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ABSTRACT

Copy number variations (CNVs) are widely known to be an important mediator for diseases
and traits. The development of high-throughput sequencing (HTS) technologies has pro-
vided great opportunities to identify CNV regions in mammalian genomes. In a typical
experiment, millions of short reads obtained from a genome of interest are mapped to a
reference genome. The mapping information can be used to identify CNV regions. One
important challenge in analyzing the mapping information is the large fraction of reads that
can be mapped to multiple positions. Most existing methods either only consider reads that
can be uniquely mapped to the reference genome or randomly place a read to one of its
mapping positions. Therefore, these methods have low power to detect CNVs located within
repeated sequences. In this study, we propose a probabilistic model, CNVeM, that utilizes
the inherent uncertainty of read mapping. We use maximum likelihood to estimate locations
and copy numbers of copied regions and implement an expectation-maximization (EM)
algorithm. One important contribution of our model is that we can distinguish between
regions in the reference genome that differ from each other by as little as 0.1%. As our
model aims to predict the copy number of each nucleotide, we can predict the CNV
boundaries with high resolution. We apply our method to simulated datasets and achieve
higher accuracy compared to CNVnator. Moreover, we apply our method to real data from
which we detected known CNVs. To our knowledge, this is the first attempt to predict CNVs
at nucleotide resolution and to utilize uncertainty of read mapping.
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1. INTRODUCTION

Genetic variation between individuals can range from single nucleotide differences to differences

in large segments of DNA. Variations on the nucleotide level are referred to as single nucleotide

polymorphisms (SNPs) and on the segment level as structural variations (SVs), including insertions,
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deletions, and copy number variations (CNVs). SVs and, in particular, CNVs, in which a large region of

genome is deleted or duplicated, play an important role in the genetics of complex diseases and traits (Iafrate

et al., 2004; Tuzun et al., 2005). Many recent studies have shown a correlation between CNVs and different

genomic disorders, ranging from brain-related diseases [such as autism, schizophrenia, and idiopathic

learning disability (Sebat et al., 2007)] to cancers [e.g., non-small cell lung cancer (Cappuzzo et al., 2005)].

Common methods to detect CNVs were, until recently, based on whole genome array comparative

genome hybridization (ArrayCGH). In ArrayCGH, both a genome of interest (donor genome) and a

reference genome are hybridized to a tiling array and the intensity ratio of the two genomes (donor/

reference) provides an estimate of the copy number gain or loss (Redon et al., 2006; Carter, 2007; Chen

et al., 2008). Although a powerful method to detect the presence of CNVs and estimate copy numbers, the

ArrayCGH approach is unable to identify the boundaries of CNVs with high resolution.

The development of high-throughput sequencing (HTS) technologies provides great opportunities to detect

CNV regions. With HTS technologies, whole genome shotgun sequencing of one or more individuals becomes

possible. Methods to detect the CNVs from short reads generated by HTS technologies can be categorized by

two main ideas. The first category of methods divides the genome into small windows, and the number of reads

mapped to each specific window (read depth) is used as a proxy for the copy number of that window (Alkan et

al., 2009; Chiang et al., 2009; Yoon et al., 2009; Sudmant et al., 2010; Simpson et al., 2010). Alkan et al.

(2009) used a set of fixed regions, which are unique among all primates, as control windows and calculated the

average read depth for those regions. Then they scaled the results to predict the copy number of other windows.

Simpson et al. (2010) used the same idea of splitting the genome into windows while incorporating read depth

and heterozygous SNPs information (in inbred mice) into a hidden Markov model (HMM). Adjacent windows

with same copy number state are combined into one CNV region. Abyzov et al. (2011) developed a method for

CNV discovery from statistical analysis of read depth. The method is based on the established mean-shift

approach (Comaniciu and Meer, 2002), which is a popular method in computer vision. This approach is able to

detect the presence of large CNVs and the copy numbers. However, the resolution of this approach is limited by

the size of the windows, which is typically at least one kilobase.

In the second strategy, paired-end reads, where ‘‘paired-end’’ refers to the two ends of the same segment of

a DNA molecule, are used to detect CNVs. A short gap appears between the two paired-end reads, and the

distance of this gap is roughly fixed and known. The second class of approaches utilizes the discordant paired-

end reads, which are the reads mapped to the reference genome in an unexpected way (Hormozdiari et al.,

2009; He et al., 2010; Medvedev et al., 2010). Discordant reads may indicate the presence of CNVs. Read-

depth information is then used to compute the copy number for each candidate CNV region (Alkan et al.,

2009; Sudmant et al., 2010). Medvedev et al. (2010) introduced the idea of using both the read depth as well as

the discordant reads to detect CNVs. This method first clusters the discordant reads to identify the CNVs’

boundary, after which they build a ‘‘donor graph’’ representing the genome as segments of sequence con-

nected by edges. Moreover, they use the maximum flow to estimate the most likely copy numbers for the

donor genome. One limitation of this strategy is that it only detects CNVs in regions that are not repeat-rich.

