
Research Articles

Fast Matching of Transcription Factor Motifs Using

Generalized Position Weight Matrix Models

EMANUELE GIAQUINTA,1 SZYMON GRABOWSKI,2 and ESKO UKKONEN1

ABSTRACT

The problem of finding the locations in DNA sequences that match a given motif describing
the binding specificities of a transcription factor (TF) has many applications in computa-
tional biology. This problem has been extensively studied when the position weight matrix
(PWM) model is used to represent motifs. We investigate it under the feature motif model, a
generalization of the PWM model that does not assume independence between positions in
the pattern while being compatible with the original PWM. We present a new method for
finding the binding sites of a transcription factor in a DNA sequence when the feature motif
model is used to describe transcription factor binding specificities. The experimental results
on random and real data show that the search algorithm is fast in practice.

Key words: algorithms, automata, sequence analysis, strings.

1. INTRODUCTION

The binding of transcription factor proteins to their target DNA sequences is a fundamental

process in the transcription of genetic information. Two main computational problems that arise from

the study of these interactions are: i) finding an accurate model to describe the binding specificities of a given

transcription factor; and ii) given a DNA sequence and a motif that describes the binding specificities of a

given transcription factor, finding all the binding sites in the sequence that match the motif. The traditional

model used to represent transcription factor motifs is the position weight matrix (PWM) (Stormo et al., 1982;

Schneider et al., 1986; Gribskov et al., 1987). In this model, a motif of length m is represented using a matrix

of size m · jSj, where S is an alphabet of size 4 (DNA) in this context; each cell of the matrix contains the

position-specific weights for each symbol in the alphabet, that is, the cell mij contains the weight contributed

by an occurrence of the j-th symbol at the i-th position. This model assumes that there is no correlation

between positions in the sites, that is, the contribution of a nucleotide at a given position to the total affinity

does not depend on the other nucleotides that appear in other positions. The problem of matching the

locations in DNA sequences at which a given transcription factor protein binds to is well studied under

the PWM model (Pizzi and Ukkonen, 2008). One application where this problem becomes relevant is, for

example, described in Hallikas et al. (2006).

Many more advanced models have been proposed to overcome the independence assumption of

the PWM; among them are the maximal dependence decomposition (MDD) (Burge and Karlin, 1997),

the generalized weight matrix (GWM) (Zhou and Liu, 2004), the permuted variable length Markov models

1Department of Computer Science, University of Helsinki, Helsinki, Finland.
2Institute of Applied Computer Science, Lodz University of Technology, Lódź, Poland.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 20, Number 9, 2013

Mary Ann Liebert, Inc.

Pp. 621–630

DOI: 10.1089/cmb.2012.0289

621

(PVLMM) (Zhao et al., 2005), feature motif model (FMM) (Sharon et al., 2008), the dinucleotide weight

matrix (DWM) (Siddharthan, 2010), and the tree-based position weight matrix (TPWM) (Bi et al., 2011).

While some of these models are not compatible with the original PWM representation, others are actually a

generalized version of it. In this article, we deal with this latter type of model as we believe that they have a

greater chance to replace the standard PWM model. In particular, we focus on the FMM (Sharon et al.,

2008) since, to our knowledge, it is the most general one. However, our approach can also be applied, with

small changes, to other similar models.

In the FMM model, the TF-binding specificities are described with so-called features, that is, rules that

assign a weight to a set of associations between symbols and positions. In particular, a PWM can be

expressed as a set of features that include a single association; in this respect, it is a special case of this

more general model. Given a DNA sequence, a set of features and a motif length m, the matching problem

consists of computing the score of each site (substring) of length m in the sequence, where the score of a

site is the sum of the weights of all the features that occur in the site.

