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ABSTRACT

Therapeutic proteins continue to yield revolutionary new treatments for a growing spectrum
of human disease, but the development of these powerful drugs requires solving a unique
set of challenges. For instance, it is increasingly apparent that mitigating potential anti-
therapeutic immune responses, driven by molecular recognition of a therapeutic protein’s
peptide fragments, may be best accomplished early in the drug development process. One
may eliminate immunogenic peptide fragments by mutating the cognate amino acid se-
quences, but deimmunizing mutations are constrained by the need for a folded, stable, and
functional protein structure. These two concerns may be competing, as the mutations that
are best at reducing immunogenicity often involve amino acids that are substantially dif-
ferent physicochemically. We develop a novel approach, called EpiSweep, that simulta-
neously optimizes both concerns. Our algorithm identifies sets of mutations making such
Pareto optimal trade-offs between structure and immunogenicity, embodied by a molecular
mechanics energy function and a T-cell epitope predictor, respectively. EpiSweep integrates
structure-based protein design, sequence-based protein deimmunization, and algorithms for
finding the Pareto frontier of a design space. While structure-based protein design is NP-
hard, we employ integer programming techniques that are efficient in practice. Further-
more, EpiSweep only invokes the optimizer once per identified Pareto optimal design. We
show that EpiSweep designs of regions of the therapeutics erythropoietin and staphylokinase
are predicted to outperform previous experimental efforts. We also demonstrate EpiSweep’s
capacity for deimmunization of the entire proteins, case analyses involving dozens of
predicted epitopes, and tens of thousands of unique side-chain interactions. Ultimately,
Epi-Sweep is a powerful protein design tool that guides the protein engineer toward the most
promising immunotolerant biotherapeutic candidates.

Key words: deimmunization, experiment planning, multi-objective optimization, sequence-based

protein design, structure-based protein design, therapeutic proteins.

1. INTRODUCTION

The ever-expanding toolbox of approved therapeutic proteins is one of the crowning achievements of

modern biotechnology. Biotherapeutic agents are providing new and efficacious treatment options for

common diseases such as cancer, diabetes, rheumatoid arthritis, anemia, heart attacks, strokes, and more.

Moreover, they are breaking new ground in helping to treat a broad spectrum of previously intractable
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illnesses such as multiple sclerosis, cystic fibrosis, congenital lipid and carbohydrate storage disorders, and

HIV/AIDS to name a few (Leader et al., 2008). While revolutionizing the treatment of numerous diseases, the

rapid growth of the biotherapeutics market has also exposed a range of new challenges in drug design and

development. One of the limitations inherent to proteinaceous drugs is the fact that, unlike small molecules,

they are subject to surveillance by the human immune system. The recognition of a biotherapeutic as ‘‘nonself’’

can result in the patient’s body mounting a concerted anti-biotherapeutic immune response (aBIR). Although in

some instances this immune response has no clinical significance, in other cases it manifests a variety of

detrimental outcomes ranging from loss of drug efficacy to severe anaphylactic shock (Schellekens, 2002).

Therapeutic proteins and peptides of nonhuman origin are especially prone to such an immune response, but

the complexity of human immune surveillance can result in immune reactions even against exogenously

administered human proteins (Kessler et al., 2006). Regardless of a protein’s origin, the aBIR is fundamentally

driven by molecular recognition of antigenic peptide sequences embedded within the full-length protein, and

removing or manipulating these sequences represents an effective strategy for biotherapeutic deimmunization.

Grafting-based ‘‘humanization’’ strategies simply swap segments of a biotherapeutic candidate for

comparable segments of a homologous human protein. While particularly effective for deimmunizing

therapeutic antibodies (Jones et al., 1986, Hwang and Foote, 2005), these methodologies are predicated on

the availability of a homologous human protein as well as detailed knowledge of underlying structure–

function relationships. Non-immunoglobulin proteins, which represent a rich but largely untapped reservoir

of prospective therapeutic agents, often fail to meet one or both of these criteria. As a result, there exists a

growing need for more broadly applicable protein deimmunization methodologies, and the development of

such methods will undoubtedly spur further innovations in disease treatment.

As noted above, the aBIR is driven by molecular recognition of immunogenic peptides, hereafter

epitopes, which are found within the biotherapeutic’s primary sequence. Immune surveillance is initiated

when antigen-presenting cells internalize the therapeutic protein, which is then hydrolyzed into smaller

peptide fragments. Fragments that represent potential antigenic epitopes are loaded into the groove of

cognate type II major histocompatibility complex (MHC II) proteins (Fig. 1A), and the complexes are

trafficked to the cell surface for display to the extracellular milieu. There, the peptide–MHC II complexes

are free to interact with T-cell receptor proteins on the surface of T-cell lymphocytes, and true immuno-

genic epitopes are recognized upon formation of ternary peptide–MHC II–T-cell receptor complexes. The

subsequent signaling cascade leads to maturation and proliferation of B-cell lymphocytes that ultimately

secrete immunoglobulin molecules able to bind the original biotherapeutic agent.

This well-defined immunological pathway suggests that therapeutic proteins might be engineered such

that their peptide fragments would evade MHC II/T-cell receptor binding and thereby block the undesirable

aBIR (De Groot et al., 2005, De Groot and Martin, 2009). Indeed, the mutation of key anchor residues

within known epitopes of therapeutic proteins has yielded partially deimmunized versions of

FIG. 1. EpiSweep. (A) An immune response to a therapeutic protein is initiated by MHC II (red/white) recognition of

an immunogenic peptide epitope (blue) digested from the protein. Our goal is to mutate the protein so that no such

recognition will occur. (B) MHC/T-cell epitopes are pervasive: exposed on the surface, buried in the core, and covering

active sites. Shown is staphylokinase (PDB ID 2sak), with black backbone for no epitopes starting at the residue and

highlighted sausage for the predicted binding by eight common MHC II alleles, ranging from thin pale yellow (bind just

one) to thick bright red (bind all eight). Putative active sites are denoted with green arrows. (C) EpiSweep explores the