This may reduce the applicability of this method given the existence of many repeat-rich regions in the

genome. Also, the CNVs may have complex structure. For example, if there exist multiple copies of CNVs in

the reference genome, this method can not detect the variation within different copies.

Another important challenge for CNV detection lies in the uncertainty of read mapping. All of the

mentioned methods use read-depth information. The read depth is obtained by mapping the short reads to

the reference genome and then calculating number of reads within a region. However, a read can be

mapped to multiple locations while the read originated from one specific locus in the donor genome. This

mapping uncertainty can be due to short read length, sequencing errors, and the presence of repetitive

regions. With few exceptions (He et al., 2011), most studies either consider all possible locations or

randomly pick one mapping location, or even discard all such reads. These methods have difficulty in

detecting CNVs with high accuracy, especially for CNVs in repeat-rich regions.

In this study, we show that handling the uncertainty of read mapping can help us in predicting the copy

number of CNVs, especially in repeat-rich regions. We propose a probabilistic model, CNVeM, that

utilizes the uncertainty of read mapping. We use maximum likelihood to estimate locations and copy

number of copied regions and implement an expectation-maximization (EM) algorithm. One important

contribution of our model is that we distinguish between similar copies of a region in the reference genome.

We can predict exactly which copy of a region is duplicated or deleted utilizing the differences between

copies and handling uncertainty of read mapping.
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In our model, we predict the copy number for each nucleotide, and adjacent nucleotides with the same

copy number are then combined to form a full CNV region. In this way, we can detect the boundaries

precisely and are able to predict small CNVs. To our knowledge, this is the first attempt to detect CNVs at

nucleotide resolution and to distinguish between similar sequences in the reference genome.

2. METHODS

2.1. A motivating example

One important contribution of our method is that we distinguish between regions in the reference genome

that differ from each other by a single nucleotide. Figure 1 illustrates an example. The reference genome

has two nearly identical copies of a CNV region, represented as A and B. They only differ by one

nucleotide as indicated in the figure, where the nucleotide is ‘C’ in region A and ‘T’ in region B. In the

donor genome, region B is copied twice as B1 and B2. Reads fr1‚ r2‚ . . . ‚ r6g are obtained from the donor

genome as shown in the lower part of Figure 1 and then mapped to the reference genome as shown in the

upper part of Figure 1. As shown in the figure, reads {r1, r3, r5} can be mapped to both region A and B in

the reference. However, read {r2} can only be mapped to region A and reads {r4, r6} can only be mapped

to region B. If we assign a read to one of multiple mapping positions randomly following the traditional

strategy, we would determine the copy number of both region A and B to be 1.5. However, in CNVeM, we

use the EM algorithm to find the optimal solution. In each iteration, we assign a read to different mapping

positions according to the distribution of copy numbers of those positions and update the copy number of

each position. Upon convergence, the EM algorithm assigns reads {r1, r3, r5} to region A with probability

1/3 and to region B with probability 2/3. We correctly predict the copy number of region A to be 1 and copy

number of region B to be 2.

2.2. The generative model

We use short-read information from HTS technologies to detect copy number variants. Let

G = (g1‚ g2‚ . . . ‚ gK ) be K continuous nucleotides in the reference genome, where gi is the ith nucleotide. We

assign the copy number of each nucleotide in the reference genome to be 1. The donor genome is also

composed of these nucleotides. However, large regions of the genome can be either deleted or duplicated

and thus the copy number is changed. For each nucleotide gi, we denote the copy number to be Ci in the

donor genome. If Ci < 1, we call it a copy loss. If Ci > 1, we call it a copy gain. C = (C1‚ C2‚ . . . ‚ CK) can be

interpreted as the copy number vector of the donor genome. For most nucleotides, the copy numbers are the

same in the donor genome and in the reference genome. So one can assume that the length of donor genome

is the same as the length of the reference genome, that is,
PK

i = 1 Ci = K. We define vector C1

K
‚ C2

K
‚ . . . ‚ CK

K

� �
to be the normalized copy number vector of the donor genome.