To our knowledge, the problem of matching transcription-factor motifs using the FMM model has not

been investigated yet. In this work, we present a fast method to match FMM motifs. Our method is based on

a reduction of this problem to the one of matching a set of gapped q-gram patterns in a given sequence,

where a q-gram pattern is a sequence of q symbols, over a finite alphabet S, such that there is a gap of fixed

length between each two consecutive symbols. In particular, we are interested in computing the list of

matching patterns for each position in the sequence. This problem is a specific instance of the variable

length gaps problem (VLG problem) for multiple patterns. Note that, although the number of associations

in a feature in the FMM model can be up to m, the experimental evaluation presented in Sharon et al. (2008)

allows for up to two associations. In this work, we focus on the case of two associations only, that is, the

features are 2 grams with a fixed-length gap between the two symbols.

We then present a framework for the problem of matching FMM motifs that uses such an algorithm as a

component and describes novel simple algorithms for the problem of matching a set of gapped q-gram

patterns in the q = 2 case. The proposed algorithms are fast when the gap lengths in the patterns are

constrained, which is a reasonable assumption in this context since the motifs are usually short. Our method

is considerably faster than a naive search of all the features for each site in the sequence.

The rest of the article is organized as follows. In Section 2, we recall some preliminary notions and

elementary facts. In Section 3, we present our method to find transcription-factor motifs using the FMM

model. In Section 4, we present new algorithms for the problem of matching gapped q-gram patterns, which

we use as a component in our method. In Section 5, we present experimental results on random and real

data of our new algorithms and of the full method. Finally, we briefly discuss our conclusions in Section 6.

2. BASIC NOTIONS AND DEFINITIONS

Let S = fc1‚ c2‚ . . . ‚ crg denote an alphabet of size r. Let S* denote the Kleene star of S, and Sm the set

of all possible sequences of length m over S. jSj is the length of string S, S[i], i ‡ 0, denotes its (i + 1)-th

character, and S[i‚ . . . ‚ j] its substring between the (i + 1)-st and the (j + 1)-st characters (inclusive). A

gapped q-gram pattern is of the form

(p1 � j1 � p2 � . . . � jq - 1 � pq)

where Æ p1‚ p2‚ . . . ‚ pqæ is a sequence of q symbols and Æ j1‚ j2‚ . . . ‚ jq - 1æ is the associated sequence of gaps,

that is, jk 2 N is the length of the gap between symbols pk and pk + 1. We say that a gapped q-gram pattern

(p1 � j1 � p2 � . . . � jq - 1 � pq) occurs in S at ending position i if

S[i -
Xq - 1

i = k

(ji + 1)] = pk‚

for k = 1‚ . . . ‚ q. Given a set P of gapped q-gram patterns, we denote with gspan (P) the number of distinct

gap lengths in P.

The RAM model is assumed, with machine word size w = O(log n). We use some bitwise operations

following the standard notation as in C language: &, j, *, / for and, or, not, and left shift,

respectively. The function to compute the position of the most significant set bit of a word x is Plog2(x)R.

622 GIAQUINTA ET AL.

3. METHOD

The FMM (Sharon et al., 2008) is a relatively new model to represent the interactions between tran-

scription factors and their target DNA sequences. In the FMM model, the TF-binding specificities are

described with so-called features, that is, rules that assign a weight to a set of associations between symbols

and positions. Given a DNA sequence T, a set of features and a motif length m, the matching problem

consists in computing the score of each site (substring) of length m in the sequence T, where the score of a

site is the sum of the weights of all the features that occur in the site. Figure 1, taken from the Segal Lab

website, shows an example of FMM motif, visualized as a sequence logo. The motif is of length 23 and

consists of 20 2-gram features and 4 · 23 1-gram features. The 1-gram features taken together represent a

PWM. The height of each letter gives the weight of the corresponding feature.

Formally, a feature can be denoted as

f(a1‚ i1)‚ . . . ‚ (aq‚ iq)g ! w

where w is the affinity contribution of the feature and aj 2 fA‚ C‚ G‚ Tg is the nucleotide that must occur at

position ij, for j = 1‚ . . . ‚ q and 1 £ ij £ m. It is easy to transform these rules into new rules where the left

side is a gapped q-gram pattern: if i1 < i2 < . . . < iq, we can induce the following gapped q-gram pattern

rule

(a1 � (i2 - i1 - 1) � . . . � (iq‚ iq - 1 - 1) � aq)! (iq‚ w):

This transformation has the advantage that the resulting pattern is position independent. Moreover, after

this transformation, different features may share the same gapped q-gram pattern. For example, the features

{(a, 1), (c, 3)} and {(a, 3), (c, 5)} map onto the same pattern {a2c}. Then, the matching problem can be

decomposed into two components: the first component identifies the occurrences of the groups of features

by searching for the corresponding gapped q-gram patterns while the second component computes the score

for each candidate site using the information provided by the first component.

