (Inferring highways) Consider the Bounded-rates model with R = +Nand assume that

B < +Nis constant. Assume further that there are constants 0 < c < c < +1 such that

c < cb < c‚ b = 1‚ . . . ‚ B:

If

Algorithm RoadRoller

Input: Gene trees g1‚ . . . ‚ gN ;

Output: Estimated species phylogeny T̂ and highway locations;
� Use QuartetPlurality to reconstruct the species phylogeny T̂ . Let Q be the set of all quartets whose estimated

frequency is less than 1/2 but more than c=2.
� For all pairs of four-tuples X s X0(possibly sharing taxa) with a corresponding quartet in Q,

– Find the shared edges e(X, X0) along the internal branches of T sjX and T sjX0.
– Let X * X0 if e(X, X0) s ;.

� Build the graph G corresponding to * with vertex set being all Xs with a corresponding quartet in Q.
� For each connected component W of G,

– Compute the union P of all e(X, X0) over pairs X and X0 in W. Abort if P is not a path.

– Let ~eW
0 and ~eW

1 be the start and end edges on the path P.

– For i = 0, 1, let e -
i and e +

i be the edges adjacent to ~eW
i .

– For each pair with one element in fe -
0 ‚ e +

0 g and one element in fe -
1 ‚ e +

1 g, determine whether each T sjX with X

in W contains at least one element in the pair.

– If only one pair passed the previous test,

* Denote the pair by (eW
0 ‚ eW

1 ),
* Else, let eW

0 be the intersection of the pairs found (abort if the intersection does not contain a unique element),

choose an X in W such that T sjX includes all of fe -
0 ‚ e +

0 g and fe -
1 ‚ e +

1 g, and use the corresponding quartet in

Q to determine the sister leaf to the leaf below eW
0 . The latter leaf is below edge eW

1 among fe -
0 ‚ e +

0 ‚ e -
1 ‚ e +

1 g.
� Output T̂ and (eW

0 ‚ eW
1 ) for all W.

FIG. 4. Algorithm RoadRoller.
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c <
1

2
‚

and Assumption 1 holds then it is possible to reconstruct the topology of the extant phylogeny as well as the

highway edges w.h.p. from N =O(log n + ) gene tree topologies if k is such that

K = O
n +

log n +

� �
:

Proof (Theorem 6). Consider a four-tuple X such that T sjX contains at least one highway location and

such that the quartet qX
s is modified by the corresponding highway. Because such a highway must connect a

leg of T sjX to a subtree on the other side of the internal branch of T sjX, our galled tree assumption implies

that any given quartet tree can be affected by at most one highway, otherwise the corresponding cycles

would intersect along the internal branch. Hence, from the proof of Theorem 5 and the assumption that

c < 1
2

(instead of c < 1
2B

), we can reconstruct the extant phylogeny.

Further, it follows by the proof of Theorem 5 that, if c > 0 and C1 is small enough, the second most

frequent quartet over a four-tuple as above is the one obtained by going through the highway. Let Q be the

set of all quartets whose estimated frequency is less than 1/2 but more than c=2. By the previous argument

and Lemma 3 (see the proof of Theorem 1 for a similar computation), Q contains w.h.p. exactly those

quartets affected by a highway.

For X, X0 with quartets in Q, write X * X0 if the quartet trees T sjX and T sjX0 share an edge along their

internal branch. Let e(X, X0) be the set of all such shared edges. Note that, although we are considering four-

tuples affected by highways, we are working on the species phylogeny T s which has been reconstructed.

By the argument above, quartets sharing an edge along their internal branch are necessarily affected by

the same highway. Take the transitive closure ** of *. Let W be an equivalence class of **. We

reconstruct the corresponding highway as follows. The union of all edges in e(X, X0) for some pair X, X0 in

W forms a path P in T s. Let ~eW
0 and ~eW

1 be the start and end edges on this path. The highway corresponding

to W connects an edge eW
0 adjacent to ~eW

0 with an edge eW
1 adjacent to ~eW

1 (see Fig. 5). (Note that a highway

is represented by exactly one W because w.h.p. all quartets affected by this highway are in Q and they are

all connected under *; see Fig. 5.)