Using HTS technology, millions of short reads are sampled from the donor genome. We assume that a

read rj of length l is generated by randomly picking a position i from G according to distribution C=K and

then copying l consecutive positions starting from position i. The copying process is error-prone, with

known probability e for a sequencing error rate at any position of the read. This process is repeated until we

have a set of N reads R= fr1‚ r2‚ . . . ‚ rNg. The objective is to infer C = (C1‚ C2‚ . . . ‚ CK ) from R. Since the

reads are mapped to the reference genome, mapping information is utilized to infer CNVs.

FIG. 1. Similar copies of a copy

number variations (CNV) region

exist in the reference genome. ‘‘C’’

and ‘‘T’’ are the only different

nucleotides between region A and

B. Reads fr1‚ r2‚ . . . ‚ r6g are ob-

tained from the donor genome as

shown in the lower part of the fig-

ure. Furthermore, these reads can

be mapped to the reference genome

as shown in the upper part of the

figure.
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In our model, each read rj is sequenced starting from one position in the donor genome. As we assume

that the donor genome is obtained from the reference genome by alternating the copy number of some

regions, each position in the donor genome ‘‘originates’’ from a nucleotide in the reference genome.

Consequently, each read originates from a position in the reference genome. If a region in the reference

genome is duplicated in the donor genome, any read generated from the duplicated segments of the donor

genome originates from a unique position in the reference genome. Z = (Z1‚ Z2‚ . . . ‚ ZN ) is the origin for

each read in the reference genome, where Zj 2 f1‚ 2‚ . . . ‚ Kg. We then define the following likelihood

model of all reads given copy number C and reference genome G

P(RjC‚G) =
YN
j = 1

P(rjjC‚G) =
YN
j = 1

XK

i = 1

P(rj‚ Zj = ijC‚G) (1)

where the first equality follows from the probability that read set R is composed of independent proba-

bilities of all the reads, and the second equality follows from the fact that the read probability is equal to the

marginalization of read mapping uncertainty, that is, P(r) =
P

i P(r‚ Z = i).
The interpretation of the above probability definition P(rj‚ Zj = ijC‚G) is straightforward: the probability

of j-th read originating from i-th position of the reference genome, given the copy numbers and reference

genome. We can further expand this probability as follows

P(rj‚ Zj = ijC‚G) = P(Zj = ijC)P(rjjZj = i‚G) (2)

where the equality follows from the fact that the read origin Z is independent of reference genome G and the

sequence of read r is independent of copy number C. We define the first term P(Zj = ijC) = Ci=K to be the

probability for read rj originating from position i. For each position i and read rj, we have a probability

P(rjjZj = i‚G), which stands for the probability of observing read sequence rj given that the origin of read rj

is position i. We can write P(rjjZj = i‚G) as

P(rjjZj = i‚G) =
Yl

x = 1

c(gi + x - 1‚ rx
j )

and

c(gi + x - 1‚ rx
j ) = �=3 if rx

j 6¼ gi + x - 1

1 - � otherwise

�

where rx
j stands for the x-th nucleotide of read rj, and the l consecutive nucleotides starting from position i

in the reference genome are gi‚ gi + 1‚ . . . ‚ gi + l - 1. In practice, for each read rj, the probability P(rjjZj = i‚G)
will be close to zero for all but a few positions, which are reported by the mapping methods.

We also take the prior probability of the donor genome into consideration. As we assume the donor

genome sequence can be obtained by either deleting or duplicating large regions of nucleotides from the

reference genome, adjacent positions will have similar copy numbers in the donor genome. Then, in our

probabilistic model, it is natural to assume that the copy number of the current nucleotide is only dependent

on the previous nucleotide. We have P(C) = P(C1‚ C2‚ . . . ‚ CK ) = P(C1)
QK

i = 2 P(CijCi - 1).
Using Bayes rule, we can get the posterior probability of C given the read setR and reference genome G:

P(CjR‚G) / P(RjC‚G)P(C)

/
YN
j = 1

XK

i = 1

Ci

K
P(rjjZj = i)

 !
· P(C1)

YK
i = 2

P(CijCi - 1)

 !
(3)

2.3. Optimization

Maximizing the posterior of copy number C in Equation (3) is equal to maximizing the following log

probability with respect to C:

XN

j = 1

log
XK

i = 1

Ci

K
P(rjjZj = i)

 !
+ log P(C1)

YK
i = 2

P(CijCi - 1)

 !
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In this section, we provide a more detailed description of our method. In order to make the above objective

function simpler, we eliminate the constraint
PK

i = 1 Ci = K by introducing a penalty function

g(C) = K -
PK

i = 1 Ci, which prevents the C0is from growing unbounded (the above objective function will have a

higher value if the C0is grows larger). Incorporating the penalty function, our objective function now becomes

XN

j = 1

log
XK

i = 1

Ci

K
P(rjjZj = i)

 !
+ log P(C1)

YK
i = 2

P(CijCi - 1)

 !
+ d K -

XK

i = 1

Ci

 !
(4)

where d is a penalty function coefficient (we set d = N
K

in our experiments, from which we achieve best

results). We optimize the objective function Equation (4) through an expectation-maximization (EM)

algorithm. The algorithm iteratively applies the following two steps until convergence.