For a motif of length m, the second component can be easily implemented by maintaining the score for m

sites simultaneously with a circular queue of length m. Each time a group of features with an associated set

of position/weight pairs f(i1‚ w1)‚ . . . ‚ (ir‚ wr)g is found at position j in the sequence, the algorithm adds the

weight wk to the score of the alignment that ends at position j + m - ik in the sequence, if j ‡ ik.

4. ALGORITHMS

In this section, we present two simple algorithms to search for the occurrences of a set P of gapped

2-gram patterns in a text T of length n, defined over a finite alphabet S of size r. This problem is a specific

instance of the VLG problem for multiple patterns. In the VLG problem, a pattern is a concatenation of

strings and of variable length gaps. In the specific scenario of gapped q-gram patterns, where all the strings

in the patterns have unitary length, the available more general algorithms for this problem do not scale well

in the case of multiple patterns. In particular, to our knowledge, the best practical methods for the VLG

problem are those introduced in Bille et al. (2010) and Haapasalo et al. (2011). In our problem, the first

FIG. 1. Feature motif model (FMM) of the neuron-restrictive silencer factor (NRSF) protein.

FAST MATCHING OF TF MOTIFS USING GENERALIZED PWM MODELS 623

algorithm has O(n + a)-time complexity, where a is the number of occurrences of the pattern strings (key

words) in the text T. Note that the number of occurrences of a key word that occurs in r patterns and in l

positions in the text is equal to r · l. Instead, the second algorithm has O(n + a0)-time complexity, where a0

is the number of occurrences in the text of pattern prefixes ending with a key word. In the case of multiple

patterns, these results are not ideal because, if we assume a uniform distribution for the patterns, we have on

average that a and a0 are O(n len(P)
r) and O(n jPjr), respectively, where len(P) is the sum of the number of

symbols in each pattern.

Our first algorithm for q = 2, based on the ‘‘Four Russians’’ technique (Arlazarov et al., 1970), has

O(n + ngspan(P)/h + occ)-time complexity, where gspan(P) is the number of distinct gap lengths in P, and h

is a parameter. The second algorithm, based on bit-parallelism (Baeza-Yates and Gonnet, 1992), has

O(nQ‘/w S + occ)-time complexity, where gsize(P) £ ‘ £ rgsize (P) and gsize(P) is the size of the variation

range of the gap lengths in P. The second algorithm is good when r and gsize(P) are small. Otherwise, the

first algorithm is preferable.

4.1. The GQ1 algorithm

Given a set of gapped 2-gram patterns

P = f(a1 � j1 � b1)‚ (a2 � j2 � b2)‚ . . . ‚ (al � jl � bl)g‚

let gmin(P) = min Æj1‚ j2‚ . . . ‚ jlæ‚ gmax(P) = max Æj1‚ j2‚ . . . ‚ jlæ and gsize(P) = gmax(P) - gmin(P) + 1.

We assume that all the patterns in P are distinct, that is, for any c1‚ c2 2 S, and j 2 N, there exists at

most one i such that ai = c1, bi = c2, and ji = j. Let G be the set of all the distinct gap lengths in the patterns.

For each j 2 G, we maintain a lookup table (LUT) Lj of size r2h, where 1 £ h £ Plog n/ log rR is a

parameter. For any two strings S1 and S2 of length h, we have that Lj (S1, S2) contains the list of all the pairs

(i, k) such that

S1[k] = ai ^ S2[k] = bi ^ j = ji

for 1 £ i £ l and 0 £ k < h. For h = 1, the LUT definition can be simplified to

Lj(c1‚ c2) =
i if c1 = ai ^ c2 = bi ^ j = ji

0 otherwise

(

The first algorithm, named gq1, works as follows: first, T is packed to T 0, so that each symbol occupies

only Qlog rS bits. This phase is performed in O(n) time. For h = 1 it is possible to skip this pass and set T 0 = T.