Pareto frontier simultaneously optimizing structure (molecular mechanics energy function, y-axis) and immunogenicity

(epitope score, x-axis). The left circled plan has fewer predicted epitopes than the right one, but the right one has better

predicted energy. MHC II, type II major histocompatibility complex; PDB, Protein Data Bank.
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staphylokinase (Warmerdam et al., 2002) and erythropoietin (Tangri et al., 2005), among others. It is

important to note that unlike antibody epitopes, which localize exclusively to the solvent-exposed protein

surface, T-cell epitopes result from proteolytic processing and may therefore be found anywhere within a

protein’s primary sequence (Fig. 1B). As a result, experimental determination of T-cell epitopes requires

technically challenging immunoassays on large pools of overlapping component peptides that span the

entire protein of interest. Upon identifying the immunodominant peptides, the protein engineer then per-

forms scanning alanine or other systematic mutagenesis on each one so as to identify critical binding

residues whose substitution ameliorates the undesired immune response. Efficacious mutations must then

be engineered back into the full-length protein, where they often affect structural stability or therapeutic

function. For example, hydrophobic amino acids typically anchor peptide epitopes within the MHC II

binding groove, and these amino acids therefore represent attractive targets for mutagenic epitope deletion.

Those same residues, however, can also play a central role in stabilizing the close-packed core of the full-

length protein, and substitution at these positions may compromise protein folding. Intuitively, deimmu-

nizing mutations must not undermine the target protein’s native structure or function, and consequently

protein deimmunization is inherently a multi-objective optimization problem.

To efficiently direct experimental resources toward the most promising sets of mutations, we have

developed EpiSweep, a novel approach that integrates validated immunoinformatics and structural mod-

eling methods within a framework for identifying Pareto optimal designs (Fig. 1C). These designs (sets of

mutations) make the best trade-offs between the two objectives of stability and immunogenicity in that no

design is simultaneously better for both objectives. (Stability) We compute protein stability using a highly

successful, structure-based protein design strategy that seeks to optimize side-chain packing (Dahiyat and

Mayo, 1997; Lilien et al., 2004; Chen et al., 2009). In this approach, the protein backbone is fixed, and the

best side-chain conformations (allowing for amino acid subsitutions) are chosen from a discrete set of

common, low-energy rotamers. Individual rotamers are selected so as to minimize the total protein energy,

calculated with a molecular mechanics energy function. The side-chain packing approach assumes that a

design with low energy for the fixed-target backbone will in fact adopt that target backbone. While this

assumption has been borne out by the experimental demonstration of stable, active proteins, it may be

advantageous to iterate fixed-backbone design with structure prediction, as is done in RosettaDesign

(Kuhlman and Baker, 2000), in order to assess whether the designed sequence is likely to adopt the desired

backbone conformation. (Immunogenicity) To assess immunogenicity, we leverage the well-established

development of T-cell epitope predictors that encapsulate the underlying specific recognition of an epitope

by an MHC II protein (De Groot and Moise, 2007). MHC II proteins from the predominant human

leukocyte antigen DR isotype (HLA-DR) have a recognition groove whose pockets form energetically

favorable interactions with specific side-chains of peptides approximately nine residues in length (Fig. 1A).

Numerous computational methods are available for identifying peptide epitopes, and studies have shown

these methods to be predictive of immunogenicity (Wang et al., 2008, De Groot and Martin, 2009). Here

we assess each constituent peptide of our protein and optimize the total.

EpiSweep is the first protein design tool that simultaneously optimizes primary sequence, reducing

immunogenicity and tertiary structure, maintaining stability and function. It significantly extends structure-

based protein design by accounting for the complementary goal of immunogenicity. It likewise significantly

extends our previous work on Pareto optimization for protein engineering in general (Zheng et al., 2009, He

et al., 2012) and for deimmunization in particular, which assessed effects on structure and function only

according to a sequence potential (Parker et al., 2010; Parker et al., 2011a, Parker et al., 2011b). Inspired by

an approach for optimization of stability and specificity of interacting proteins (Grigoryan et al., 2009), we

employ a sweep algorithm that minimizes the energy of the design target at decreasing predicted epitope

scores. The sweep reveals an energy–epitope landscape of Pareto-optimal plans (Fig. 1C) and can also

produce near-optimal plans. Although, beyond the scope of this article, EpiSweep promises to inform protein

engineering experiments [as our sequence-based algorithms have done (Osipovitch et al., 2012)] seeking sets

of effective deimmunizing mutations for the development of enhanced biotherapeutics.

2. METHODS

We seek to make mutations to a target protein so as to reduce its immunogenicity, as evaluated by a

sequence-based epitope score, while maintaining its stability and activity, as evaluated by a structure-based
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effective energy function. We now formalize this as a Pareto optimization problem that extends the

standard side-chain packing formulation of structure-based protein design (Dahiyat and Mayo, 1997) with

the complementary/competing epitope score. In general, structure-based protein design problems have been

shown to be NP-hard (Pierce and Winfree, 2002).

Problem 1 (Structurally Guided Deimmunization) We are given a protein sequence A of n amino

acids, along with a 3D structure that includes a backbone as well as a rotamer sequence R paralleling A.

We are also given a set M of mutable positions (amino acid types allowed to vary), and a set F of flexible

positions (side-chains allowed to vary) with M � F; by default M = F = f1‚ . . . ‚ ng. Finally, we are given a

mutational load m. Let a design be an m-mutation sequence A0, with mutations only at positions in M, along

with a set R0 of selected rotamers, differing from R only at positions in F. Our goal is to determine all

Pareto optimal designs, minimizing the two objectives

f�(A
0) =

Xn - 8

i = 1

�(A0[i . . . i + 8]) (1)

f/(R0) =
X

i2F

/i(R
0[i]) +

X

i2F

X

j2F‚ j 6¼i

/i‚ j(R
0[i]‚ R0[j]) (2)

based on the following contributions:

� � : A9 ! N gives the epitope score for a peptide (we assume a 9-mer; see below).
� /i : R ! R gives the singleton energy capturing the internal energy of a rotamer at position i plus the

energy between the rotamer and the backbone structure and side-chains at nonflexible positions.
� /i‚ j : R ·R ! R gives the pairwise energy between a pair of rotamers at a pair of positions i, j.

