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ABSTRACT

The reconstruction of the history of evolutionary genome-wide events among a set of related
organisms is of great biological interest since it can help to reveal the genomic basis of pheno-
types. The sequencing of whole genomes faciliates the study of gene families that vary in size
through duplication and loss events, like transfer RNA. However, a high sequence similarity
often does not allow one to distinguish between orthologs and paralogs. Previous methods have
addressed this difficulty by taking into account flanking regions of members of a family inde-
pendently. We go one step further by inferring the order of genes of (a set of) families for
ancestral genomes by considering the order of these genes on sequenced genomes. We present a
novel branch-and-cut algorithm to solve the two species small phylogeny problem in the evolu-
tionary model of duplications and losses. On average, our implementation, DupLoCut, improves
the running time of a recently proposed method in the experiments on six Vibrionaceae lineages
by a factor of *200. Besides the mere improvement in running time, the efficiency of our
approach allows us to extend our model from cherries of a species tree, that is, subtrees with two
leaves, to the median of three species setting. Being able to determine the median of three species
is of key importance to one of the most common approaches to ancestral reconstruction, and our
experiments show that its repeated computation considerably reduces the number of duplica-
tions and losses along the tree both on simulated instances comprising 128 leaves and a set of
Bacillus genomes. Furthermore, in our simulations we show that a reduction in cost goes hand in
hand with an improvement of the predicted ancestral genomes. Finally, we prove that the small
phylogeny problem in the duplication-loss model is NP-complete already for two species.

1. INTRODUCTION

In the course of evolution, genome-wide changes either (i) rearrange the order of the genes or (ii)

modify the content. The former class of changes results from inversions, transpositions, and transloca-

tions. The latter have an effect on the number of gene copies that are either inserted, lost, or duplicated. In

particular, gene duplication plays a decisive role as a source of raw genetic material for the creation of
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evolutionary novelties (Ohno, 1970). Although prevalent in all three domains of life (Zhang, 2003), an

estimated (Lynch and Conery, 2000) rate of 0.01 per gene per million years underlines its importance for

eukaryotes such as Homo sapiens, Mus musculus, D. melanogaster, C. elegans, and Arabidopsis thaliana.

The reconstruction of the history of such events among a set of (related) organisms is of great biological

interest since it can help to reveal the genomic basis of phenotypes.

The sequencing of whole genomes allows us to study macro-evolutionary processes like gene dupli-

cations and losses (through deletion or pseudogenization) at an unprecedented resolution. Indeed, the size

of gene families has been shown to largely vary, even among 12 Drosophila species (Hahn et al., 2007). A

prominent example of a gene family that is continuously duplicated and lost is transfer RNA (tRNA)

(Rogers et al., 2010; Swenson et al., 2008; Withers et al., 2006). In Escherichia coli, for example, the rate at

which tRNA genes evolve by duplication and loss events has been estimated to be on the order of one per

million years (Withers et al., 2006). Since tRNA as an adapter molecule between a codon in the mRNA and

the amino acids is an essential element in the translation of RNA into proteins, reconstructing their

evolutionary history among species might lead to new insights into the translationary machinery.

At the same time, studying the evolution of tRNA is particularly challenging, since the high sequence

similarity of functionally equivalent tRNAs often does not allow one to distinguish between paralogs and

orthologs (Withers et al., 2006). The approach developed in Rogers et al. (2010) tries to address this

difficulty by considering the environment of tRNAs, more specifically, by taking into account the order

of genes in tRNA flanking regions. Roughly speaking, tRNA genes that map to the same region of

D. melanogaster form orthologous sets. Duplications and losses are then distributed on the branches of the

drosophila tree by a maximum parsimony criteria, that is, by minimizing the number of these evolutionary

events.

Inferring the order of genes of (a set of) families for ancestral genomes by taking into account the order

of these genes on sequenced genomes goes one step further. It implicitly declares genes as orthologs or

paralogs and respects the order of all genes among all studied families simultaneously. Furthermore, it

specifies the direction of duplication events, a problem that was separately addressed in Han and Hahn

(2009) based on synteny.

Most of the methods for phylogenetic inference solve one of two optimality criteria, the maximum

parsimony (MP) or the maximum likelihood criterion. Although potentially more powerful, the latter makes

explicit assumptions about the evolutionary process that produced the sequences. However, little is known

about the mechanisms controlling the evolution of gene families like tRNA (Rogers et al., 2010). In

contrast, the MP criterion does not rely on such assumptions and was the criterion according to which

duplications and losses were distributed along the tree in Rogers et al. (2010) and Han and Hahn (2012). In

a recent work by Holloway et al. (2012), the authors have observed that the problem of inferring the most

parsimonious ancestor of two genomes in the duplication-loss model can be cast into an alignment problem,

since the order of genes is preserved by these content-modifying operations of type (ii). Although an

alignment is generally favorable from a computational perspective, we show that it is NP-hard to solve.