Let Ti = T[i - h + 1..i] be the substring of T of length h ending at position i. The packed encoding of any

such substring can be computed in constant time from the packed text using simple bitwise operations. Then,

the algorithm scans T 0 in chunks of h symbols, for each position i = h · k - 1, 1 £ k £ n/h, and computes the

list of matching patterns ending in one of the symbols of the substring Ti. To this end, it checks for each

distinct gap length j 2 G, the LUT entry Lj(Ti - j - 1, Ti), where Ti - j - 1 is the substring of length h at distance

j + 1 from Ti. It traverses the associated list of patterns and reports each match in overall O(1) time. The

algorithm for h = 1 is depicted in Figure 2.

The text scanning plus text packing is performed in O(n + ngspan(P)=h + occ) time. Concerning the

preprocessing time, for h = 1 we can build the LUT in time O(r2gspan(P) + j(P)j)). For h > 1, observe that

FIG. 2. The gq1 algorithm, with h = 1, for the string-matching problem with gapped 2-gram patterns.

gq1 (P‚ T)

1. for (aijibi) 2 do

2. �G(bi)) �G(bi) [fjig
3. Lji(ai, bi)) i

4. for i) 0 to jTj - 1 do

5. for j 2 �G(T[i])
6. if i - 1 - j ‡ 0 and Lj(T[i - 1 - j], T[i]) s 0

7. report(T[i - 1 - j] $ j $ T[i])

624 GIAQUINTA ET AL.

there are at most h matching patterns per slot of Lj, and they can be found in O(h) time if we build the LUT

for h = 1 and use it to resolve in constant time membership queries on P. Hence, the total time required to

build the LUT is O(r2hgspan(P)h + jPj)). The space in words required for the LUT is O(r2hgspan(P)h). An

alternative approach, useful when h is large, is to compute the LUT lazily. We initialize each slot of the LUT

to 0. This is fast in practice, and in theory it can also be done in constant time and with no overhead in the

space complexity using the method described in Navarro (2012). Then, when the algorithm accesses a slot

that is set to 0, it computes the corresponding list of patterns as described before and updates the slot value.

It is also possible to improve the performance in the average case by computing an additional array �G of

size rh, where the entry �G(S), for S 2 Sh, contains the list of gap lengths j, together with a pointer to the

corresponding LUT, such that there exists S0 2 Sh : Lj(S
0‚ S) 6¼ ;. In this way, we can limit the iterations,

for each position i, to all the gap lengths j 2 �G(Ti), which can be significantly less than the total number of

gap lengths on average.

Note that since h ‡ 1, this algorithm can be used only for r = o(n1/2). We can set h to an appropriate

value below log n/(2Qlog rS), to obtain o(ngspan(P)(log n= log r)) words of space. With h as specified above,

the LUT update time complexity can be absorbed in the search time. Overall, the algorithm works in

O(n + ngspan(P) log r= log n + occ) time in the worst case.

We note that in theory, a slightly better algorithm using similar ideas is possible, which can handle a few

gaps at a time if their lengths are close to each other. This algorithm is not practical though, and thus we do

not present it. In general, L may be a large structure, so in practice one chooses a limit M (in words) on its size

and computes the maximum h that satisfies r2h gspan(P)h £ M. For example, for M = 222, gspan(P) = 10 and

r = 4, we can safely use h = 4. If M is increased to 226, then h = 5 may be used.