We use A= fA‚ C‚ . . . ‚ Yg for the set of amino acids and R for the set of rotamers (from a rotamer library

and the input structure). We subscript sequences with brackets and use the notation X[i..j] to indicate the

substring of X from position i to j, inclusive. We will use function a : R ! A to obtain the amino acid type

of a given rotamer. While our implementation is modular and can support a variety of epitope scores and

energy functions, we now summarize those we use for the results.

Epitope score. Our epitope score is the number of the eight most common HLA-DR alleles [representing

a majority of human populations worldwide (Southwood et al., 1998)] predicted by ProPred (Singh and

Raghava, 2001) to recognize a given 9-mer peptide at a 5% threshold. If desired, a ‘‘personalized’’

therapeutic could be designed by focusing on a particular set of alleles. ProPred is an extension of the

TEPITOPE ‘‘pocket profile’’ method (Sturniolo et al., 1999), learning position-specific amino acid scores

from experimentally measured binding affinities for individual amino acid types at individual pockets of

the MHC II binding groove (Fig. 1A). Given a 9-mer, the position-specific weights for its amino acids are

summed, and the total is compared to a threshold to predict whether or not the given peptide is in a given

percentile of the best-recognized peptides. The amino acid in the first pocket is termed the P1 anchor for its

significant contribution to binding. ProPred has been successfully employed in a number of experimental

studies (e.g., Mustafa and Shaban, 2006; Dinglasan et al., 2007; Klyushnenkova et al., 2007) and was one

of the best predictors in a recent independent assessment (Wang et al., 2008), achieving an average 0.73

area under the curve in epitope prediction. In our earlier work, we found its predictions to have a strikingly

good correspondence with a previously published ELISPOT assay (Parker et al., 2011b), and used it, along

with conservation analysis, to optimize a set of mutations for a b lactamase (Osipovitch et al., 2012).

Molecular mechanics energy function. We assess singleton and pairwise energies according to the

AMBER force field as implemented in the Osprey software package for protein redesign (Chen et al., 2009).

In particular, we use the van der Waals and electrotatics forces as well as an implicit solvation factor and

residue reference energies as intended for standard protein redesign (as opposed to active site redesign for

change of substrate specificity). We discard rotamers, and thus all conformations containing them, if they have

significant overlap of van der Waals radii or otherwise exceptionally high intra- or inter-rotamer energies.

2.1. Sweep algorithm

We now develop an algorithm to identify all Pareto optimal designs. We rely on the fact that epitope

scores are discrete at a prespecified significance level—either the peptide is deemed capable of recognition
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by an MHC II allele or it is not. Thus, we can ‘‘sweep’’ the epitope score from the wild-type score to

successively smaller values for each epitope score identifying the design with the best energy (Fig. 1C). We

note that a design with a particular epitope score might actually have a worse overall energy than a design

with a somewhat smaller epitope score. Thus, at each step we find the design with the best energy such that

the epitope score is at most the current sweep value. A similar sweep approach was employed in developing

bZIP partners optimized for stability and specificity, optimizing primarily for stability with a required

specificity that is incremented by a fixed amount at each step (Grigoryan et al., 2009). Since our epitope

scores are discrete, we can safely step by a value of 1 and provide a guarantee to find all and only the Pareto

optimal designs.

More formally, we initialize E = fe(A), the epitope score of the wild-type protein. Then we repeat the

following steps. Let (A0, R0) be the design minimizing the energy f/(R0) using the optimization approach

below, with the epitope score fe(A
0) constrained to be £ E - 1. Output (A0, R0), update E to fe(A

0), and repeat

until there is no solution meeting the smaller epitope constraint. Clearly, each identified design is Pareto

optimal, and all Pareto-optimal designs are identified. In addition, the approach is efficient in an output-

sensitive fashion, only requiring D invocations of the optimizer to identify D Pareto-optimal designs.

At each step in the sweep, we employ an integer programming (IP) approach to find the global minimum

energy conformation with epitope score at most E. Like previous work on side-chain packing, we ensure a

consistent rotamer selection that minimizes the singleton and pairwise energy scores (Kingsford et al., 2005).

However, we also add a network of constraints for the epitope sweep. Define singleton binary variable si,r to

indicate whether or not the rotamer at position i is rotamer r. Define pairwise binary variable pi,j,r,t, derived

from si,r and sj,t, to indicate whether or not the rotamers at positions i and j are rotamers r and t, respectively.

Finally, define window binary variable wi,X, derived from si,r through si + 8,t, to indicate whether or not the

amino acids for the rotamers in the window from position i to position i + 8 corresponds to peptide X � A9.

We rewrite f/ in terms of these binary variables and use it as the objective function for the IP:

F =
X

i‚ r

si‚ r � /i(r) +
X

i‚ j‚ r‚ t

pi‚ j‚ r‚ t � /i‚ j(r‚ t) (3)

We then constrain the epitope score according to the current sweep value:

X

i‚ X

wi‚ X � f�(X)pE - 1 (4)

To guarantee that the variable assignments yield a valid set of rotamers, we impose the following

constraints:

8i :
X

r

si‚ r = 1 (5)

8i‚ r‚ j > i :
X

t

pi‚ j‚ r‚ t = si‚ r (6)

8j‚ t‚ i < j :
X

r

pi‚ j‚ r‚ t = sj‚ t (7)

8i‚ r 8h 2 1::9 :
X

X:X[h] = a(r)

wi‚ X = si + h - 1‚ r (8)

Equation 5 ensures that only one rotamer is assigned to a given position. Equations 6 and 7 maintain

consistency between singleton and pairwise variables, while Equation 8 maintains consistency between

singleton and window variables.