As we argued in the proof of Lemma 1, all quartets affected by the highway corresponding to W contain

at least one leaf in a pruned subtree. Because we allow LGT events in both directions along a highway,

there are two potential pruned subtrees. Moreover, the other three leaves must be in separate subtrees

hanging from the path P. By our assumption, there are at least three such subtrees (in addition to the two

potentially pruned subtrees).

Hence, the pruned subtrees can be identified by checking the four-tuples in W and finding the pairs of

subtrees with at least one of them present in all of W. If there is a unique such pair, this gives the two

highway edges and we are done. Otherwise, the recipient edge is the intersection of the pairs found. To

identify the donor edge, one simply needs to use a four-tuple X of leaves in the four adjacent subtrees to the

FIG. 5. Setup in the proof of Theorem 6. The gray

arrow indicates a highway. Here X = fa‚ b‚ c‚ dg‚
T sjX = abjcd and bcjad 2 Q.
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endpoints of P and check to which branch of T sjX the subtree corresponding to the recipient edge is moved

in Q (that is, in the highway-affected quartet topology). -

5. Distance Method and Sequence Lengths

In this section, in the highway-free case, we analyze an alternative, distance-based approach that has

been considered in the literature, and we provide sequence-length requirements. Although the quartet-based

method analyzed in Section 3 can in principle handle arbitrary branch lengths (as only the topology of the

gene trees is used), here we need to assume that the gene-tree branch lengths are determined by

interspeciation times and lineage-specific rates of substitution. For simplicity, we assume that there is no

gene-specific substitution rate. In practice, one could incorporate such rates by using a normalization

procedure as detailed in Kim and Salisbury (2001) and Ge et al. (2005).

5.1. A distance-based approach

We analyze a distance-based approach similar to that introduced in Kim and Salisbury (2001) and

studied empirically in Ge et al. (2005). Given branch lengths, a gene tree is naturally equipped with a tree

metric on the leaves Dg : Lg · Lg / (0, +N) defined as follows

8u‚ v 2 Lg‚ Dg(u‚ v) =
X

e2Pg(u‚ v)

xg(e)‚

where Pg(u, v) is the set of edges on the path between u and v in Tg. We will refer to Dg(u, v) as the

evolutionary distance between u and v under g.

For each pair of extant species {a, b}, we compute the median

Dm(a‚ b) = MedianfDgi
(a‚ b) : i = 1‚ . . . ‚ N‚ fa‚ bg � Lgi

g:

We abort if a pair is not included in any of the gene trees. We then use the distance matrix Dm to build a tree

using the Short Quartet Method (Erdös et al., 1999a) (or any other statistically consistent, fast-converging

distance-based method). We will refer to this method as the MedianTree (MT) method. The algorithm is

detailed in Figure 6.

Probabilistic analysis Define the maximum path weight (MPW)

U (2) = maxfKX : X � (Ls+ )2g:

Then:

Lemma 5 (Probability of a miss: Distance case). Let Tg = (Vg, Eg, Lg; xg) be a gene tree distributed

according to the random LGT model such that X = {a, b} 4 Lg. Let Ds(a, b) be the evolutionary distance

between a and b under the topology of the extant phylogeny (that is, under the event that no LGT has

occurred). Then

P[Dg(a‚ b) = Ds(a‚ b)jX � Lg]q exp( -U (2)):

Algorithm MedianTree

Input: N alignments over the taxa [n];

Output: Estimated species phylogeny T̂ ;
� For each gene gi and each pair of taxa {a, b}, compute the log-det distance D̂gi

(a‚ d).
� For all pairs of taxa {a, b}, compute

D̂m(a‚ b) = Median D̂gi
(a‚ b) : i = 1‚ . . . ‚ N‚ fa‚ bg � Lgi

� 	
:

� Using SQM (Erdös et al., 1999a) on the distance-matrix fD̂m(a‚ b)ga‚ b2[n], compute the tree T̂ (or abort if no tree is

found).
� Output T̂ .

