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ABSTRACT

The Dirichlet process is used to model probability distributions that are mixtures of an
unknown number of components. Amino acid frequencies at homologous positions within
related proteins have been fruitfully modeled by Dirichlet mixtures, and we use the Dirichlet
process to derive such mixtures with an unbounded number of components. This application
of the method requires several technical innovations to sample an unbounded number of
Dirichlet-mixture components. The resulting Dirichlet mixtures model multiple-alignment
data substantially better than do previously derived ones. They consist of over 500 com-
ponents, in contrast to fewer than 40 previously, and provide a novel perspective on the
structure of proteins. Individual protein positions should be seen not as falling into one of
several categories, but rather as arrayed near probability ridges winding through amino
acid multinomial space.
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1. INTRODUCTION

G iven a multiple alignment of sequences from a particular protein family, how may one estimate

the amino acid frequencies found in related sequences at a specific alignment position, and thereby

construct scores for adding a new sequence to the alignment? An elegant Bayesian approach to this problem

was proposed in the 1990s by researchers at University of California at Santa Cruz (UCSC) (Brown et al.,

1993; Sjölander et al., 1996). In brief, one may model a particular position in a particular protein family by an

unknown set of 20 amino acid probabilities, a point in the multinomial space O20. Given a prior probability

density P over O20, Bayes’ theorem implies a posterior density P0 after the observation of several amino acids

at the position in question. An estimate~q for the amino acid frequencies of the protein family at this position

may then be derived by integrating P0 over O20. Although the prior density P may be of arbitrary form, it

is mathematically convenient if P is assumed to be a Dirichlet distribution or a mixture of M Dirichlet

distributions.
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As the number of observed amino acids at a position grows, ~q converges to the observed frequencies, no

matter what the prior P is. However, given a small number of observations, ~q will in general be a better

estimate of the actual probabilities at the protein position if the prior P accurately describes the density over

O20 characteristic of real protein families. Discovering such a P given data is a problem of posterior

inference. One starts with a large ‘‘gold standard’’ dataset S of protein multiple alignments, which are

assumed to be accurate. Each ‘‘column’’ from these multiple alignments represents a particular position

within a particular protein family, and it is really these columns that may be considered as constituting the

dataset. One then seeks the maximum-likelihood Dirichlet mixture (DM).

One immediate problem arises. The likelihood of S may in general be improved by increasing the

number of components of a DM until it roughly equals the number of columns in S. Doing so, however,

leads to the classic problem of overfitting the data, which causes degraded predictions on new data. One

solution is to apply the Minimum Description Length principle (Grünwald, 2007), and seek instead to

minimize the ‘‘total description length’’ COMP(DM) + DL(Sjh) (Ye et al., 2011b).a The first term of this

expression is the ‘‘complexity’’ of the model DM consisting of all M-component DMs; this can be un-

derstood as the log of the effective number of independent theories DM contains (Grünwald, 2007). The

second term is the negative log likelihood of S implied by the maximum-likelihood h drawn from DM .

Although no feasible algorithm for minimizing DL(Sjh) is known, approximations may be found using

approaches based on expectation maximization (Brown et al., 1993; Sjölander et al., 1996) or Gibbs

sampling (Ye et al., 2011b).

An alternative approach that never fixes M, but treats the number of components as unknown, is possible

using nonparametric Bayesian models. One such model is the Dirichlet process (DP), which we apply to

multiple-alignment data. In brief, the DP allows us to create a generalized prior probability density over the

space of DMs with an unlimited number of components. Posterior inference using a Gibbs sampling

algorithm moves naturally among mixture models with varying numbers of components. The DP and its

generalization, the Pitman-Yor distribution (Pitman and Yor, 1997), have been applied previously to

Gaussian mixtures (Antoniak, 1974), mixtures of multinomials (Hardisty et al., 2010), admixtures of

multinomials (Teh et al., 2006), time-dependent mixtures of multinomials (Beal et al., 2002), and mixtures

of linear models (Hannah et al., 2011), but not to Dirichlet mixtures. In describing probability densities

over OL, Dirichlet mixtures have much greater flexibility than do multinomial mixtures. An individual

multinomial component can model only probability concentrated at a specific location in OL, whereas a

single Dirichlet component can model densities that are arbitrarily concentrated around such a location, and

even densities with most of their mass near the boundaries of OL. The components of a Dirichlet mixture

may have probability densities of variable concentration. Thus, for example, one component can favor

positions with a fairly precise amino acid probability signature, whereas another can favor positions that

contain hydrophobic amino acids, but only one or a small subset of them.

When used to analyze the same dataset for which a previous study (Ye et al., 2011b) yielded a 35-

component DM, our DP-based Gibbs sampling algorithm yields substantially improved solutions with over

500 components. Such large DMs may be cumbersome for practical algorithms, but a specified trade-off

between component number and total description length can be used to select a DM with fewer components.

Of perhaps greater interest is the perspective on the structure of protein space provided by DMs with

many components. The DM formalism suggests, at first, the metaphor of a small number of probability hills

in O20, corresponding to different types of protein positions—hydrophobic, aromatic, charged, etc. How-

ever, the density implied by the many-component DMs we derive is dominated by a continuous probability

ridge winding through O20. This may provide a new perspective on how selective pressures are felt at

individual protein positions.

2. METHODS

Here we describe the mathematical underpinnings of our approach, providing a brief review of standard

material and devoting more detailed discussion to less familiar or novel methods.

aOther validation approaches that are robust to overfitting include held-out perplexity (Blei et al., 2003) or extrinsic
evaluation.
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2.1. Multinomial space

A multinomial probability distribution on an alphabet with L letters is a vector with L positive com-

ponents that sum to 1, and the space of all possible multinomials is the simplex OL. Due to the constraints

on the vector components, OL is finite and has (L - 1) degrees of freedom. For example, O3 is the two-

dimensional equilateral triangle, embedded in Euclidean three-space, with vertices (1,0,0), (0,1,0), and

(0,0,1). We will be interested primarily in the standard amino acid alphabet, and therefore in the 19-

dimensional space O20.