4.2. The GQ2 algorithm

We now present the second algorithm, gq2. Let Pa be the set of all gapped 2-gram patterns in P with

first symbol equal to a. Let also GA(Pa) = (Q‚S‚ d‚ q0‚ F) be the nondeterministic finite automaton for the

language
S

(a�j�b)2Pa
S�aSjb and defined as follows:

Q = fq0‚ q1‚ q2‚ . . . ‚ qgmax (P) + 2g
F = fqg max (P) + 2g

d(qi‚ c) =

fq0‚ q1g if i = 0 and c = a

fq0g if i = 0 and c 6¼ a

fqi + 1‚ qgmax (Pa) + 2g if (a � i - 1 � c) 2 Pa and i � gmax(Pa)
fqgmax (Pa) + 2g if (a � i - 1 � c) 2 Pa and i = gmax(Pa) + 1

fqi + 1g if 1 � i � gmax (Pa)
; otherwise

8>>>>>><
>>>>>>:

The main idea is to run the automata GA(Pc1
)‚ . . . ‚ GA(Pcr) in parallel over the text T, using bit-parallelism

(Baeza-Yates and Gonnet, 1992).

For each automaton, we represent only the states q1‚ . . . ‚ qgmaxðPÞ+ 1. First, the algorithm encodes the

subset of the states of GA(Pa) with an outgoing transition to the final state labeled by c, for each c 2 S, in a

set Ba(c) defined as follows:

Ba(c) = fj j d(qj + 1‚ c) \ F 6¼ ;g:

It is easy to see that the state qj + 1 of GA(Pa) is active at position i in T iff T[i - 1 - j] = a, for

j = 0‚ . . . ‚ gmaxðPÞ. Hence, the algorithm encodes the configuration of GA(Pa) at position i in T in a set Di
a

defined as follows:

Di
a = f0 � j � gmax(Pa) j T[i - 1 - j] = ag:

Given the sets Ba(c) and Di
a, for all a‚ c 2 S, as defined above, it holds that a gapped 2-gram (p1jp2) has

an occurrence at position i in T iff p2 = T[i] and j 2 Di
p1
\ Bp1

(p2). The list of gapped 2-gram patterns

occurring at position i can thus be computed by iterating over all the elements j in Di
a \ Ba(T[i]), for all

a 2 S. The set Di
a can be computed by using the following recurrence:

Di
a = f0 � j � gmax(Pa) j (j = 0 and T[i - 1] = a) or j - 1 2 Di - 1

a g (1)

FAST MATCHING OF TF MOTIFS USING GENERALIZED PWM MODELS 625

Let size(a) = gmax(Pa) + 1, if Pa s ;, and to 0 otherwise. Let ‘ =
Pr

i = 1 size(ci) and let also

pos(ck) =
Pk - 1

i = 0 size(ci). The algorithm maintains the sets Di
a packed in a bit-vector Di of size ‘. Each

position 0 £ j £ gmax(Pa) in Di
a is mapped onto bit j + pos(a) in the corresponding bit-vector. For

each c 2 S, the sets Ba(c) are packed in a bit-vector B(c) in the same way. Let I be a bit-vector of size ‘
such that bit k is set iff pos(a) = k for some a 2 S. Then, the vector D can be maintained, based on

recurrence 1, using the following bitwise operations:

Di)((Di - 1!1) & ~I)jF

where F = 1 /pos(T [i - 1]), if size(T [i - 1]) > 0, and to 0 otherwise. Since the value of Di
a

depends only on Di - 1
a , we can maintain one vector only and update it using the above formula. To report all the

occurrences of the patterns at a given position i in T, the algorithm iterates over all the bits set in D & B(T[i]) by

repetitively computing the index of the highest bit set and masking it until there are no more bits set. Given a bit

index k, it is not hard to see that the corresponding gap is equal to k - maxfpos(a) � k‚ a 2 Sg. This translates

into computing the index of the highest bit set in I & 0m - k - 11k + 1. Hence, for each bit k set in D & B(T[i]),

the algorithm reports an occurrence of (T [i - 1 - j] $ j $ T [i]), where j = k - Plog2(I & 0m - k - 11k + 1)R. The

algorithm is depicted in Figure 3.