Being theoretically hard for cherries, i.e., trees with two leaves, we cannot hope for an exact solution for

large sets of species and more complex trees. However, we show that we can find an ‘‘almost’’ exact

median of three species in reasonable time. The median of three is of key importance to one of the most

common approaches to ancestral reconstruction, and our experiments show that its repeated computation

considerably reduces the number of duplications and losses and thus increases the number of orthologs

along the tree.

A second favorable property of the considered evolutionary model is that duplications and losses are

asymmetric events that can be uniquely assigned to one of the two genomes and thus an ancestral genome

can immediately be obtained from a duplication/loss scenario.

1.1. Related work and our contribution

The duplication-loss alignment problem considered in this work is naturally related to the classical

(multiple) sequence alignment problem (MSA) (Althaus et al., 2005). Various methods proposed for MSA,

in particular the branch-and-cut algorithm by Althaus et al. (Althaus et al., 2005), are based on a graph-

theoretic model of the problem. This gapped alignment graph represents the correspondence of genes via

alignment edges and losses (insertions) through gap arcs, but it does not capture duplication events.

Duplications, as pairs of an origin and a target, lead to hyperedges in the gapped alignment graph. As it is
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the case for most problems on graphs, the pairwise alignment problem becomes harder to solve through this

generalization to hypergraphs. While the classical pairwise alignment problem (without duplications) is

efficiently solvable in polynomial time, we show that the extension to duplication events makes the

pairwise alignment problem NP-hard.

Holloway et al. (2012) proposed an approach for the comparison of two ordered gene sequences under

the duplication-and-loss model that is based on an integer linear programming (ILP) formulation of the

problem. While the method in Holloway et al. (2012) iteratively adds cycle constraints to the ILP, we have

developed this idea further into a cutting plane algorithm. One class of cuts, the maximal clique in-

equalities, comprises solely the targets of duplications and can therefore be separated analogously to the

MSA case. Additionally, we introduce cuts that exploit insights into the combinatorial structure of du-

plication events, the lifted duplication cycles and the duplication islands. We show that they can be

separated efficiently and lead to a branch-and-cut algorithm that outperforms the previous method (Hol-

loway et al., 2012) by several orders of magnitude, while also guaranteeing the solution to be provably

optimal.

This boost in efficiency allows us to extend the two-species comparison to the inference of ancestral

genomes of a set of species along a given phylogenetic tree. A widely used practice for this so-called small

phylogeny problem is the steinerization method (Sankoff and Blanchette, 1997; Blanchette et al., 1997).

Starting with some initial ancestral genomes, ancestral genomes are repeatedly replaced by the median of

the neighboring genomes in the tree until a local optimum is reached. Therefore, we generalize the pairwise

genome comparison model introduced by Holloway et al. to the median of a threen-species problem. A

limitation of our median model is that it does not capture the subsequent modification of the target of a

duplication from the ancestor of a median to both its descendants simultaneously. Nevertheless, as our

experiments show, the median computed in our model provides a means of reducing the number of

duplications and losses induced by the tree both on simulated and real-world instances and improves the

prediction of ancestral genomes in our simulations. Furthermore, comparing the three neighboring genomes

simultaneously allows us to relax a restriction of the model proposed in Holloway et al. (2012) (see Section

4). In Holloway et al. (2012), the two-species variant was applied in a bottom-up fashion to pairs of nodes

in the tree, which can provide initial ancestral genomes for the steinerization method. Alternatively, in each

step, the iterative local optimization method in Kovác et al. (2011) proposes a candidate set for ancestral

genomes and computes the best one by dynamic programming. The related problem of labeling a given

alignment of two genomes by duplications and losses was recently shown to be APX-hard (Dondi and El-

Mabrouk, 2012). We show that the problem of finding a maximum parsimony ancestral genome of two

given ordered gene sequences under the duplication-and-loss model is NP-hard.

2. PRELIMINARIES

We start with some basic definitions that are adopted from Holloway et al. (2012). A genome is a string

over an alphabet S, whose characters represent specific gene families. Given two genomes, G1 and G2, and

a set of allowed evolutionary operations, O, a sequence of n operations O 2 O that transforms G1 into G2 is

called an evolutionary history, OG1!G2 . Let c(Oi) define the cost of the i-th operation in OG1!G2 . Then the

cost of OG1!G2 is defined as
Pn

i = 1 c(Oi). If G1 is a potential ancestor of G2, that is, there exists an

evolutionary history from G1 to G2, we define c(G1 / G2), the cost to transform G1 into G2, to be the

minimal cost over all possible histories transforming G1 into G2. Given a tree T = (V, E) with its leaves

representing different genomes, the small phylogeny problem asks to find an assignment of genomes to the

internal nodes of T such that the total cost
P

(u‚ v)2E c(G(u)! G(v)) is minimized, where G(u) is the genome

assigned to node u and u is the parent of v. In Section 3, we study the small phylogeny problem restricted to

two species, the problem to which the work in Holloway et al. (2012) is devoted.