2.2. The Dirichlet distribution

For an alphabet of L letters, a Dirichlet distribution D is a probability density over OL, parameterized by

an L-dimensional vector~a of positive real numbers; it is convenient to define a as
PL

j = 1 aj. The density of D

at ~x is given by

D(~x j ~a ) � Z
YL

j = 1

x
aj - 1
j ‚ (1)

where the normalizing scalar Z � G(a)=
QL

j = 1 G(aj) is chosen so that integrating D over OL yields 1. The

expectation or mean of~x under the density of Equation (1) is the multinomial distribution parameterized by

~q � ~a=a. It is frequently useful to write D’s parameters in the form a~q, with a 2 (0‚1) and ~q 2 OL. When

we use this alternative parametrization for D, we write it as (~q‚ a). Intuitively, one may visualize a Dirichlet

distribution as a probability hill in OL, centered at ~q, and with greater a corresponding to greater con-

centration of probability mass near ~q. For a near 0, the ‘‘hill’’ in fact becomes a trough, with most

probability concentrated near the boundaries of OL. Thus, such Dirichlet distributions favor sparse mul-

tinomials, where only a few letters have non-negligible probability (Fig. 1).

2.3. Mixture models

Given a proposed set of observations, a theory may be thought of as assigning probabilities to all possible

datasets or outcomes. If a theory has a particular set of adjustable parameters, we call the set of all such

theories a model. More generally, we may wish to consider multiple models, usually nested, or charac-

terized by different numbers or sets of parameters.

Mixture models are a formalism frequently used to discover clustering patterns in data. In a mixture

model, all observations are associated with clusters, each of which has a corresponding probabilistic

mixture ‘‘component’’ that explains its data. For example, multinomial mixture models are frequently used

in text analysis (Lewis, 1998).

Multinomial mixtures have difficulty modeling many probability densities over OL, because the L – 1

free parameters of an individual multinomial component can only describe probability concentrated at a

FIG. 1. Density plots for four Dirichlet distributions. The densities are over the triangular simplex that represents

multinomial distributions over three letters, and demonstrate how different Dirichlet components can accommodate

variable concentrations. Darker coloring denotes higher probability density. (a) Dirichlet parameters that are all 1.0

yield a uniform density over multinomial distributions. (b) Dirichlet parameters that are all greater than 1.0 yield a

density concentrated near the mean ~q, in this case (0.6250, 0.0625, 0.3125). (c and d) Dirichlet parameters that are all

less than 1.0 yield a density concentrated near the edges and corners of the simplex. Such a density favors sparse

multinomials, in which only a subset of letters has appreciable probability. Symmetric (c) and asymmetric (d) cases are

shown.
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specific location~q. In contrast, with the addition of the single extra parameter a, a Dirichlet component can

describe probability densities of arbitrary concentration around~q, including, when a is small, densities that

favor sparse multinomials (Fig. 1). This greatly enhanced flexibility allows a Dirichlet mixture to model

most real-world probability densities over OL much better than a multinomial mixture with many times as

many components.

An M-component DM is a probability density over OL, defined as the weighted sum of M Dirichlet

distributions, called Dirichlet components. Such a mixture has ML + M – 1 free parameters. Each of the M

Dirichlet components contributes L ‘‘Dirichlet parameters.’’ In addition, the weights ~w or ‘‘mixture para-

meters’’ are M positive real numbers that sum to 1, only M – 1 of which are independent. A DM may be

thought of as a superposition of M probability hills in OL, each with its particular volume, center of mass, and

concentration.

2.4. The Dirichlet process

When seeking a theory for a set of data, a difficulty is that theories with more parameters generally can

explain the data better, but overfitting can result in poor predictions on future data. One approach to this

problem is the Minimum Description Length principle (Grünwald, 2007), which explicitly favors theories

drawn from mixture models with fewer components (Ye et al., 2011b). An alternative approach is provided

by the Dirichlet process (DP), which effectively subsumes in a single formalism mixture models with an

arbitrary number of components. A mathematically detailed description of the Dirichlet process (DP) can

be found elsewhere (Antoniak, 1974; Pitman and Yor, 1997; Müller and Quintana, 2004); here we will

review only its essentials.

The DP generally is applied to problems where data are postulated to be well-modeled as generated by a

mixture of multiple instances (often called ‘‘atoms’’ but here called ‘‘components’’) of an underlying

distribution of known parametric form. In the DP formalism, every mixture consists of a countably infinite

number of components, each with its own weight and set of component parameters. In essence, a DP

defines a generalized probability distribution over this infinite-dimensional space of mixtures.

Two elements completely specify a DP:

1. A ‘‘base’’ probability distribution H over the space of component parameters. For example, if the

components are Gaussians on R with unit variance, H is a specified distribution for their means.

2. A positive real parameter, which implicity defines a probability distribution on component weights.

This parameter is usually called a, but we will call it c here to avoid the potential confusion arising

from the multiple distinct uses we make of Dirichlet distributions. As we will see, the smaller c, the

greater the implied concentration of weight in a few components.

Analysis using the DP is Bayesian. A DP is used to define a prior over mixture distributions which, when

combined with observed data, implies a posterior for the weights and component parameters of these

mixtures. A special feature of this inference is that, although all mixtures are assumed to have a countably

infinite number of components, only a finite number can ever explain a given set of data. The posterior

distribution thus differs from the prior only for finitely many components. Bayesian analysis allows one to

estimate the number of these components, as well as their associated weights and component parameters.

2.5. The Chinese restaurant process

The ‘‘Chinese restaurant process’’ (CRP) (Ferguson, 1973) is closely related to the Dirichlet process and

is useful for understanding the properties of the DP, as well as for posterior inference. The metaphor in the

name refers to a restaurant with an unbounded number of tables.