Note that gmax(P) £ ‘ £ rgmax(P). However, it is easy to replace the gmax(P) term with gsize(P): we

reduce the size of the bit-vectors of each automaton GA(Pa) by gmin(P) bits by representing only the states

qgmin (P) + 1‚ . . . ‚ qgmax (Pa) + 1 (we decided not to include this improvement into the description for simplicity).

For each position in the text, the bitwise operations needed to update the D vector and report the occur-

rences have to access Q‘/w S words. Hence, the time complexity of the searching phase of the algorithm is

FIG. 3. The gq2 algorithm for the string-matching problem with gapped 2-gram patterns.

gq2 (P‚ T)

preprocessing

8. for c 2 S do gmax[c]) 0

9. for (a $ j $ b) 2 P do

10. if gmax[a] < j + 1 then

11. gmax[a]) j + 1

12. m) 0

13. for c 2 S do

14. m) m + gmax[c]

15. k) 0, I) 0m

16. for c 2 S do

17. B[c]) 0m, F[c]) 0m

18. if gmax[c] > 0 then

19. F[c]) 1 / k

20. k) k + gmax[c]

21. I) I j F[c]

22. for (a $ j $ b) 2 P do

23. B[b]) B[b] j (F[a] / j)

searching

24. D) 0m

25. for i) 0 to jTj - 1 do
26. M) D & B[T[i]]

27. while M s 0m do

28. k) Plog2(M)R

29. j) k - Plog2(I & 0m - k - 11k + 1)R

30. report(T[i - 1 - j] $ j $ T[i])

31. M) M & *(1 / k)

32. D) ((D / 1) & *I) j F[T[i]]

626 GIAQUINTA ET AL.

O(nQ‘/wS + occ), where occ is the number of occurrences of the patterns in the text. The space complexity is

O(rQ‘/wS).

5. RESULTS

In this section, we evaluate the performance of our method. All the algorithms, except pma, whose source

code was kindly provided by the authors, have been implemented in the C + + programming language and

compiled with the GNU C + + Compiler 4.4, using the options -03. The test machine was a 3

GHz Intel Core 2 Quad running Ubuntu 10.04, and running times were measured with the getrusage

function. We performed two experiments to assess the performance of our motif-matching tool and of our

algorithms for gapped q-gram patterns, respectively.

The first experiment consisted in running our motif finder, named fmf (FMM-motif-finder), with real

FMM motifs on a human genome chromosome of 249, 250, 621 base pairs. Note that the particular type of

sequence is not relevant for the benchmark. The motifs used were downloaded from the Segal Lab website.

These motifs include features that span one and two positions. The features that span one position are

basically a PWM matrix and are naively matched since optimizations like the lookahead technique cannot

be applied in this more general model (see Pizzi and Ukkonen, 2008, for a survey on PWM matching

algorithms). For long motifs (>20) we use the superalphabet technique described in Pizzi et al. (2011). The

features that span two positions are matched using the gq2 algorithm if gsize(P) is small (which is always

the case for short motifs, since gsize(P) can be at most equal to the motif length), and with gq1 otherwise.

For a motif of length m the program computes the total score of each substring of length m of the sequence.

Table 1 lists the running times for different motifs and also the corresponding motif length and the number

of features that span two positions. The table also lists the running time of a naive scan in which all the

features that span two positions are matched naively, that is, each site is checked for all the features. The

results show that our method is fast and is thus suitable in practice, and about three times faster than a naive

approach. To show the overhead due to searching for two-position features and also for naively matching

the PWM matrix, we list in Table 2 the running times of the MOODS software (Korhonen et al., 2009), a

suite of algorithms for PWM matching, to search for different PWM motifs downloaded from the JASPAR

database. The results show that PWM matching is faster by a factor between 1.4 and 2, which, although not

negligible, is an acceptable trade-off for dealing with the more complex FMM model.