Expectation-step:

Q(CjC(t)) =
XN

j = 1

XK

i = 1

log
Ci

K

� �P(Zj = ijrj)

+
XN

j = 1

XK

i = 1

log P(rjjZj = i)P(Zj = ijrj) + log P(C) + d K -
XK

i = 1

Ci

 !

Maximization-step:

C(t + 1) = arg max
C

log P(C1)
C1

K

� �d1

· e - dC1 ·
YK
i = 2

P(CijCi - 1)
Ci

K

� �di

· e - dCi

 !" #
(5)

where di =
PN

j = 1 P(Zj = ijrj).
We solve the M-step using dynamic programming. Denote the objective function in the M-step to be

f = log P(C) ·
YK
i = 1

Ci

K

� �di

· e - dCi

 !" #
(6)

Then we define f (k, x) to be the maximum function value for the first k positions when the copy number of

kth position is Ck = x. Now we design the dynamic programming indicated in Equation (7).

f (k‚ x) =

log [P(Ck = x) · ( Ck

K
)dk · e - dCk ] if k = 1

maxCk - 1
ff (k - 1‚ Ck - 1) + log [P(CkkCk - 1)]g

otherwise

+ log½( Ck

K
)dk · e - dCk �

8>><
>>: (7)

We prove that the above dynamic programming returns the global optimal solution for the objective

function in Equation (6).

Lemma 1. The objective function in Equation (6) is solved optimally using the dynamic programming

mentioned in Equation (7).

Proof. For the sake of space, we describe the correctness of the dynamic programming in the

Appendix. -

The maximum value of the objective function in the M-step is then maxx f (K, x). Using a backtracking

process, we find the vector C = (C1‚ C2‚ . . . ‚ CK ) that maximizes function f in the M-step. By iteratively

running E-step and M-step, we achieve local optima.

2.4. Implementation

This optimization process requires an initial input of copy numbers. Different initial inputs will affect the

convergence time. To achieve better performance, it is important to start with a ‘‘good’’ initial guess. In

order to obtain a good initial input, we split the genome into nonoverlapping bins of 300 bp. All nucleotides

within one bin share the same copy number. Using a similar model as in Equation (1), we get an initial

guess of copy numbers by optimizing the objective function Equation (8).
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P(RjC‚G) =
YN
j = 1

P(rjjC‚G) =
YN
j = 1

XØK=300ø

i = 1

Ci · 300

K
P(rjjZj 2 i-th bin) (8)

where P(rjjZj 2 i-th bin) = 1
300

P300
s = 1

Ql
x = 1 c(gi · 300 + s + x - 1‚ rx

j ). Similarly, we can optimize Equation (8) by

the EM algorithm. As proved by Halperin and Hazan (2006), the likelihood of Equation (8) is concave. The

EM algorithm will converge to global optimal solution, and it will be a good initial guess for the objective

function in Equation (4).

After obtaining a solution using a standard EM algorithm, we conduct our extended EM algorithm

introduced in Section 2.3. We summarize our method in Algorithm 1.

2.5. GC-bias correction

One of the shortcomings of the HTS technologies is the existence of different biases in the sequencing

process. Some biases are due to the environment while others are due to chemical reactions (DNA am-

plifications, GC content). Studies show that both Sanger and HTS sequencing are bias toward high GC

regions. GC-bias can influence the number of reads generated from a position, and thus the reads are no

longer uniformly generated. There have been a number of articles (Alkan et al., 2009; Yoon et al., 2009;

Sudmant et al., 2010; Abyzov et al., 2011) that deal with GC-bias in CNV calling. In this work, we adapted

the idea mentioned by Abyzov et al. (2011) and Yoon et al. (2009) to correct for GC-bias. In Equation (5),

di is the number of reads mapped to position i. We correct this bias by updating the definition of di to be

dc
i = di · DOCglobal

DOCgc
, where dc

i is the corrected number of reads mapped to position i, di is the original number

of reads mapped to position i, DOCglobal is the average depth of coverage (DOC) over all positions, and

DOCgc is the average DOC over all positions in which the reads have the same GC content as in the reads

mapped to position i.