The Chinese restaurant is patronized by customers. Each customer represents an i.i.d. draw from a

distribution G drawn from a Dirichlet process DP(c,H).b Each customer sits at one of the tables, and when

customers sit at the same table it means they are associated with the same component, drawn from the base

distribution H. In our application, a customer represents a multiple-alignment column, and a table repre-

sents a DM component, (~qk‚ ak).

bNote that the Chinese restaurant does not model a specific measure G; it only models draws from G and integrates
over all possible G. However, this representation is sufficient for our purposes. For a constructive definition of the
Dirichlet process, see Sethuraman (1994).
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Draws from the Dirichlet process are exchangeable (Aldous, 1985), so each customer can be viewed as

the ‘‘last’’ customer to enter the restaurant. When customers enter, they choose to sit either at a new table or

at one that is already occupied. This choice is made randomly, but with each occupied table selected with

probability proportional to the number of people already seated there and a new table selected with

probability proportional to the parameter c. It is evident that smaller values for c imply a greater con-

centration of customers at a small number of tables.

The exchangeability of the Dirichlet process is important for Gibbs sampling inference, because it allows

us to condition one column’s component assignment on the other columns’ assignments.

2.6. A base distribution for Dirichlet-component parameters

Specifying a DP for Dirichlet mixtures requires specifying a base distribution H over the space of

Dirichlet parameters. Rather than defining H on the standard Dirichlet parameters~a 2 R + L, we find it more

natural to define it on the alternative parameters (~q‚ a). Specifically, we propose H h (H1, H2), where H1

and H2 are independent distributions for ~q and a.

Because ~q 2 O20, a natural base distribution H1 for ~q is itself Dirichlet. Furthermore, because we seek a

DM that describes protein columns, it is appropriate to choose H1’s center of mass to be ~p, the ‘‘back-

ground’’ amino acid frequencies typical for proteins. This leaves only the single concentration parameter,

which we will call b. In short, we propose choosing H1 to be the Dirichlet distribution with parameters

(~p‚ b).

When specifying H2, the base distribution for a 2 (0‚1), we will see that it is convenient if we require

H2 to have a long, uninformative tail. An exponential function of the form H2 h ke - ka, with k small, serves

the purpose, and the precise value of k will be irrelevant.

By choosing ~p as the center of mass for H1, and requiring H2 to have a long tail, the base distribution

H h (H1, H2) we propose for Dirichlet-component parameters has, in effect, only the one free parameter b,

as results are insensitive to the choice of k. This, in conjunction with the parameter c, completes our

specification of a DP for Dirichlet mixtures. We will discuss in the Results section the effects of different

choices for b and c.

2.7. Model

To review, we posit the following generative process for observed data:

� We draw component k 2 [1‚1) of the Dirichlet process from the base distribution; this draw has two

parts:

– the component’s mean ~qk is sampled from Dirichlet(~p‚ b);

– the component’s concentration ak is sampled from Exponential(k), which is equivalent to a gamma

distribution with shape = 1 and rate = k.
� We draw weights ~w for all of the Dirichlet process components from GEM(c).c

� For each column i 2 [1‚ n]:
– We draw a component assignment zi from the distribution ~w;

– We draw a multinomial distribution ~/i over letters from Dirichlet(~qzi
‚ azi

);

– We draw the letters of column i from Multinomial(~/i), resulting in the observation vector ~xi, with

associated letter count vector ~ci.

We assume that this process created the observed columns and uses posterior inference, described in the

rest of the section, to uncover the latent variables that best explain the observed data. The generative

process may be expressed using the graphical model in Figure 2.

At this point, we pause to recognize that our terminology has potential confusions. Our model has three

different uses of the word ‘‘Dirichlet.’’ One is a Dirichlet process, and two are ordinary Dirichlet distributions:

� At the top level, a Dirichlet process gives us a countably infinite number of components. This is a

nonparametric Bayesian distribution over distributions.

cThe vector ~w is a point on the infinite simplex (Sethuraman, 1994), and GEM stands for Griffiths (Griffiths, 1980),
Engen (Engen, 1975), and McCloskey (McCloskey, 1965). This, along with the separate component draws, form a
constructive ‘‘stick breaking’’ definition of the Dirichlet process.
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� Each component k of the Dirichlet process is itself a Dirichlet distribution, parameterized by (~qk‚ ak).

This is a finite distribution over O20. Columns are generated from a multinomial drawn from this

distribution.
� The mean of each component’s Dirichlet distribution is itself drawn from a Dirichlet distribution

parameterized by (~p‚ b).

2.8. MCMC inference for Dirichlet process Dirichlet mixtures

The Gibbs sampling algorithm for DMs described in Ye et al. (2011b) assumed a fixed number of

components M. The algorithm alternated between a first stage, in which the component assignments zi for

columns were chosen by Gibbs sampling, conditioned on the complete set of component parameters, and a

second stage, in which each component’s parameters were updated using maximum-likelihood estimates

based on the columns associated with that component. Our approach here, although similar in many ways,

has a few key differences.

Like the previous approach, our Gibbs sampler forms a Markov chain over assignments to components

Z � fz1‚ z2‚ . . . ‚ zng and component parameters f(~q1‚ a1)‚ (~q2‚ a2) . . .g. However, unlike the previous

approach, the number of components is not fixed. Components can be both lost and created, but only

finitely many components are ever used to describe a given dataset. Specifically, before being assigned

stochastically to a new component, by means of the latent variable zi, a column i is first removed from an

existing one, and if this component is left with no associated columns, it is abolished. Then, for the

column’s new assignment, it may choose among the existing components, but it may also start a new one.