Table 1. Running Times in Seconds of FMM Motif Finder on a Human Genome

Chromosome of 225, 280, 621 Base Pairs for Different Motifs

Motif Motif length Features Time Naive alg. time

NRSF 23 20 10.04 32.75

CTCF 19 20 9.26 30.47

STAT1_U 17 20 9.15 27.77

E2F4_Boyer 14 15 7.96 22.39

OCT4_Boyer 15 15 9.45 25.60

SOX2_Boyer 12 16 8.30 24.56

Table 2. Running Times in Seconds of the MOODS Software

on a Human Genome Chromosome of 225, 280, 621 Base Pairs

for Different PWM Motifs with a p-value of 10 - 2

Motif Motif length Time

Ar 22 7.83

REST 19 8.96

NR1H2 17 7.35

RXRA::VDR 15 7.03

br_Z1 14 5.80

dl_1 12 4.54

FAST MATCHING OF TF MOTIFS USING GENERALIZED PWM MODELS 627

In the second experiment, we compared the gq1 and gq2 algorithms with the pma algorithm (Haapasalo

et al., 2011), which is one of the best practical methods for the VLG problem. The experiment consisted in

searching for a set of randomly generated gapped q-gram patterns on the genome sequence of 4, 638, 690

base pairs of Escherichia coli. Figure 4a shows the running times for searching a set of randomly generated

2-gram patterns with a fixed number of patterns equal to 50 and such that the maximum gap varies between

5 and 60. Figure 4b shows the running times for searching a set of randomly generated 2-gram patterns with

a fixed maximum gap of 20 and such that the number of patterns varies between 25 and 200. We used a

logarithmic scale on the y axis. The experimental results show that the new algorithms are significantly

faster (up to 50 times) than the pma algorithm in this particular scenario. The approach based on locating

the occurrences of the key words does not scale well when all the key words, and in particular, the first key

word, are of length 1. Note that in the general case of arbitrary length key words, the pma algorithm is very

fast (Haapasalo et al., 2011). In all the results, the gq2 algorithm is slightly faster than the gq1 algorithm.

This is expected because in all the experiments gspan(P) is almost equal to gsize(P), and thus the word-level

parallelism pays off. To show the difference between the two algorithms for a sparse set of gaps, we

performed another experiment in which the number of patterns is fixed at 25 and the maximum gap varies

between 50 and 150, so that, for increasing values of the maximum gap, gspan(P) is always 25 at most while

 10

 100

 1000

 10000

 10 20 30 40 50 60

tim
e

in
 m

ill
is

ec
on

ds

max gap (50 patterns)

GQ1
GQ2
PMA

 10

 100

 1000

 10000

 100000

 40 60 80 100 120 140 160 180 200

tim
e

in
 m

ill
is

ec
on

ds

number of patterns (max gap 20)

GQ1
GQ2
PMA

(a) (b)

FIG. 4. Experimental results on a genome sequence of Escherichia coli with randomly generated gapped 2-gram

patterns obtained for (a) varying gap interval with a set of 50 patterns and (b) varying number of patterns with

maximum gap 20.

 120

 130

 140

 150

 160

 170

 180

 190

 60 80 100 120 140

tim
e

in
 m

ill
is

ec
on

ds

max gap (25 patterns)

GQ1
GQ2

FIG. 5. Comparison of the gq1 and gq2 algorithms for a sparse set of gaps.

628 GIAQUINTA ET AL.

gsize(P) increases. The results, depicted in Figure 5, show that in this scenario the gq1 algorithm is faster

than the gq2 algorithm when the maximum gap is at least four times the number of patterns.

6. CONCLUSIONS

We presented a method for the problem of finding all the locations in DNA sequences that match a motif

describing transcription factor binding sites under the feature motif model. Our approach is based on

reducing the problem to the one of matching a set of gapped q-gram patterns, where a gapped q-gram

pattern is a sequence of q symbols such that there is a gap of fixed length between each two consecutive

symbols. To this end, we presented novel algorithms for this problem in the q = 2 case, which we believe

could be of independent interest. We note that a more general but slower algorithm that works for any q is

possible using a similar approach. The experimental results show that our method achieves very good

performance and is thus effective. It is worth observing that any PWM motif can be expressed in the FMM

model, so there is no drawback in the use of this model.

7. ACKNOWLEDGMENTS

This work was supported by the Academy of Finland, grant 118653 (ALGODAN), and by the Polish

Ministry of Science and Higher Education, project N N516 441938.