Algorithm 1: The complete algorithm of CNVeM

Input: Read mapping information, allowing reads map to multiple locations.

Output: Copy number variations compared to reference genome.

Initialization: Choose an initial configuration of copy numbers C(0).

STAGE ONE:

Optimize the function in Equation (8) using a standard EM algorithm based on bins. We get an initial solution of

copy numbers for each bin.

STAGE TWO:

2.1. Use the output from STAGE ONE as an initial guess.

2.2. For each read rj with j 2 f1‚ 2‚ . . . ‚ Ng, consider all mapping positions; calculate the posterior probability

of each position according to the joint probability in Equation (2). Then map the read to multiple locations

fractionally according to the posterior probability.

2.3. Calculate the total number of reads mapped to each position.

2.4. Update the copy numbers of all nucleotides using the dynamic programing in Equation (7).

2.5. Repeat Steps 2.3–2.4 until it converges.

3. RESULTS

3.1. Simulation results

In order to assess our method, we carried out experiments on simulation datasets. We developed a

simulation framework, in which a donor genome is obtained by altering the copy number of some regions

in the reference genome.

3.1.1. Experiment on a simulated mouse chromosome. We first tested CNVeM on a simulated

mouse genome. We obtained the masked reference chromosome 17 of Mus Musculus. After pruning all the

N’s, the length of the chromosome 17 reduced to 58 Mb. This can be used as the ‘‘template sequence.’’ We
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then duplicate segments of the sequence to generate a reference genome. The lengths of the duplicated

segments are chosen from the range [1000, 10000]. We allow nucleotides to mutate with the probability of

1% in the duplication process. The copy numbers of these segments are then altered to generate the donor

genome. The copy numbers are chosen from the set {0, 1, 2, 3, 4, 5}. In each experiment, we simulated 100

copy number variations between the reference genome and donor genome. To generate a read, we randomly

picked a position from the donor genome and copied 36 consecutive bases starting from this position. The

copying process is repeated until we have the desired coverage. All reads are then mapped to the reference

genome using mrsFAST (Hach et al., 2010), allowing reads to map with two mismatches.

In addition to detecting the existence of copy number variants, CNVeM especially aims to distinguish

which copy is duplicated or deleted in the donor genome, while others have the same number of copy

occurrences compared to the reference genome. Simulations are performed using various depth of coverage

settings. A CNV is considered to be detected correctly when it overlaps with the true CNV region,

meanwhile the predicted copy numbers should be the same as the true copy numbers. The results are shown

in the first row of Table 1.

We also compared our reported CNVs to true CNVs by base pairs. The overlap is calculated by

intersecting the coordinates of predicted CNVs with those of true CNVs. The results in the first row of

Table 2 indicate high accuracy of CNVeM in predicting the break points.

Furthermore, we simulated the duplicated segments under different mutation rates to assess the power of

our method in locating the copy variation origin. All results are summarized in Table 1 and Table2. We see

Table 1. The Results on the Simulated Mouse Chromosome 17 Under Different Sequencing Depth

and Mutation Rates Between Duplicated Segments

Mutation rate between

duplicated segments

Depth

of coverage

No. of

predicted CNVs

No. of

correct CNVs

False

discovery rate

False

negative rate

1% 30X 102 100 2.0% 0

15X 102 100 2.0% 0

5X 105 100 4.8% 0

0.5% 30X 102 100 2.0% 0

15X 105 100 4.8% 0

5X 109 100 8.3% 0

0.1% 30X 101 97 4.0% 3.0%

15X 107 98 8.4% 2.0%

5X 116 96 17.2% 4.0%

No. of predicated CNVs are the number of regions CNVeM reports as CNVs. False discovery rate is the ratio between number of

false positives and number of predicted CNVs, while false negative rate is the ratio between number of false negatives and number of

true CNVs.

Table 2. Measuring the Accuracy of CNV Break Points by Base Pairs Under Different Sequencing

Depth and Mutation Rates Between Duplicated Segments

Mutation rate between

duplicated segments

Depth of

coverage

Length of

predicted CNVs (bp)

Length of

overlap (bp)

False

discovery rate

False

negative rate

1% (504000 bp) 30X 506755 502183 0.9% 0.3%

15X 506162 501291 1.0% 0.5%

5X 507703 495074 1.8% 2.5%

0.5% (493000 bp) 30X 492271 488114 0.9% 1.0%

15X 500460 488387 2.4% 0.9%

5X 501139 483830 3.5% 1.9%

0.1% (492000 bp) 30X 469821 452120 3.8% 9.1%

15X 465518 433495 6.9% 11.9%

5X 462193 417340 9.7% 15.2%

False discovery rate is the ratio between length of false positive regions and total length of predicted CNVs, while false negative rate

is the ratio between length of false negative regions and total length of true CNVs.
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that both the mutation rate between duplicated segments and sequencing depth can affect the accuracy of

our program. The smaller the mutation rate, the more similar the duplicated sequence, and the more

difficult to distinguish which segment has copy number variation in the donor sequence. We have higher

false discovery rate when the read depth is lower and the difference between duplicated copies is smaller,

but we manage to recall almost all copy number variations.