Unlike in Ye et al. (2011b), this sampling is conditioned on the current component assignments of all

other columns rather than on those assignments only from the previous round. During the algorithm’s

second stage, we sample component parameters rather than update them by maximum-likelihood esti-

mation. There are various ways in which one may initialize the algorithm, but the simple expedient of

assigning all columns to a single component at the start does not appear to cause any difficulties.

We describe in greater detail below various technical aspects of these modifications to the algorithm of

Ye et al. (2011b).

2.9. Sampling an existing or new component for a column

Our DP-sampling algorithm creates a Markov chain of component assignments and component pa-

rameters. While sampling component assignments, we assume that the Dirichlet parameters ~ak associated

with an existing component k remain fixed. However, the number of columns nk associated with component

k may change.

FIG. 2. Graphical model representing the Dirichlet process Dirichlet mixture model proposed in this article. Nodes

represent variables, shaded nodes are observed, edges show probabilistic dependencies, and plates denote replication.
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Gibbs sampling conditions a column’s assignment zi on the other columns’ assignments and the com-

ponent parameters. This is where the exchangeability of the Chinese restaurant process (Section 2.5) is

advantageous. Computing the conditional distribution is equivalent to removing column i from its current

component and then assigning it to an existing component or a completely new one. Assuming the

observations~xi of column i contain ci total amino acids, with the amino acid counts given by the vector~ci,

the likelihood for an existing component k is proportional to

p(zi = k j Z - i‚~qk‚ ak‚~xi) / nk �
G(ak)

G(ak + ci)

Y20

j = 1

G(akqk‚ j + ci‚ j)

G(akqk‚ j)
(2)

(Brown et al., 1993; Sjölander et al., 1996; Altschul et al., 2010; Ye et al., 2011b). Here, Z - i denotes the set

of component assignments for all columns except column i. In the Chinese restaurant metaphor, this

corresponds to sitting at an existing table.

In addition to being associated with an existing table, there is also a probability of sitting at a new table;

this happens with probability proportional to c. Because this is a new table, the component parameters are

unknown; however, we still must calculate the probability of the column’s observations ~xi. The proper

Bayesian approach is to integrate this likelihood over all possible Dirichlet distributions (~q‚ a), given the

base distribution H h (H1, H2), so that

p(zi = new j~xi‚ H1‚ H2‚ c)

/ c � p(~xi j H1‚ H2)

= c
Z 1

0

H2(a)da
Z
O20

H1(~q)d~q

Z
O20

p(~xi j ~/)D(~/ j a~q)d~/‚
(3)

where p(~xi j ~/) is the probability of observing column i given the multinomial distribution ~/.

This is where our choice of H2 is first advantageous. Because H2 is a function that decays very slowly

in a, almost all of the mass of such a density is contributed by large a, for which the corresponding Dirichlet

distributions can be considered delta functions at ~q. This reduces the right side of Equation (3) to

c
Z
O20

p(~xi j ~q)H1(~q)d~q‚ (4)

which, analogously to before (Brown et al., 1993; Sjölander et al., 1996; Altschul et al., 2010; Ye et al.,

2011b), is just the probability of observing the amino acid vector ~xi given the Dirichlet distribution (~p‚ b)

over multinomials. Thus,

p(zi = new j~xi‚ H1‚ H2‚ c) / c � G(b)

G(b + ci)

Y20

j = 1

G(bpj + ci‚ j)

G(bpj)
: (5)

Given Equation 2 and Equation 5, we may now sample column i into an existing or a new component. If

a new component is selected, our final problem is how to assign it a set of Dirichlet parameters. Here, we

simply use the sampling method described in the next section but applied to a component with only a single

associated column.

2.10. Sampling Dirichlet component parameters

In addition to sampling column assignments, we must also sample the Dirichlet component parameters

f(~qk‚ ak)g. As in prior work (Ye et al., 2011b), we take a coordinate-wise approach for sampling these

parameters: for each component k, first sampling ~qk and then sampling ak.

We sample ~qk
� from a Dirichlet distribution with parameters b~p + ~Ck, where ~Ck is the aggregate ob-

servation vector, summing over all columns associated with component k. This approximates the true

posterior of ~qk under the maximal path assumption (Wallach, 2008).

Given our sampled ~qk
�, the column data yields an analytic formula for the log-likelihood function L(ak)

as a function of ak, as well as for its first and second derivatives (Minka, 2000; Ye et al., 2011b). If, as

suggested above, the prior on ak takes the form ke - kak then the posterior log-likelihood is, up to a constant,

L(ak) - kak. Assuming k is small permits us to ignore the second term and to sample a�k with reference only
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to L(ak). For certain special cases, L has a supremum at 0 or N, and in these instances one may set a�k
respectively to a fixed small or large number. (In either case, the likelihood subsequently implied for amino

acid count vectors is insensitive to the precise value chosen for a�k .) Otherwise, it has been postulated but

not proven (Ye et al., 2011b) that L has a unique maximum at âk, which it is easy to locate using Newton’s

method. If L’s second derivative at âk is –X, we can use the Laplace approximation to sample a�k from a

normal distribution with mean âk and variance 1/X.

2.11. Refinements to inference

While the above methods were used to generate the results reported in Section 3 up to Section 3.3, we

describe here alternative methods for those interested in more refined inference techniques that allow a joint

search over more of the model’s parameters.

In Section 3, we employ a grid search to determine the Dirichlet process parameter c that optimizes the

Minimum Description Length (MDL), an objective function previously proposed for Dirichlet mixture

models used in computational biology (Ye et al., 2011b). Alternative objective functions could be clas-

sification performance, interpretability, or biological plausibility.