Finally, we enforce the desired mutational load:

X

i‚ r:A[i] 6¼a(r)

si‚ r = m (9)

We implement this IP using the Java API to the IBM ILOG optimization suite. It provides solutions that

are guaranteed to be optimal, at the price of having no guarantee on the time required. However, we find

that in practice (see Results section), the globally optimal solutions can in fact be found in at most 8 hours

for the size of problems we and others are considering.
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Extension: peptide-focused design. Since the ‘‘unit’’ of immunogenicity here (due to MHC binding) is

a peptide, initial experimental studies are often peptide-centered. That is, individual immunodominant

peptides will be identified by one round of experiments and targeted for epitope deletion in subsequent

experiments (Warmerdam et al., 2002; Jones et al., 2005; Tangri et al., 2005). The set M of mutable

positions allows us to focus our design effort on such a peptide. However, since only an individual peptide

will be assessed for immunogenicity, we modify our epitope scoring and constraints accordingly: We

sweep for the epitope score within the peptide while avoiding the introduction of additional epitopes in the

‘‘flanking regions’’ up- and downstream from that peptide (i.e., 9-mers spanning part of the peptide and part

of the protein N- or C-terminal to it).

Let the peptide of interest span from residue pl to residue ph ‡ pl + 9 (so M � fpl‚ . . . ‚ phg). Then there

are three sets of starting positions for the 9-mers to be assessed: N-terminal flanking positions

Pl = fmaxf1‚ pl - 8g‚ . . . ‚ maxf1‚ pl - 1gg, core positions Pc = fpl‚ . . . ‚ ph - 8g, and C-terminal flanking

positions Ph = fph - 7‚ . . . ‚ phg. We replace Equation 4 with a score for just the 9-mers in the peptide of

interest (i.e., starting at the core positions):

X

i2Pc‚ X

wi‚ X � f�(X)pE (10)

and initialize E with a wild-type total that is likewise restricted. We also add flanking region constraints to

prevent introducing new epitopes:

8i 2 Pl [ Ph 8X : wi‚ X � f�(X)pf�(A[i::i + 8]) (11)

2.2. Preprocessing filters

In practice, it is often helpful to prune the search space in order to focus the combinatorial space of

designs, employing additional background knowledge to limit the designs to be considered, as well as

eliminating regions of the space guaranteed to be suboptimal. Our implementation incorporates two filters.

Homology filters. Natural variation provides insights into mutations likely to yield stable, active

structures. We can restrict the allowed mutations to be considered at each position, based either on a

general substitution matrix such as BLOSUM, or on a position-specific assessment of conservation within a

multiple sequence alignment (MSA) of homologs to the target. For BLOSUM, we eliminate an amino acid

(and thereby all its rotamers) at a position if its BLOSUM62 score vs. the wild-type amino acid exceeds a

specified threshold. For conservation, we likewise eliminate an amino acid and its rotamers at a position if

its frequency in the MSA is below that in a specified background distribution (McCaldon and Argos, 1988).

Dead-end elimination. The dead-end elimination (DEE) criterion provides a pruning technique to

eliminate rotamers that are provably not part of the global minimum energy conformation (GMEC)

(Desmet et al., 1992). DEE has been generalized and extended in a number of powerful ways (e.g., Lilien

et al., 2004; Georgiev et al., 2006; Chen et al., 2009); we find the simple Goldstein DEE criterion to be

sufficient for our current purposes (Goldstein, 1994). However, DEE is correct only for pruning with

respect to the overall GMEC; it does not account for our epitope score constraint, which might require

making more drastic mutations and thus employ rotamers that would be pruned if relying exclusively on the

GMEC criterion. To ensure that we do not eliminate rotamers contributing to Pareto optimal designs, we

employ the common technique of performing DEE with respect to a ‘‘buffer’’ energy d, such that rotamers

are pruned only if they provably do not participate in any conformation whose energy is within d of the

GMEC. We do this DEE pruning before initiating the epitope sweep. If during the sweep we find that the

solution for a particular epitope value has energy exceeding the GMEC + d, we must decide either to

terminate the sweep (we do not care to produce designs with energy so high) or to re-perform DEE with an

increased d and then re-optimize for that epitope value and continue the sweep.

2.3. Postprocessing energy minimization

The molecular mechanics energy function employed during the sweep assesses energies with respect to

the fixed backbone and rigid rotamers. Therefore it is standard practice in structure-based protein design

to energy-minimize each resulting design, performing a limited relaxation of the conformation in order to

improve atomic interactions. We employ TINKER (Ponder, 2011) to minimize the EpiSweep designs,
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using the AMBER (AMBER-f99sb) force field (Hornak et al., 2006) and the generalized Born solvent

model. The backbone atoms (N, Ca, C, and O) are held fixed, as in the design target, and the side-chains are

allowed to relax from their discrete rotameric states.

Since a suboptimal design may relax to a conformation with a better energy than the one that was

originally deemed optimal with rigid rotamers, we also consider near-optimal designs. To do so, we

generate successive Pareto near-optimal curves, each one Pareto optimal with respect to all designs except

those on the previously identified curves. This is done by adding constraints in successive rounds to ensure

that a new design differs from each old one by at least one substitution.

In order to ensure that we do not miss designs that are suboptimal with rigid rotamers but become

optimal upon energy minimization, we would need to extend the generation of designs to account for the

subsequent effects of energy minimization. For example, the minDEE (Georgiev et al., 2006) and iMinDEE

(Gainza et al., 2012) variants of DEE ensure that in the pre-processing stage, rotamers are eliminated only if

they cannot participate in a design that would be optimal upon minimization. Likewise, a sufficient number

of near-optimal Pareto curves could be produced until a bound on the improvement in energy guarantees

that remaining designs cannot ‘‘leapfrog’’ to become optimal. We leave such extensions for future work.