Definition 1. (Two-Species Small Phylogeny Problem (2-SPP)). Given two genomes, G1 and G2,

and a set of evolutionary operations O, determine the potential common ancestor G* minimizing the cost

c(G* / G1) + c(G* / G2).

While, in general, set O can include operations that change the order of genes, such as reversals and

transpositions, as well as operations that modify the content, such as losses and insertions, the evolutionary

model proposed by Holloway et al. only allows for the following two operations:

THE DUPLICATION-LOSS SMALL PHYLOGENY PROBLEM 645



– A duplication of size k + 1 on genome G = G1 . . . Gn copies a substring G[i‚ . . . ‚ i + k], called the

origin, to a location j of G outside the interval [i, i + k], called the target of the duplication.

– A loss of size k + 1 removes a substring G[i‚ . . . ‚ i + k] from genome G.

Furthermore, the model requires that origin and target of a duplication must be present as contiguous blocks

in the genomes:

Definition 2. An evolutionary history OG1!G2 is called a visible history and G1 a visible ancestor of G2

if no duplication in OG1!G2 is modified subsequently by inserting (by duplication) or deleting (by loss)

genes from its origin or target.

With a slight abuse of notation, we also call pairs of evolutionary histories (OG�!G1 ‚ OG�!G2 ) from a

potential common ancestor G* of two genomes G1 and G2 a visible history if both histories OG�!G1 and

OG�!G2 are visible. G* is then called the visible ancestor of G1 and G2.

Since duplications and losses preserve the order of the genes and evolutionary histories are visible,

Holloway et al. suggest to pose the two-species small phylogeny problem for the duplication and loss

model as an alignment problem. An alignment of two genomes is obtained by introducing ‘‘ - ’’ =2 S into

the genomes such that the resulting strings are of same length and can be interpreted as rows of a two-

dimensional alignment matrix A. A column of A either matches two genes from S or aligns a gene G[i]

with ‘‘ - ’’. In the latter case, gene G[i] is either the product of a duplication or part of a loss in the other

genome. An interpretation of A as a sequence of duplications and losses is called a labeling.

In Holloway et al. (2012), it is shown that in the duplication-and-loss model of evolution, the Two Species

Small Phylogeny Problem of visible ancestors is equivalent to the duplication-loss alignment problem.

Definition 3. Duplication-loss alignment problem: Let the cost of a labeled alignment be the sum of the

costs of the operations implied by the labeling. Given two genomes, G1 and G2, compute a labeled

alignment of G1 and G2 with minimum cost.

In Supplementary Material C (available online at www.liebertonline.com/cmb), we show that finding

such a minimum cost solution is NP-hard.

Theorem 1. For an instance of the duplication-loss alignment problem and an integer k, it is NP-

complete to decide whether there exists an alignment of cost at most k.

3. PROBLEM FORMULATION AND VALID INEQUALITIES

In this section, we describe a graph-theoretic representation of the duplication-loss alignment problem,

which naturally leads to an ILP formulation similar to the one introduced in Holloway et al. (2012).

However, we strengthen the linear programming (LP) relaxation by introducing three classes of valid

inequalities.

Given two genomes, G1 and G2, the alignment graph G = (V1 [ V2‚ E) is a complete bipartite graph with

Vi = fvi
l : 1plpjGijg. The nodes in V represent the genes in the genomes, with the j-th gene in Gi

corresponding to node vi
j 2 V . Undirected edges fv1

i ‚ v2
j g 2 E represent the alignment of a gene at position i

in G1 and the gene at position j in G2 and implies orthology of the involved genes. If some alignment, A, of

G1 and G2 aligns gene G1[i] with G2[j], the corresponding edge fv1
i ‚ v2

j g is said to be realized by A.

Although an alignment of two genes, G1[i] and G2[j], does not imply any evolutionary operation, we assign

a cost cij to the corresponding edge. This allows for a more general and powerful scoring scheme that might

take into account gene conversions. The evolutionary model introduced in Section 2 can then be modeled

by assigning cost N to all edges representing the alignment of nonidentical genes, which causes the

resulting alignment graph to be sparse.