The key observation in comparing the two tables (Table 1 and Table 2) is that the false negative rate in

predicting the correct quantitive copy number is always lower than the false negative rate in calling the

breakpoints of CNVs, moreover the false discovery rate of quantitative value for CNV is always higher

than the false discovery rate in breakpoint calling. This illustrates that CNVeM is robust in detecting the

existence of CNVs and determining the break points of CNVs. To achieve high sensitivity in CNV calling,

CNVeM inevitably reports false positive regions. However, most of these false positive regions are short,

and thus we have low false discovery rate in break points calling.

3.1.2. Comparing CNVeM with CNVnator on GC-biased data. In this section, we compare

CNVeM with the CNVnator (Abyzov et al., 2011). Using a similar framework, we generated a reference

genome and donor genome from chromosome 17 of Mus Musculus. We set the mutation rate between

duplicated segments to be 0.1%. Reads are then simulated from the donor genome, allowing GC-bias (Yoon

et al., 2009; Abyzov et al., 2011). In order to make the comparison fair for CNVnator, we used Bowtie

(Langmead et al., 2009) to do the mapping with option ‘-best -M 1’. With this option, Bowtie returns the

best mapping for each read, and in the case of tie, it will randomly pick one mapping location for a read.

This step is due to the fact CNVnator assumes there exists one mapping location for each read. However,

for CNVeM, we use mrsFAST (Hach et al., 2010) to return all possible mapping positions for each read.

Figure 2 illustrates the intersection of CNVs found by CNVeM and CNVnator on the simulated dataset,

where 100 CNVs are implanted to the donor genome. CNVeM finds 111 CNVs, which includes 98 of the

true CNVs. This indicates that CNVeM has 13 false positives and 2 false negatives. However, CNVnator

finds 250 CNV regions among which 91 regions are true CNVs. CNVnator fails to find 9 regions that are

CNVs. Moreover, CNVnator reports 159 false positives. This results from the fact that CNVnator randomly

places a read to one of its multiple mapping positions and thus affects the read-depth information, from

which CNVnator determines the copy variation status. All the results indicate CNVeM has lower false

discovery rate and false negative rate compared to CNVnator. We successfully locate the copy variation

origins while CNVnator reports all possible CNV regions. Another disadvantage of CNVnator is that it can

only determine the CNV to be a copy gain or copy loss, instead of recalling the exact quantitive copy

number as in CNVeM.

3.1.3. Comparison between different strategies dealing with read mapping uncertainty. When

handling reads that can be mapped to multiple positions, existing methods either discard those reads or

randomly place the read to one of the multiple mapping positions. CNVeM considers all possible mapping

FIG. 2. Intersection

of two CNV detection

results with true CNVs.

(a) We illustrate the

Venn diagram of the

CNVnator calling with

the true CNV regions.

(b) We illustrate the

intersection between

the CNVeM calls and

the true CNV regions.

This figure indicates

that we have less false

positives and false

negatives compared to

the CNVnator.
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positions, and a read can be placed to one of the positions with a probability. We compared the performance

of these different strategies. Furthermore, we consider the popular strategy that divides the genome into

bins. All nucleotides within one bin have the same copy number. We develop a method, ‘‘wind,’’ using the

same EM framework as in Section 2.3 for the bin strategy.

We run these methods on the same simulated datasets. Following the same process as mentioned above,

we generated the reference genome and donor genome from chromosome 17 of Mus Musculus, with

mutation rate between duplicated segments set to be 0.1%, 0.5%, and 1%, respectively. Reads are simulated

at 30X coverage. The results plotted in Figure 3 illustrate that CNVeM has the highest recall and precision

at different mutation rates.

3.1.4. Time and memory usage. When dealing with HTS technology, which generates tens of

gigabytes of data per day, not only the accuracy of the method, but the memory and time usage, become

important factors. The time and memory usage is estimated for the CNV calling process, we assume the

mapping is done in a separate step. Our program takes 30 minutes to detect all the CNVs in the simulation

dataset on masked chromosome 17 of the mouse genome, where we had 30X coverage (having around 50

million reads). All the experiments run on 64-bit AMD Opteron processor; furthermore, our program used 2

Gb of memory at the peak of usage. In order to run CNVeM on the whole-genome sequencing data, the

memory usage increases linearly with the size of the genome.