2.4. Design selection

After generating and energy minimizing a number of alternative designs, the protein engineer is left with

a decision as to which to experimentally evaluate. In practice, we select a number of designs along the

(minimized) Pareto frontier, since the appropriate balance between these concerns is unknown ahead of

time and is the reason for performing the sweep. Thus, we assess some variants that are more conservative

and some that are less conservative from an energetic standpoint, expecting, respectively, less and more

impact on immunogenicity. We also consider the overall diversity of the designs, in terms of mutations that

are commonly employed among the variants, as well as in their relative locations in the sequence and

structure.

3. RESULTS AND DISCUSSION

We demonstrate EpiSweep with case-study applications to two therapeutic proteins, SakSTAR (Protein

Data Bank [PDB] code: 2SAK, chain A) and Epo (1EER, chain A), previously targeted for deimmunization

by experimental methods. It should be noted that the side-chain atoms of the last residue (R166) in the Epo

structure are missing except for the Cb atom. The missing side-chain atom coordinates were added using

SCWRL (Side-Chains With a Rotamer Library) (Canutescu et al., 2003).

Since the previous experimental work focused on identified immunogenic regions, we first perform

analogous peptide-focused design, using the extension discussed in the methods. For these studies, we

focus on the overall trends in the energy–epitope landscape, using EpiSweep to explore the trade-offs

between maintaining stability and reducing immunogenicity. We do not bother performing energy mini-

mization to better evaluate these designs, as that would not provide significant additional insights into these

limited (peptide-focused) designs.

We then demonstrate that EpiSweep can optimize entire proteins, selecting optimal sets of mutations to

hit scattered epitopes. Since the side-chains modeled by EpiSweep are from discrete sets of rigid rotamers,

we better model the resulting structures by generating not only the Pareto optimal curve but also the four

best near-optimal curves, and energy-minimizing all these designs.

The initial energy calculations for each peptide case study required 3–6 hours of wall-clock time on 60

nodes of a shared cluster, while the full-protein design required several days (OSPREY evaluates all pairs

of rotamers; this could be reduced by restricting based on a contact map). Then the actual EpiSweep

algorithm took less than an hour on a dedicated eight-core machine for each peptide design problem (target

and mutational load), and less than 8 hours for the full-protein design. The energy minimization takes

approximately 15 minutes of wall-clock time per structure.

3.1. Staphylokinase (SakSTAR) peptides

Staphylokinase is a fibrin-selective thrombolytic agent with potential therapeutic use in treating heart

attacks and strokes. Warmerdam et al. (2002) sought to deimmunize a variant called SakSTAR, derived
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from a lysogenic S. aureus strain. Based on T-cell profileration assays, they focused on the highly im-

munogenic C3 region, spanning residues 71–87. They employed alanine-scanning mutagenesis to identify

mutations that reduced immunogenicity. Subsequent proliferation assays then showed that the response was

indeed reduced for various designs incorporating 2–4 alanine substitutions. They did not engineer the

redesigned peptides back into the whole protein to test stability and activity.

We applied peptide-focused EpiSweep to identify mutations in the C3 region as well as in an additional

region, which we name Beta, spanning residues 24–38. We evaluated energies according to the deposited

SakSTAR structure (2SAK) and applied homology filtering according to the family (Pfam PF02821).

The C-terminal end of SakSTAR folds over perpendicular to the C3 peptide, approximately bisecting it

and leaving some residues buried, some exposed, and some half-exposed. Warmerdam et al. (2002) chose

substitutions at the positions of C3 underlined in the table in Figure 2 (bottom). They chose not to mutate

the large hydrophobics because of potential structural implications, but these same residues tend to anchor

MHC II binding. In particular, F76 is a P1 anchor (see Methods, Epitope score) for 4 epitopes. Our energy

evaluation predicts that an F76K substitution in fact improves the energy, possibly because it is solvent

exposed. Thus, our plans (Fig. 2, bottom) uniformly choose it and obtain a better energy than the wild-type.

Over the sweep at a fixed mutational load, we see trends from more to less energetically favorable

substitutions with decreasing epitope score (left-right in the figure and bottom-up in the table). We are able

to delete all the epitopes with either two or three substitutions.

We chose also to study the Beta peptide because it was predicted to be highly immunogenic in our initial

T-cell epitope prediction analysis, and it is also structurally quite different from C3. Beta sits in an anti-

parallel beta strand with a pattern of surface-exposed and buried side-chains. The predicted epitope and

energy range (Fig. 2, top) is larger than that for C3, and the number of undominated solutions greater except

for the two-mutation curve. In the plans, we see that Y24H is commonly taken, as is T30K at the higher

mutational loads. We again see trade-offs between stability-preserving and epitope-deleting selections and

note that some of the mutations are predicted to be stability enhancing (though again, this is before energy

minimization).

3.2. Erythropoietin (Epo) peptides

Erythropoietin (Epo) has therapeutic use in treating anemia but unfortunately induces an immune re-

sponse in some patients (Indiveri and Murdaca, 2002). Based on an intensive analysis of peptides spanning

the entire protein, Tangri et al. (2005) identifed two highly immunogenic regions, spanning 101–115 and

136–150. They engineered four variants targeting the anchor residues of identified T-cell epitopes in these

regions: L102P/S146D (named G2), T107D/S146D (G3), L102G/T107D/S146D (G4), and L102S/T107D/

FIG. 2. Pareto-optimal plans in the energy–epitope landscapes for two SakSTAR peptides. In addition to the wild-

type (magenta star for Beta, not shown for C3), the plots show three different mutational loads: 1, solid blue and

diamond; 2, dash red and circle; 3, dot black and square. The tables detail the mutations from the wild-type. The

numbers above the wild-type sequence are the epitope scores for 9-mers starting at those positions.
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S146D (G5). Variants G3 and G4 reduced response in an ELISPOT assay. However, variants G2 and G5

were not bioactive, possibly because of destabilizing substitutions at L102. We target the same two solvent-

exposed peptides, and develop EpiSweep designs based on the structure with PDB ID 1buy and Pfam entry

PF00758.