The objective function of likelihood can be optimized with approximate inference or, more specifically,

using slice sampling (Neal, 2003). Slice sampling is a general MCMC algorithm to draw random samples

from an unknown probabilistic distribution by sampling uniformly from the region under the variable’s

density function. In our case, we would like to sample the hyperparameter c from p(c j A‚ Q‚ Z‚ X; b‚ k‚~p).d

This density is proportional to the data likelihood p(X j Z‚ Q‚ A; b‚ c‚ k‚~p), where

� X = f~xi j i 2 [1‚ n]g denotes all observed amino acid columns.
� Z = fzi j i 2 [1‚ n]g denotes the component assignments for all columns.
� Q = f~qk j k 2 [1‚ K + ]g denotes the centers of mass for all components.
� A = fak j k = [1‚ K + ]g denotes the concentration parameters for all components.

Here, K + is the current number of components.e This density can be rewritten as:

p(X j Z‚ Q‚ A; b‚ c‚ k‚~p) = p(X j Z‚ Q‚ A) � p(Z j c) � p(A j k) � p(Q j b‚~p): (6)

The right-hand side of Equation 6 consists of the following factors:

� The likelihood of tables’ parameters given the observed columns:

p(X j Z‚ A‚ Q) =
Yn

i = 1

p(~xi j zi = k‚ ak‚~qk) =
Yn

i = 1

G(ak)

G(ak + ci)

YL

j = 1

G(akqk‚ j + ci‚ j)

G(akqk‚ j)
: (7)

� The joint distribution of table assignments:f

p(Z j c) = cK +
QK +

k = 1 (nk - 1)!Qn
i = 1 (i - 1 + c)

� cK +
QK +

k = 1 G(nk)
G(n + c)
G(c)

: (8)

Note that nk is the number of columns currently assigned to table k, and n is the total number of

columns. The expression in Equation 8 is exact when c is an integer.

� The likelihood of k given the current values of concentration parameters A:

p(A j k) =
YK +

k = 1

ke - kak : (9)

dSlice sampling can be applied to more general parameters. A more general alternative would be to slice sample a
vector v h (b,c,k) (Wallach, 2008).

eThe superscript + is to denote that the number of components is unbounded and varies during our sampling process.
fFor detailed derivation of Equation 8, refer to Gershman and Blei (2012).
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� The likelihood of b given the current values of centers of mass Q:

p(Q j b‚~p) =
YK +

k = 1

G(b)QL
j = 1 G(bpj)

YL

j = 1

q
bpj - 1

k‚ j : (10)

The detailed pseudo-code of the slice sampling used is shown in Algorithm 1 (Wallach, 2008). The

algorithm requires two inputs: (1) R is the number of iterations and is typically set to 10, and (2) r is the

step size and set to one tenth the current value of c. For notational convenience, we use (cleft, cright) to

denote the range around c we sample from, and use f (c) to denote p(c j A‚ Q‚ Z‚ X; b‚ k‚~p).

Algorithm 1: Pseudo-code for slice-sampling algorithm used.

Input: R: number of iterations. r: step size.

Initialize c
foreach r 2 [1‚ R] do

Draw u* Uniform(0, f (c));

Draw v * Uniform(0, 1)

cleft ) c - vr
cright ) cleft + r
while true do

Draw c0* Uniform(cleft, cright)

if f (c0) > u then

break;

else

if c0 < c then

cleft ) c0

else

cright ) c0

3. RESULTS

The research group at UCSC that first proposed Dirichlet mixtures for protein analysis currently makes a

number of multiple-alignment datasets available on their web site, http://compbio.soe.ucsc.edu/dirichlets/

index.html. We consider their dataset ‘‘diverse-1216-uw,’’ called SUCSC here, which was studied also in

Ye et al. (2011b). SUCSC consists of 23,903,805 amino acids arranged into 314,585 columns, and thus

containing a mean of approximately 76.0 amino acids per column.

3.1. The quality of Dirichlet mixtures

It is useful to have an objective measure for the quality of a DM, and for this purpose we turn to the MDL

principle (Grünwald, 2007), whose essentials we review here.

One may define the description length of a dataset S, given a theory h, as DL(Sjh) h - log2 Ph(S), i.e., the

negative log of the probability for the dataset implied by the theory. Because the logarithm is to the base 2,

DL is said to be expressed in bits. This definition may be extended to a model M by defining

DL(SjM) � infh2M DL(Sjh).
If one wishes to find the model that best describes a set of data, using DL alone as a criterion is problematic

because, for nested models, increasing the number of parameters can only decrease DL. Accordingly, MDL

theory introduces the formal concept of the complexity of a model COMP(M) (Grünwald, 2007), which may

be thought of, intuitively, as the log of the effective number of independent theories the model contains. The

MDL principle then asserts that the model best justified by a set of data is that which minimizes

COMP(M) + DL(S jM). In essence, the principle supports a theory drawn from a model of greater complexity

only when this increased complexity is offset by a sufficient decrease in data description length.

To select among Dirichlet mixture models DM with a variable number M of components using the MDL

principle, one must be able to at least approximate both COMP(DM) and DL(S jDM). Heuristic arguments

(Ye et al., 2011b) have extended to COMP(DM) an analytic formula for the complexity of a single-

component Dirichlet model (Yu and Altschul, 2011). Calculating DL(S jDM) entails finding the maximum-
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likelihood M-component DM. This is an instance of the classic hard problem of optimization within a rough

but correlated high-dimensional space, and approximation algorithms have been based on expectation

maximization (EM) (Brown et al., 1993) and Gibbs sampling (Ye et al., 2011b).

For the sake of analysis, we may treat our DP-sampler as simply an improved algorithm for finding DMs

that minimize total description length. To evaluate a particular DM, we compare it to the baseline mul-

tinomial model in which all amino acids are drawn randomly according to background probabilities ~p
inferred from the data. For this model, the description length of SUCSC is 99,604,971 bits, and the com-

plexity of the model is 206 bits (Ye et al., 2011b), so the total description length can be expressed as 4.1669

bits/amino acid (a.a.). We assess a DM by the decrease D (bits/a.a.) in total description length it implies

with respect to this baseline, and use D as an objective function of mixture quality.