8. DISCLOSURE STATEMENT

The authors declare that no competing financial interests exist.

REFERENCES

Arlazarov, V., Dinic, E., Kronrod, M., and Faradzev, I. 1970. On economical construction of the transitive closure of a

directed graph. Soviet Math. Doklady 11, 1209–1210.

Baeza-Yates, R.A., and Gonnet, G.H. 1992. A new approach to text searching. Commun. ACM 35, 74–82.

Bi, Y., Kim, H., Gupta, R., and Davuluri, R.V. 2011. Tree-based position weight matrix approach to model transcription

factor binding site profiles. PLoS ONE 6.

Bille, P., Gørtz, I.L., Vildhøj, H.W., and Wind, D.K. 2010. String matching with variable length gaps, 385–394. In

Chávez, E., and Lonardi, S. ed. SPIRE, Vol. 6393, Lecture Notes in Computer Science, Springer, New York.

Burge, C., and Karlin, S. 1997. Prediction of complete gene structures in human genomic DNA. J of Mol Biol 268, 78–94.

Gribskov, M., McLachlan, A.D., and Eisenberg, D. 1987. Profile analysis: detection of distantly related proteins.

Proceedings of the National Academy of Sciences 84, 4355–4358.

Haapasalo, T., Silvasti, P., Sippu, S., and Soisalon-Soininen, E. 2011. Online dictionary matching with variable-length

gaps, 76–87. In Pardalos, P.M., and Rebennack, S. ed. SEA, Vol. 6630, Lecture Notes in Computer Science, Springer,

New York.

Hallikas, O., Palin, K., Sinjushina, N., et al. 2006. Genome-wide prediction of mammalian enhancers based on analysis

of transcription-factor binding affinity. Cell 124, 47–59.

Korhonen, J., Martinmäki, P., Pizzi, C., et al. 2009. MOODS: fast search for position weight matrix matches in DNA

sequences. Bioinformatics 25, 3181–3182.

Navarro, G. 2012. Constant-time array initialization in little space. In Proc. XXXI International Conference of the

Chilean Computer Science Society (SCCC). IEEE CS Press. In press.

Pizzi C., and Ukkonen, E. 2008. Fast profile matching algorithms - a survey. Theor. Comput. Sci. 395, 137–157.

Pizzi, C., Rastas, P., and Ukkonen, E. 2011. Finding significant matches of position weight matrices in linear time.

IEEE/ACM Trans. Comput. Biology Bioinform. 8, 69–79.

Schneider, T.D., Stormo, G.D., Gold, L., and Ehrenfeucht, A. 1986. Information content of binding sites on nucleotide

sequences. J Mol. Biol. 188, 415–431.

Sharon, E., Lubliner, S., and Segal, E. 2008. A feature-based approach to modeling protein-DNA interactions. PLoS

Comp. Biol. 4.

FAST MATCHING OF TF MOTIFS USING GENERALIZED PWM MODELS 629

Siddharthan, R. 2010. Dinucleotide weight matrices for predicting transcription factor binding sites: Generalizing the

position weight matrix. PLoS ONE 5.

Stormo, G.D., Shneider, T.D., Gold, L., and Ehrenfeucht, A. 1982. Use of ‘perceptron’ algorithm to distinguish

translational initiation sites in E. coli. Nucleic Acids Research 10, 2997–3011.

Zhao, X., Huang, H., and Speed, T.P. 2005. Finding short DNA motifs using permuted Markov models. J Comp. Bio.

12, 894–906.

Zhou, Q., and Liu, J.S. 2004. Modeling within-motif dependence for transcription factor binding site predictions.

Bioinformatics 20, 909–916.

Address correspondence to:

Dr. Emanuele Giaquinta

Department of Computer Science

University of Helsinki

P.O. Box 68 (Gustaf Hällströmin katu 2b)

00014 Helsinki

Finland

E-mail: emanuele.giaquinta@cs.helsinki.fi

630 GIAQUINTA ET AL.