In peptide 101–115, EpiSweep avoids the L102 position found to be a problem by Tangri et al. (2005)

L102 is completely buried and tightly packed in the model structure. Instead, EpiSweep makes an A, G, or

L mutation at R103 in every plan, except the energy-optimal plans with two of three mutations (Fig. 3).

While these might not seem conservative substitutions from a purely sequence-based perspective, we find

that the energies are favorable. Both EpiSweep and Tangri et al. make substitutions at T107. Small residues

are common substitutions here, as they tend not to make good interactions with MHC II pockets, but yet are

predicted to be energetically benign. The number of glycines suggests that additional modeling might be

appropriate to more fully assess the impact on overall flexbility. We see that the three-mutation plan has a

much nicer deimmunizing trend than the two-mutation plan, deleting all epitopes without having to take an

energetically less favorable choice.

In peptide 136–150, Tangri et al. (2005) make a substitution at S146, while we concentrate instead at or

around the P1 anchor at F138. As the trends show, mutations are made around, but not at 138 until the

epitope sweep reaches a point where this substitution is required to eliminate as many epitopes as possible.

Mutation at 138 is not the most energy favorable, and so we see many plans with nearby R139S and K140E

instead. Like the other peptides, as the mutation load increases, the sweep has more options to choose

substitutions that minimize energy and epitope scores simultaneously.

3.3. SakSTAR full-protein design

We next subjected the entire SakSTAR protein to EpiSweep. Warmerdam et al. (2002) verified T-cell

epitopes exist outside C3 and that the SakSTAR protein requires extensive deimmunization work in other

regions. Figure 4 illustrates some Pareto-optimal designs at mutational loads of 4, 6, and 8. Full lists are

provided in the Supplementary Material (available online at www.liebertonline.com/cmb).1 We see the

same kinds of trade-offs as in the peptide-focused designs, moving from stability-preserving (or

-enhancing) mutations that nominally reduce immunogenicity, to epitope-deleting mutations that might

destabilize the protein. However, there is more freedom in the full-protein design, so we see more effective

epitope-deleting mutations throughout each curve. For example Y24K and V112A replace P1 anchors for

relatively good energy trade-off.

FIG. 3. Pareto-optimal plans in the energy–epitope landscapes for two Epo peptides. See Figure 2 for description.

1Provided is a spreadsheet with lists of mutations and their epitope scores and initial and minimized energies.
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Previously, we had redesigned SakSTAR based on a one- and two-body sequence potential, sampling

linear combinations of this sequence potential and the epitope score (Parker et al., 2011b). It is interesting

to compare and contrast the sequence-guided plans with these structure-guided (and Pareto optimal) plans.

For example, both tend to choose Y24K and V112A, along with some substitution at M26 (M26D for

sequence and M26K for structure). These choices are natural, as the wild-type residues are P1 anchors for

MHC II binding, and mutation to a charged residue precludes effective binding. However, the sequence-

guided approach completely avoided the C3 region; we conjectured that this was to a high degree of

covariation among the amino acids in the sequence record. In contrast, many of the structure-guided plans

incorporate substitutions in the C3 region at 76, 78, and 79. Specifically, F76 and V79 are solvent exposed

and replacement with a hydrophillic residue improves the energy score. These two residues are replaced

often. On the other hand, V78 side chain is buried and few plans show the more conservative V78L

mutation. By directly modeling the energetic interactions, rather than relying just on evolutionary history,

we may discover new designs that are favorable for our design goals rather than natural pressures.

Energy minimization of the rigid rotamer-based designs to relax the side-chain conformations produced

structures with lower energies, as illustrated in Figure 5 and detailed in the Supplementary Material. The

general trend of the energy vs. epitope trade-off is still maintained: For each mutational load, once the

number of epitopes is forced to go sufficiently low, the energy increases. We note, though, that increasing

the mutational load produces lower energy designs for the same epitope scores by employing less drastic

substitutions. Thus, we see clear boundaries of the Pareto frontiers at different numbers of mutations.

3.4. Epo full-protein design

Our final result redesigns the entire Epo protein with EpiSweep. Tangri et al. (2005) quantified each Epo

peptide binding to MHC-II protein through extensive experimental effort. They then engineered limited

FIG. 4. Pareto-optimal plans in the energy–epitope landscape for the full SakSTAR protein. The plots show three

different mutational loads: 4, solid blue and diamond; 6, dash red and circle; 8, dot black and square. Details are

provided for only sampled sets of plans along the curves; all are detailed in the Supplementary Material.

FIG. 5. Energy–epitope scores of

energy-minimized SakSTAR de-

signs.
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segments of Epo at some regions of high immunogenicity. However, as shown by their immunoassays,

other immunogenic regions exist. Figure 6 illustrates some Pareto-optimal designs for the full protein at

mutational loads of 4, 6, and 8. Several residues in the 136-150 peptide are targeted, including F138, F142,

and L149. Our methodology largely avoids the 101-115 peptide (with the exception of R103G) possibly

because the buried, contacting, and smaller side-chains do not allow room for substitution. Instead

EpiSweep chooses P1 anchors at Y49, L75, and W88. EpiSweep also mutates R103G and K140E which,

although not P1 anchors, favorably change the binding profile of the composite peptides while making a

relatively good energy tradeoff for the full design.