FIG. 6. Algorithm MedianTree.
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Proof (Lemma 5). The proof is similar to that of Lemma 1. -

Lemma 6 (Bound on path weight: Bounded-rates case). Under the bounded-rates model, it holds that

U (2) = O(k log n + ):

Proof (Lemma 6). Note that -

maxfKX : X � (L +
s )2gp2ks

s
s

log2 n + :

Lemma 7 (Bound on path weight: Yule case). Under the Yule model, it holds that

U(2) =Y(k log n)‚

with probability approaching 1 as n / + N.

Proof (Lemma 7). The proof is similar to that of Lemma 4. -

Proof (Theorems 1 and 3). Using MT and Lemmas 6 and 7, the proof of Theorem 1 (and of Theorem

3) follows from the same lines as that of Theorem 1. Note however that our extra assumption on the

gene-tree branch lengths is needed here to ensure that evolutionary distances are the same across all

genes. -

5.2. Taking into account sequence length

We have assumed so far that gene tree topologies and evolutionary distances are known perfectly. Of

course, this is not the case in practice, and the effect of sequence length must be accounted for. One issue

that arises is that LGT events may create very short branches that are difficult to infer. Nevertheless, we can

prove the following. We assume that sequence data is generated independently on each gene tree according

to a GTR model. Evolutionary distances are estimated using the log-det distance. See, for example, Semple

and Steel (2003) for background on GTR models of substitution and the log-det distance. We assume n - = 0

for simplicity.

Theorem 7 (Sequence-length requirements). Under the bounded-rates and Yule models for the

species phylogeny and the GTR model for sequences, assuming that substitution rates are bounded between

constants, a sequence length per gene polynomial in n suffices for the MT algorithm to succeed if the

number of genes is at most polynomial in n.

Proof (Theorem 7). We only discuss the Yule model. The argument for the bounded-rates model

is similar.

In our second proof of Theorem 3, we relied on the fact that, for every pair of taxa w.h.p., a strict

majority of the gene-tree evolutionary distances has not been affected by LGT. Hence, if the worst case

estimation error on the evolutionary distances is e, then the median of the estimated distances must be in the

interval [Ds(a, b) - e, Ds(a, b) + e] for all pairs of taxa a, b. Further, by the concentration bounds in Erdös

et al. (1999b), for the SQM step of our MT algorithm to return the correct topology w.h.p., the sequence

length must scale as an exponential of the depth of the tree divided by the square of the shortest branch

length.

Under the Yule model, with probability approaching 1, the depth of the tree is O(log n) (by the proof of

Lemma 4) and the shortest branch length (the minimum of O(n) exponentials with mean O(1)) is 1/poly(n).

Hence the result follows.2 -

2Note that unlike Erdös et al. (1999a), we use the interspeciation times generated by the continuous-time branching
process. In particular, their ‘‘few logs’’ result does not apply to our setting.
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6. DISCUSSION

We have shown that a species phylogeny or network can be reconstructed despite high levels of random

LGT, and we have provided explicit quantitative bounds on tolerable rates of LGT. Moreover, our analysis

sheds light on effective approaches for species tree building in the presence of LGT. Several problems

remain open:

� Galtier and Daubin (2008) hypothesize that random LGT only becomes a significant hurdle when

the rate of LGT greatly exceeds the rate of diversification. In our setting, this would imply that a

value of K as high as O(n) may be achievable. Note that branches close to the leaves are particularly

easy to reconstruct because they lie on small quartet trees that are less likely than deep ones to be hit

by an LGT event. Is a recursive approach starting from the leaves possible here? See Mossel (2004)

and Daskalakis et al. (2011) for recursive approaches in a related context.
� In a related problem, we have analyzed distance-based and quartet-based methods. A better un-

derstanding of bipartition-based approaches is needed and may lead to a higher threshold for K.
� What can be proved when a model of extinction is incorporated?
� What can be proved when the number of genes is significantly less than log n?
� In the presence of highways, dealing with more general network settings would be desirable. Also,

our definition of highways as connecting two edges is somewhat restrictive. In general, one is also

interested in preferential genetic transfers between clades.
� On the practical side, the predictions made here should be further tested on real and simulated

datasets. We note that there is extisting work in this direction (Beiko et al., 2005; Ge et al., 2005;

Galtier, 2007; Puigbo et al., 2009, 2010; Koonin et al., 2011; Bansal et al., 2011).
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