3.2. The optimal number of Dirichlet components

Our DP-sampling procedure does not converge on a unique DM, and selecting different parameters b and

c of course yields different results. However, given a set of real protein multiple-alignment data, the results

produced by the procedure after several hundred iterations share various broad qualitative and quantitative

features, which we describe here.

At a given iteration, the current DM generated by the DP-sampler typically contains many components to

which only a small number of columns are assigned. These components are particularly unstable, and with

further iterations tend either to evaporate or to grow in the number of associated columns. In general, they

are unsupported by the MDL principle when seeking a DM that maximizes D. Thus, after any given

iteration, we first arrange the sampler-generated Dirichlet components in decreasing order of their number

of associated columns, and then calculate the D implied by the DMs consisting of increasing numbers of

these components. Although this greedy method does not necessarily identify the optimal subset, it pro-

vides a reasonable approximation. Typically, the MDL principle excludes sets of components to which, in

aggregate, less than 2% of the columns are associated, with no single excluded component representing

more than 0.05% of the columns.

Using a range of settings for the DP parameters b and c described in the next section, we ran the DP-sampler

on SUCSC for 1000 iterations and estimated an optimal D after every 10th iteration. Although the best D
frequently continued to improve past the 900th iteration, its rate of improvement always flattened out much

earlier. For example, using parameters b = 400 and c = 100, we graph in Figure 3 the best D found at each

iteration, and in Figure 4 the number of components in the associated DM, as well as the total number of

components returned. The optimal D of 1.0763 bits/a.a., for a 623-component DM found at iteration 940,

substantially exceeds the 1.0654 bits/a.a of a 35-component DM achieved by Ye et al. (2011b), as well as the

0 200 400 600 800 1000
Iteration

1.071

1.073

1.075

1.077

D

FIG. 3. Ds for Dirichlet mixtures

found by the DP-sampler. Using

parameters b = 400 and c = 100,

the DP-sampler was run on SUCSC

for 1000 iterations. After every 10th

iteration, the MDL principle was

applied to the components returned,

to find a DM with optimal D. Black

crosses indicate Ds that are greater

than those for all previous itera-

tions; red circles, others. For itera-

tion 10, D = 1.0666 is off the scale.

DP, Dirichlet process; DM, Dirich-

let mixture; MDL, minimum de-

scription length.

10 NGUYEN ET AL.



1.0594 bits/a.a. of the 20-component DM ‘‘dist.20comp,’’ derived from SUCSC, that is reported on the UCSC

web site. We will consider below why the DP-sampler returns DMs with so many more components than those

found by earlier methods, as well as what the sizes of these DMs imply about the structure of protein space.

3.3. Dependence on Dirichlet-process parameters

The results we obtain depend on the Dirichlet-process parameters b and c, but their most important

qualitative and quantitative features are not very sensitive to these parameters. The Dirichlet process is a

Bayesian prior and its particular parameters should thus be outweighed by sufficient data. Nevertheless, it is

instructive to consider the practical effects of these parameters.

We ran the DP-sampler as described above using values for b ranging from 100 to 1000, and for c from 5

to 100, with the results summarized in Table 1. We obtained almost equally high Ds for b from 200 to 800,

with c ‡ 60.

The b parameter specifies the concentration of the prior for the ~q parameters corresponding to each

Dirichlet component. When inferring ~q for a particular component, the aggregate amino acid counts from

its associated columns are added to b pseudocounts. The columns in SUCSC have a mean of 76 amino acids,

so the seemingly large value of b = 400 in fact corresponds to only about five average-composition

columns. This is not a very great number when, on average, > 500 columns from SUCSC are assigned to

each component. Because larger values for b render components with few associated columns less dis-

tinctive, they favor mixtures with fewer components, as seen in Table 1.

For all the b we tested, the best D found initially grew with increasing c, but plateaued by c = 60.

Although larger values for c favor DMs with more components, the number of components comprising the

optimal results found was not very sensitive to the choice of c. As discussed in the next section, one may

avoid specifying a particular c.

One may prefer DMs with fewer components for algorithmic reasons. In this case, it may be advanta-

geous to use both large b and small c; this tends to favor DMs with fewer components and thus improve

their corresponding Ds. We consider below the tradeoff of Dirichlet mixture size and accuracy.

3.4. Slice sampling c

To avoid the arbitrariness of specifying a particular value for a DP parameter, or the time involved in

testing multiple values, we may use the slice-sampling procedure described above. In brief, after a given

iteration of the DP-sampling algorithm, we sample a new value c0 within a range centered on the current

value c. We then compute the likelihood of the current mixture model with this new c0. If this likelihood is

0 200 400 600 800 1000
Iteration

0
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FIG. 4. Number of Dirichlet

mixture components returned. The

DP-sampler was run as described in

the caption to Figure 3. Red squares

show the number of components

returned by the DP-sampler after

every 10th iteration. Black circles

show the number of components in

DMs supported by the MDL prin-

ciple; their corresponding Ds are

shown in Figure 3.
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greater than the likelihood with the current c, there is a high probability that we will accept this new c0 and

use it in the next iteration.

We implemented this sampling procedure for the DP parameter c, using an initial value of c = 50 and a

‘‘burn-in’’ period of 25 iterations before c is allowed to vary. For b ranging from 200 to 1000, we ran this

refined algorithm for 1000 iterations; for b = 100, the program terminated after 323 iterations because the

number of components it generated exceeded a limit imposed by memory constraints. In Table 2, we report

for each b the mean and standard deviation for c during the program’s last 100 iterations. We also report the

optimal D found, its corresponding number of components, the iteration yielding this D, and the value of c
during this iteration.

As can be seen, slice sampling converges on a relatively small range of values for c, and the best D found

is always within 0.0001 bits/a.a. of the best yielded by the multiple searches shown in Table 1, which

employ fixed, specified c. As before, b&400 appears optimal, but this conclusion is now reached by a one-

parameter rather than a two-parameter search.