Similar to SakSTAR, previously we had redesigned Epo based on a one- and two-body sequence

potential, sampling linear combinations of this sequence potential and the epitope score (Parker et al.,

2011b). And it is again interesting to compare and contrast the sequence-guided plans with these structure-

guided (and Pareto optimal) plans. We notice that our previous sequence plans, like the new structure plans,

avoid the 101-115 peptide but do mutate in the 136-150 peptide; in particular, both approaches make an

F138A substitution. Both approaches also target L75, but the sequence-based approach employs L75S

while structure-guided design prefers L75N. Strikingly, both sequence and structure plans utilize V82E,

which we describe in the following paragraph.

It should be noted that for Epo, the mutants are predicted to have lower energies (median - 4422 kcal/

mol; the energy values of all designs are depicted in Fig. 7) than the wild-type (- 3859 kcal/mol). This was

not the case for SakSTAR (wild-type: - 2154 kcal/mol, median mutant - 2160 kcal/mol). We investigated

the cause of these lower energies. Of the 293 designs, 237 of them have a V82E substitution. (See the

Supplementary Material for the other mutation frequencies.) In addition to reducing the epitope score by 6,

this mutation introduces a negatively charged residue that makes a strong charge–charge interaction with

the positively charged adjacent residue K82. We used TINKER to model this single mutation (Fig. 8) and

found that it provides a - 146 kcal/mol contribution to the energy. We note that such stabilization has been

FIG. 6. Pareto-optimal plans in the energy–epitope landscape for the full Epo protein. See Figure 4 for description.

FIG. 7. Energy–epitope scores of

energy-minimized Epo designs.
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demonstrated experimentally, with redesigning of surface charge–charge interactions yielding enzymes that

are stabilized relative to the wild-types but with their activities retained (Gribenko et al., 2009). However,

this large an energy change (comparable values were produced under the CHARMM and OPLS force

fields, in addition to AMBER) may overestimate the actual stabilizing effects of the substitution (de Prat

Gay et al., 1994; Vijayakumar and Zhou, 2001). But we would still speculate, based on the modeling, that

the variant would, in fact, exhibit improved stability relative to the wild-type Epo.

4. CONCLUSION

In order to simultaneously optimize stability/activity and immunogenicity of therapeutic proteins, we

have developed a novel Pareto optimization approach that integrates methods from structure-based protein

design with immunoinformatics predictors. Our EpiSweep algorithm elucidates the energy–epitope land-

scape of a protein, identifying all Pareto-optimal plans, along with near-optimal plans as desired. While the

underlying design problem is NP-hard, our methods are efficient in practice, requiring only hours to

characterize an entire Pareto frontier even for a redesign problem considering an entire protein. We

recognize that this speed is due to our reliance on computational models of both stability and immuno-

genicity that, while extensively validated in numerous retrospective and prospective studies, are imperfect

and may yield designs that are unstable or immunogenic in practice. Due to our use of provably correct

algorithms, however, this outcome reflects only on the models and offers an opportunity to improve them.

Furthermore, the ability of EpiSweep to characterize the beneficial region of the energy–epitope landscape

enables engineers to better identify high-confidence designs worthy of experimental evaluation.
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FIG. 8. Side-chain rearrangement

due to the V82E mutation that ap-

pears in 237 of the 293 Epo de-

signs. The wild-type Epo structure

is colored red, while the mutant is

colored yellow and the mutated

V82E is in gray. The valine residue

(V82) of the wild-type is omitted

for clarity. The lysine residue (K83)

changes its conformation due to the

charge–charge interaction (dashed

line) between K83 and the mutated

V82E, yielding a 146 kcal/mol re-

duction in energy. This figure was

created using PyMol.

PROTEIN DEIMMUNIZATION 163



REFERENCES

Canutescu, A.A., Shelenkov, A.A., and Dunbrack Jr., R.L. 2003. A graph-theory algorithm for rapid protein side-chain

prediction. Protein Science 12, 2001–2014.

Chen, C.-Y., Georgiev, I., Anderson, A.C., and Donald, B. R. 2009. Computational structure-based redesign of enzyme

activity. PNAS 106, 3764–3769.

Dahiyat, B., and Mayo, S. 1997. De novo protein design: fully automated sequence selection. Science 278, 82–87.

De Groot, A.S., Knopp, P.M., and Martin, W. 2005. De-immunization of therapeutic proteins by T-cell epitope

modification. Dev. Biol. (Basel) 122, 171–94.

De Groot, A.S., and Martin, W. 2009. Reducing risk, improving outcomes: Bioengineering less immunogenic protein

therapeutics. Clinical Immunology 131, 189–201.

De Groot, A.S. and Moise, L. 2007. Prediction of immunogenicity for therapeutic proteins: State of the art. Curr. Opin.

Drug Discov. Devel. 10, 332–340.

de Prat Gay, G., Johnson, C., and Fersht, A. 1994. Contribution of a proline residue and a salt bridge to the stability of a

type I reverse turn in chymotrypsin inhibitor-2. Protein Eng. 7, 103–108.

Desmet, J., De Maeyer, M., Hazes, B., and Lasters, I. 1992. The dead-end elimination theorem and its use in protein

side-chain positioning. Nature 356, 539–542.

Dinglasan, R.R., Kalume, D.E., Kanzok, S.M., et al. 2007. Disruption of Plasmodium falciparum development by

antibodies against a conserved mosquito midgut antigen. PNAS 104, 13461–13466.

Gainza, P., Roberts, K., and Donald, B. 2012. Protein design using continuous rotamers. PLoS Comput. Biol. 8, e1002335.

Georgiev, I., Lilien, R., and Donald, B. 2006. A novel minimized dead-end elimination criterion and its application to

protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular en-

sembles. Proc. RECOMB, 530–45.

Goldstein, R.F. 1994. Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophysical

J. 66, 1335–1340.

Gribenko, A.V., Patel1, M.M., Liu, J., et al. 2009. Rational stabilization of enzymes by computational redesign of

surface chargecharge interactions. PNAS 106, 26012606.

Grigoryan, G., Reinke, A., and Keating, A. 2009. Design of protein-interaction specificity gives selective bZIP-binding

peptides. Nature 458, 859–864.