3.1.5. Simulation on a whole mouse genome. To test the scalability of our program, we run

CNVeM on a whole mouse genome simulation data. Using a similar framework as introduced in above

sections, we generated a whole reference genome with 20 chromosomes, taking the genome (chr1-chr19,

chrX) of the mouse strain C57BL/6NJ as the template. We implanted 100 CNVs to each chromosome,

resulting in 2000 implanted CNVs. The mutation rate between duplicated segments in the reference

genome is 1%. The donor genome is then sequenced at 15X depth of coverage. Among the 2188 CNV

regions reported by CNVeM, 1956 regions have an overlap with the implanted CNVs, with the false

discovery rate to be 10.6%, and false negative rate to be 2.2%. The results from whole-genome simulation

consist with the results from single chromosome, where false positives are inevitably reported to achieve

high sensitivity. Further investigation shows that most of the false positive regions are short. Another

reason that leads to the false positives is the multiple mapping reads. The whole genome reference increases

the proportion of multiple mapping reads compared to single chromosome reference, and thus increases the

difficulty to precisely determine the origin of duplication events.

3.2. Results on real data

We used the data published by Sudbery et al. (2009), where chromosome 17 of mouse strain A/J is

deeply sequenced using Illumina technology to test our method on real data. The data contains 112 million

(56 million pair-end) reads, and the length of each read is 36 bp. This results in a 42X coverage. We aligned

the reads to the masked chromosome 17 using mrsFAST (Hach et al., 2010), allowing up to two mis-

matches. Out of these 112 million reads, 39 million reads are mapped uniquely to the genome. However, 4

million reads are mapped to more than one position in the genome. We supply the mapping information of

both uniquely and non-uniquely mapped reads to CNVeM and manage to detect 44 copy gain regions and

FIG. 3. Comparison between several strategies dealing with read mapping uncertainty. The x-axis represents the

mutation rate between duplicated segments. The shorthands CNVeM, wind, uniq, and rand represent the results from

CNVeM; the results from wind, which divides the genome into bins; the results from only considering reads mapped to

unique positions, and the results from placing a read to one of multiple mapping positions randomly, respectively.
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355 copy loss regions. Among those 44 copy gain regions, 28 regions have been reported by Sudbery et al.

(2009), and 15 regions out of these 355 copy loss regions have been reported by Sudbery et al. (2009). We

investigated those remaining 340 copy loss regions and found that these regions have a unique copy in the

reference genome but have 0 depth of coverage from the mapping results. In Sudbery et al. (2009), these

regions are referred to as potential ‘‘deletions.’’ Each of these remaining 340 copy loss regions have an

overlap with at least one of the 416 deletions reported by Sudbery et al. (2009). Furthermore, we applied

CNVnator on this real data and it managed to detect 42 copy gain regions and 264 copy loss regions.

Comparing the CNVeM calls with those of CNVnator, we saw 26 copy gain regions overlap, and 86 copy

loss regions were found by both methods.

4. DISCUSSION

CNV regions have been shown to be correlated with many diseases ranging from cancers to learning

disabilities (Cappuzzo et al., 2005; Sebat et al., 2007). Two main strategies exist to improve the CNV

detection, either to improve the technology from which we gather data from individuals, or to design better

algorithms. The shift from ArrayCGH to HTS is a great indication of improving the data gathering process,

as current studies suggest that the use of HTS results in higher power in detecting CNV breakpoints and

quantifying the true copy number for each region.

It has been shown previously that we can use both the depth of coverage and paired-end information to

detect CNVs accurately (Medvedev et al., 2010). We illustrate that the correct usage of DOC improves the

accuracy of CNV detection greatly. In this work, we present a probabilistic model for detecting CNVs

based on an expectation-maximization (EM) method. Our method incorporates all possible mapping in-

formation in the CNV prediction. It not only has higher accuracy in detecting the CNVs but also can detect

which of the paralog regions in the genome is copied or deleted. All previous methods fail to distinguish

paralog regions as they either discard all multiple mapping reads (reads mapped to multiple positions) or

randomly place a read to one of the mapping positions.

Another main contribution of this work is that we can predict the CNV breakpoints in base-pair reso-

lution. Unlike previous methods, which define CNV for each bin (segment of fixed or variable length), our

objective function is defined for each base-pair. In other words, we are predicting the CNV for each base-

pair. This helps us detect the breakpoint of each CNV with high accuracy.