One may employ slice sampling to determine b as well as c, but doing so is problematic. Although we

have being using D as an objective function for Dirichlet mixtures, the DP-sampler is ignorant of this

function, instead sampling mixtures according their posterior likelihood, given the prior imposed by the

Dirichlet process. Indeed, the DP-sampler returns mixtures with many more components than supported by

Table 2. The DP-Sampler, with Slice Sampling for c

b Mean and standard deviation of c Best D (bits/a.a.) Number of components Iteration found g

100 199.7 – 13.0 1.0760 767 280 200

200 183.9 – 6.8 1.0762 721 580 166

400 129.6 – 4.3 1.0763 608 790 128

600 95.5 – 3.9 1.0762 537 930 94

800 82.2 – 3.5 1.0762 482 990 83

1000 66.8 – 2.8 1.0760 442 940 69

DP, Dirichlet process.

Table 1. Effect of Dirichlet Process Parameters

b g
Best D

(bits/a.a.)

Number of

components

Iteration

found b g
Best D

(bits/a.a.)

Number of

components

Iteration

found

100 5 1.0756 470 950 600 5 1.0757 361 980

10 1.0758 520 860 10 1.0760 406 960

20 1.0759 644 980 20 1.0762 471 930

40 1.0760 689 980 40 1.0762 481 980

60 1.0760 720 800 60 1.0763 533 910

80 1.0760 717 630 80 1.0762 526 900

100 1.0760 808 1000 100 1.0762 541 780

200 5 1.0757 449 1000 800 5 1.0757 341 1000

10 1.0759 498 840 10 1.0759 378 1000

20 1.0761 586 960 20 1.0761 431 960

40 1.0761 597 600 40 1.0761 466 830

60 1.0762 665 750 60 1.0762 472 830

80 1.0762 709 870 80 1.0762 471 730

100 1.0762 679 590 100 1.0762 499 760

400 5 1.0757 400 980 1000 5 1.0755 314 1000

10 1.0760 452 910 10 1.0758 350 1000

20 1.0762 505 960 20 1.0759 375 990

40 1.0763 562 860 40 1.0760 429 860

60 1.0763 588 1000 60 1.0761 433 910

80 1.0763 603 990 80 1.0761 447 910

100 1.0763 623 940 100 1.0761 444 990

a.a., amino acids.
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the MDL principle, as seen in Figure 4. We have been able to elide this inconsistency because, for fixed b,

greater posterior likelihoods for the larger mixtures correlate well with greater values for D. This corre-

lation is broken, however, once b may vary. The generalized DP-sampler then prefers small b, yielding

mixtures with many components, which are penalized by the model-complexity term of the MDL principle.

3.5. Tradeoff of D and the number of Dirichlet components

So far we have been concerned only with maximizing D. However, DMs are derived for use in profile-

sequence, profile-profile, or multiple-alignment programs (Brown et al., 1993; Edgar and Sjölander, 2004;

Altschul et al., 2010; Ye et al., 2011a), and in these applications DMs with fewer components have a speed

advantage. As seen in Figures 3 and 4, DMs with only slightly suboptimal D can have significantly fewer

components, and such DMs may well be preferred in certain circumstances.

To study this tradeoff explicitly, we recorded over all iterations of the run described in Figures 3 and 4,

as well as the greedy DM-construction procedure described above, the greatest D found for DMs with

varying numbers of components; the results are shown in Figure 5. A particular application, im-

plementation, and preference for speed versus DM accuracy (i.e., D) can be used with such a curve to

derive an optimal DM size from a software engineering perspective.

3.6. The topography of protein space

What do the hundreds of Dirichlet components returned by the DP-sampler imply about proteins? To

study this question, it is useful to develop a representation of DMs that is easier to comprehend than would

be a mere tabulation of thousands of parameters. The approach we take is to represent each component of a

DM by a single line of text. On this line, we focus primarily on the component’s center-of-mass vector ~q,

which we represent by a string ~r of twenty symbols, although we also report the component’s mixture

parameter w and concentration parameter a numerically.

In constructing the ~r to represent a Dirichlet component, it is useful first to order the amino acids in a

manner that corresponds to their mutual similarities, even though any linear arrangement must elide some

of these multidimensional relationships. Various orders have previously been proposed (Swanson, 1984;

Brown et al., 1993), but our data suggest the order ‘‘RKQEDNHWYFMLIVCTSAGP,’’ using the one-

letter amino acid code.

Because within proteins the amino acids occur with widely differing background frequencies pj, it is

fruitful to represent a Dirichlet component’s mean ‘‘target frequencies’’ qj in relation to the corresponding pj.

0 100 200 300 400 500 600
Components

1.02

1.04

1.06

1.08

D
FIG. 5. Best D for a specified

number of mixture components.

The DP-sampler was run as de-

scribed in the caption to Figure 3.

Shown are the best Ds found, dur-

ing any iteration, for DMs with a

given number of components.
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Accordingly, we base the symbol rj on the implied ‘‘log-odds score’’ sj = log2(qj /pj) according to the

following system:

sj > 2 rj = The amino acid’s one-letter code‚ in uppercase

2 � sj > 1 rj = The amino acid’s one-letter code‚ in lowercase

1 � sj > 0:5 rj = ‘‘ + ’’

0:5 � sj > - 1 rj = ‘‘ ’’

- 1 � sj > - 2 rj = ‘‘:’’

- 2 � sj > - 4 rj = ‘‘ - ’’

- 4 � sj rj = ‘‘ = ’’

In other words, for a particular component, an uppercase letter implies that the frequency of the

corresponding amino acid is enriched vis-a-vis background by a factor greater than 4.0, while the symbol

‘‘=’’ means it is decreased by a factor of at least 16. We choose such a positive/negative asymmetry

among the categories for defining the rj because qj 2 (0‚ 1) implies an upper bound on sj, but no lower

bound.