He, L., Friedman, A., and Bailey-Kellogg, C. 2012. A divide and conquer approach to determine the pareto frontier for

optimization of protein engineering experiments proteins. Proteins 80, 790–806.

Hornak, V., Abel, R., Okur, A., et al. 2006. Comparison of multiple amber force fields and development of improved

protein backbone parameters. Proteins 65, 715–725.

Hwang, W.Y.K., and Foote, J. 2005. Immunogenicity of engineered antibodies. Methods 36, 3–10.

Indiveri, F., and Murdaca, G. 2002. Immunogenicity of erythropoietin and other growth factors. Rev Clin Exp Hematol.

1, 7–11.

Jones, P.T., Dear, P.H., Foote, J., et al. 1986. Replacing the complementarity-determining regions in a human antibody

with those from a mouse. Nature 321, 522–525.

Jones, T.D., Phillips, W.J., Smith, B.J., et al. 2005. Identification and removal of a promiscuous CD4 + T cell epitope

from the C1 domain of factor VIII. J. Thromb. Haemost. 3, 991–1000.

Kessler, M., Goldsmith, D., and Schellekens, H. 2006. Immunogenicity of biopharmaceuticals. Nephrology, Dialysis,

Transplantation 21, v9–12.

Kingsford, C., Chazelle, B., and Singh, M. 2005. Solving and analyzing side-chain positioning problems using linear

and integer programming. Bioinf. 21, 1028–1036.

Klyushnenkova, E.N., Kouiavskaia, D.V., Kodak, J. A., et al. 2007. Identification of HLA-DRB1*1501-restricted T-cell

epitopes from human prostatic acid phosphatase. Prostate 67, 1019–1028.

Kuhlman, B., and Baker, D. 2000. Native protein sequences are close to optimal for their structures. PNAS 97, 10383–

10388.

Leader, B., Baca, Q.J., and Golan, D.E. 2008. Protein therapeutics: a summary and pharmacological classification. Nat.

Rev. Drug Disc. 7, 21–39.

Lilien, R., Stevens, B., Anderson, A., and Donald, B. 2004. A novel ensemble-based scoring and search algorithm for

protein redesign, and its application to modify the substrate specificity of the gramicidin synthetase A phenylalanine

adenlytaion enzyme. Proc. RECOMB, 46–57.

McCaldon, P., and Argos, P. 1988. Oligopeptide biases in protein sequences and their use in predicting protein coding

regions in nucleotide sequences. Proteins: Structure, Function and Genetics 4, 99–122.

Mustafa, A.S., and Shaban, F.A. 2006. Propred analysis and experimental evaluation of promiscuous T-cell epitopes of

three major secreted antigens of Mycobacterium tuberculosis. Tuberculosis 86, 115–124.

Osipovitch, D., Parker, A., Makokha, C., et al. 2012. Design and analysis of immune-evading enzymes for ADEPT

therapy. Protein Eng. Des. Sel. 25, 613–624.

164 PARKER ET AL.



Parker, A.S., Griswold, K.E., and Bailey-Kellogg, C. 2011a. Optimization of combinatorial mutagenesis. J. Comput

Biol 18, 1743–56.

Parker, A.S., Griswold, K.E., and Bailey-Kellogg, C. 2011b. Optimization of therapeutic proteins to delete T-cell

epitopes while maintaining beneficial residue interactions. J Bioinf Comput Biol 9, 207–229.

Parker, A.S., Zheng, W., Griswold, K.E., and Bailey-Kellogg, C. 2010. Optimization algorithms for functional

deimmunization of therapeutic proteins. BMC Bioinf. 11, 180.

Pierce, N., and Winfree, E. 2002. Protein design is NP-hard. Protein Eng. 15, 779–782.

Ponder, J. 2011. TINKER: Software tools for molecular design (version 6.0). Jay Ponder Lab, Washington University,

Saint Louis, MO.

Schellekens, H. 2002. Bioequivalence and the immunogenicity of biopharmaceuticals. Nature Reviews Drug Discovery

1, 457–462.

Singh, H., and Raghava, G. 2001. ProPred: prediction of HLA-DR binding sites. Bioinformatics 17, 1236–1237.

Southwood, S., Sidney, J., Kondo, A., et al. 1998. Several common HLA-DR types share largely overlapping peptide

binding repertoires. J. Immunol. 160, 3363–3373.

Sturniolo, T., Bono, E., Ding, J., et al. 1999. Generation of tissue-specific and promiscuous HLA ligand database using

DNA microarrays and virtual HLA class II matrices. Nature Biotechnol. 17, 555–561.

Tangri, S., Mothe, B.R., Eisenbraun, J., et al. 2005. Rationally engineered therapeutic proteins with reduced immu-

nogenicity. J. Immunol. 174, 3187–3196.

Vijayakumar, M., and Zhou, H.-X. 2001. Salt bridges stabilize the folded structure of barnase. J. Phys. Chem. B 105,

7334–7340.

Wang, P., Sidney, J., Dow, C., et al. 2008. A systematic assessment of MHC class II peptide binding predictions and

evaluation of a consensus approach. PLoS Comp. Biol. 4, e1000048.

Warmerdam, P.A.M., Plaisance, S., Vanderlick, K., et al. 2002. Elimination of a human T-cell region in staphylokinase

by T-cell screening and computer modeling. J. Thromb. Haemost. 87, 666–673.

Zheng, W., Friedman, A.M., and Bailey-Kellogg, C. 2009. Algorithms for joint optimization of stability and diversity in

planning combinatorial libraries of chimeric proteins. J Comput Biol 16, 1151–1168.

Address correspondence to:

Dr. Chris Bailey-Kellogg

Department of Computer Science

Dartmouth College

6211 Sudikoff Laboratory

Hanover, NH 03755

E-mail: cbk@cs.dartmouth.edu

PROTEIN DEIMMUNIZATION 165