Although we mention that using DOC can improve the accuracy of CNV detection, we do not deny the

fact that paired-end mapping has valuable information. Our future work is to incorporate paired-end reads

information into our probabilistic model.

5. APPENDIX

Expectation-step:

Estimate the posterior probability of each read origin under the current estimate of C(t):

P(Zj = ijrj) =
1

P(rj)
P(rjjZj = i)P(Zj = ijC(t)‚G)

=
P(rjjZj = i)C(t)

iPK
k = 1 P(rjjZj = k)C(t)

k

(9)

We can then calculate the expected value of log objective function, with respect to the posterior probability

of Z, under the current estimate of C(t):

Q(CjC(t)) =
XN

j = 1

XK

i = 1

P(Zj = ijrj) log
Ci

K
P(rjjZj = i)

� �
+ log P(C) + d K -

XK

i = 1

Ci

 !

=
XN

j = 1

XK

i = 1

log
Ci

K

� �P(Zj = ijrj)

+
XN

j = 1

XK

i = 1

log P(rjjZj = i)P(Zj = ijrj) + log P(C) + d K -
XK

i = 1

Ci

 !
(10)
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Maximization-step:
Find the vector C(t + 1) that maximizes the above function:

C(t + 1) = arg max
C

Q(CjC(t)) (11)

In each iteration of the EM algorithm, both C(t) and P(rjjZj = i) are fixed values, so P(Zj = ijrj) is a fixed

value within each iteration. Furthermore,

XN

j = 1

XK

i = 1

log P(rjjZj = i)P(Zj = ijrj)

is also a fixed value within one single iteration. Then, maximizing the above function reduces to finding

C(t + 1) = arg max
C

XN

j = 1

XK

i = 1

log
Ci

K

� �P(Zj = ijrj)

+ log P(C) + d -
XK

i = 1

Ci

 ! !

= arg max
C

log P(C) ·
YK
i = 1

Ci

K

� �PN

j = 1
P(Zj = ijrj)

· ed -
XK

i = 1

Ci

 !0
@

1
A

= arg max
C

log P(C) ·
YK
i = 1

Ci

K

� �di

· e - dCi

 ! !

= arg max
C

log P(C1)
C1

K

� �d1

· e - dC1

 

·
YK
i = 2

P(CijCi - 1)
Ci

K

� �di

· e - dCi

 !!
(12)

where di =
PN

j = 1 P(Zj = ijrj).

Lemma 2. The objective function in Equation (6) is solved optimally using the dynamic programming

mentioned in Equation (7).

Proof. We recall f (i‚ x) = maxC1‚ C2‚ ���Ci - 1 log [P(C1‚ C2‚� � �Ci - 1‚ Ci = x) ·
Qi

j = 1 ( Ci

K
)di · edCi ] where dj =PN

l = 1 P(Zl = jjrl). Moreover, f (i, x) is the maximum value of the copy number for the first i - 1 positions,

and the copy number of position i is x (Ci = x). Using the above definition, we drive the f (i + 1, y).

f (i + 1‚ y) = max
C1‚ C2‚...Ci

log P(C1‚ C2‚ � � �Ci‚ Ci + 1 = y) ·
Yi + 1

j = 1

Cj

K

� �dj

· e - dCj

" #

= max
C1‚ C2‚...Ci

log P(C1‚ C2‚ � � �Ci‚ Ci + 1 = y) ·
Ci + 1

K
edCi + 1 ·

Yi

j = 1

Cj

K

� �dj

· e - dCj

" #

= max
C1‚ C2‚...Ci

log P(C1‚ C2‚ � � �Ci)P(Ci + 1 = yjC1‚ C2‚ � � �Ci) ·
Ci + 1

K
e - dCi + 1 ·

Yi

j = 1

Cj

K

� �dj

· e - dCj

" #

= max
C1‚ C2‚...Ci

log P(C1‚ C2‚ � � �Ci)P(Ci + 1 = yjCi) ·
Ci + 1

K
e - dCi + 1 ·

Yi

j = 1

Cj

K
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· e - dCj

" #

= max
C1‚ C2‚...Ci

log P(C1‚ C2‚ � � �Ci) ·
Yi

j = 1

Cj

K

� �dj

· e - dCj P(Ci + 1 = yjCi) ·
Ci + 1

K
e - dCi + 1

" #
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C1‚ C2‚...Ci

log P(C1‚ C2‚ � � �Ci) ·
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= max
Ci

max
C1‚ C2‚...Ci - 1

log P(C1‚ C2‚ � � �Ci) ·
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j = 1
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