As seen in Table 1, the DMs with greatest D can have over 600 components. Although we could analyze

mixtures of this size, most of their important qualitative features are apparent in mixtures with many fewer

components, so we will consider such a smaller DM here. As discussed above, D for DMs with fewer

components tends to be optimized using relatively large b and small c. Choosing b = 1000 and c = 10, and

requiring an improvement of at least 4 · 10 - 5 bits/a.a. in D for each additional component, our best result

was a 134-component DM with D = 1.0732 bits/a.a, which we call h134. The parameters associated with all

components of h134 are presented in Tables 3–5.

A DM’s components may be listed in arbitrary order. One reasonable choice is by decreasing order

of mixture parameter w, and in Tables 3–5, we give the rank for each component that such an

ordering would yield. However, we have found it instructive to divide h134’s components into three

groups and to manually reorder the components of each group in order to elucidate several prominent

features of the probability landscape the DM represents. It may be possible to automate such a

grouping and ordering using distance measures between Dirichlet distributions (Rauber et al., 2008).

Developing such a method would be of interest, but for our present purposes it would provide only a

distraction.

Perhaps the most important feature of h134 is represented by the 98 components of Group A (Table 3). As

one moves from one component to the next within this group, the center of mass usually changes only

slightly and in a relatively continuous manner. The superposition of the probability hills represented by

individual components can thus be visualized as a probability ridge threading its way through O20, with

several minor spurs.

The second feature of h134 is represented by the 17 components of Group B (Table 4), which share two

main properties: a preference for the amino acids glycine (G) and/or proline (P), and an aversion to

hydrophobic amino acids. This group of components can be seen as a secondary ridge, separated from

the first.

A third feature is represented by the 19 components of Group C (Table 5). These components strongly

favor a single amino acid, without clear secondary preferences that would attach them to the major ridge of

Group A. Of note is the last component in this group, whose concentration parameter a is very close to 0.

This implies a probability density concentrated almost completely near the vertices of O20. It is a pecu-

liarity of DMs that such densities can be approximated either by a single component with small a
and probability mass dominated by several letters, or by the superposition of multiple components each

with large a and probability mass dominated by a single letter. Thus this last component can be seen, in

essence, as a formal alternative to the type of probability density represented by the other components

of Group C.

In general, it may seem surprising that the data will support the identification of the 134 Dirichlet

components shown in Tables 3–5, not to mention the > 600 components of many DMs with greater D.

However, the > 300,000 columns in SUCSC can associate on average > 500 columns to each of 600

components, and this much data is able to support relatively fine distinctions between similar probability

densities.
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When one compares different mixtures returned by the DP-sampler, the overall shape of the probability

densities they describe can be recognized as remarkably similar. In contrast, the parameters of the indi-

vidual components that go into approximating this shape have no particular stability. For example, a point

that is halfway between the crests of two components in one mixture may very well be at the crest of an

individual component in another.

Table 3. Parameters of h134: Group A
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Table 4. Parameters of h134: Group B

Table 5. Parameters of h134: Group C
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4. CONCLUSION

When a set of data is believed to be well described by a mixture distribution, but with an unknown number of

components, the Dirichlet process may be applied to infer the mixture (Blei and Jordan, 2005). Because

homologous positions within protein families have been fruitfully described by Dirichlet mixtures (Brown et al.,

1993; Sjölander et al., 1996; Altschul et al., 2010), we have sought here to infer such mixtures from multiple-

alignment data using a Gibbs sampling algorithm based upon the Dirichlet process. This required us to develop

several technical innovations, because the Dirichlet process has not previously been applied to DMs.

In contrast to previous approaches (Brown et al., 1993; Sjölander et al., 1996; Ye et al., 2011b), our DP-

sampler yields many hundreds of Dirichlet components when applied to real multiple-alignment data. To

understand these results, one should recognize that DMs are employed to model proteins primarily for

mathematical as opposed to biological reasons: With Bayesian analysis, the posterior of a DM prior is still a

DM (Brown et al., 1993; Sjölander et al., 1996; Altschul et al., 2010). The DM formalism suggests the

metaphor of discrete probability hills in O20, each representing a category for classifying protein positions.

However, the actual probability topography in O20 that describes proteins appears to be qualitatively different,

having, for example, long probability ridges. To model such features well using Dirichlet components

requires a large number of them, with closely spaced centers of mass. Our analysis suggests there is no

‘‘correct’’ number of components or categories for describing the probability distribution over O20 implied by

proteins. Instead, when the MDL principle is applied, steadily increasing amounts of data should support

steadily increasing numbers of components. However, as the number of components grows, there is also

steadily diminishing improvement, as measured by D, in modeling the underlying probability distribution.

The DP-sampler is able to find DMs that model multiple-alignment data better than do those mixtures

found by previously proposed methods. A key to its relative success is its ability to seed new components

with columns that are not modeled well by any existing components, but to abandon components that do

not then attract other columns. This fosters a much more efficient search of the very high-dimensional

Dirichlet-mixture space than does seeding the space with random starting positions.

Although existing multiple-alignment datasets may support DMs with over 500 components, speed

considerations may favor smaller mixtures for use in practical sequence comparison algorithms. The DP-

sampler can generate mixtures of many different sizes to facilitate such a tradeoff.

At a deeper level, the DP-sampler provides a new perspective on the topography of protein space. This

perspective suggests that the amino acid preferences at individual protein positions should, in general, be

thought of not as falling into one of several categories, but rather as arrayed along a continuum. These

preferences, represented by points in O20, fall mainly near a long, almost one-dimensional probability ridge

winding through the space. This perspective may suggest interesting questions for further investigation. For

example, multiple alignment columns that imply similar high likelihoods for components situated far from

one another along the ridge might imply either misalignment or the presence of distinct protein subfamilies

within the alignment.
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