Additionally, we define the sets of all possible duplications Di, and losses Li, for genomes Gi. For a

duplication d 2 Di with origin Gi[‘‚ . . . ‚ ‘ + k] and target Gi[j‚ . . . ‚ j + k] we define the functions

origin(d) := [‘‚ . . . ‚ ‘ + k] and target(d) := [j‚ . . . ‚ j + k]. Genes in origin and target are paralogous. Simi-

larly, for a loss l 2 Li that removes substring Gi[j‚ . . . ‚ j + k] from Gi, we define the function

span(l) := [j‚ . . . ‚ j + k]. Every duplication d 2 D1 [ D2 and every loss l 2 L1 [ L2 is assigned a cost cd and

cl, respectively, that reflects the cost of the corresponding evolutionary operation.
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A valid alignment has to satisfy three conditions. First, not all pairs of alignment edges can be realized

simultaneously. Two crossing edges represent an ordering conflict of the involved genes. Therefore, we

define two alignment edges e1 = fv1
i ‚ v2

j g and e2 = fv1
k‚ v2

l g to be incompatible iff either i £ k and l £ j or

i ‡ k and l ‡ j. We let set I contain all pairs of incompatible alignment edges. Second, the biological

interpretation of duplications induces a partial order ‘‘ £ ’’ (by chronology) on the set of duplication events:

For a duplication d1 whose target overlaps the origin of a duplication d2, it must hold d1 £ d2, that is, d1

occurred before d2. Therefore, due to antisymmetry of partial orders, a sequence of duplications over-

lapping in their targets and origins must not form a cycle:

Definition 4. Duplication Cycle: A set of duplication events D � Di forms a duplication cycle iff there

exists a permutation d1‚ d2‚ . . . ‚ dk of the elements in D such that

(a) origin(di) \ target(di - 1) 6¼ ; 82pipk

(b) origin(d1) \ target(dk) 6¼ ;

And third, every gene in genome Gi must either be aligned to a gene in the other genome, be contained in

the span of a loss l 2 Li, or lie in the target of a duplication d 2 Di. These three conditions are captured by

three classes of constraints in the ILP formulation introduced in the next section.

3.1. An initial ILP formulation

In the remainder of the article, we will introduce and employ a model that assigns losses a linear cost,

meaning that a loss of size x has cost k $ x. This allows us to simplify notation such that for every node v 2 Vi,

the loss event lv 2 Li denotes the loss of the single gene from Gi that is represented by node v. All our results

can be generalized to arbitrary loss costs in a straightforward way by introducing, analogously to gap arcs in

Althaus et al. (2005), a variable for each of the O(n2) potential loss events to which we can assign affine,

convex, and even position-dependent costs in the objective function. Occurrences of a variable for a loss

event lv have to be replaced then with the sum of variables for all loss events that contain node v.

Now, the three conditions formulated in the previous section naturally lead to the following ILP for-

mulation. We have binary variables xij for every alignment edge fv1
i ‚ v2

j g 2 E‚ zv for every possible loss

event lv 2 L1 [ L2, and yd for every possible duplication d 2 D1 [ D2. Let D* denote the set of all du-

plication cycles in D1 and D2. Then, the duplication-loss alignment problem is captured by the ILP

formulation (1)–(5) (Fig. 1).

Constraints (2)–(4) capture the three conditions stated in the previous section, and thus, a solution to the

ILP corresponds one-to-one to a solution for the duplication-loss alignment problem. But solving the ILP

formulation directly by a standard ILP solver is not feasible for realistic instance sizes, as the number of

FIG. 1. Initial ILP formulation.
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possible duplication cycles, and thus the number of constraints (3), grows exponentially with the length of

the genomes. Therefore, instead of enumerating all inequalities of class (3) in advance, we initially drop

them completely.

Although the approach of Holloway et al. follows a similar strategy, the difference is significant. In

Holloway et al. (2012), the problem is solved by iteratively solving the ILP formulation [initially without

constraints (3)], adding violated duplication cycle inequalities to the ILP and re-solving until the original

ILP is feasible, that is, no violated constraint (3) can be found.

In contrast, we embed a lifted version of constraint (3) into a cutting plane approach explained in Section

3.3. In short, in every node of the branch-and-bound tree, we try to cut off as much as possible from the set

of feasible solutions to the LP relaxation without losing any feasible integral solution to (2)–(5). For this,

we introduce in the next section a variant of the duplication cycle constraints that dominate (3). Further-

more, we identified other classes of valid inequalities that lead to a stronger LP relaxation, and therefore, to

larger parts of the branch-and-bound tree to be pruned. In other words, we iteratively solve a strengthened

version of the LP relaxation instead of the original ILP. As we will see in Section 5.1, this results in a

dramatic improvement in performance. In Section 3.2, we define the classes of valid inequalities, and in

Section 3.3, we show how to efficiently separate them. That is, given a (fractional) solution to the LP

relaxation, how to identify a violated valid inequality.

3.2. Valid inequalities

In the following, we let P be the convex hull of the feasible solutions to the above ILP. Strong cuts for

binary integer programs, that is, valid inequalities for P, are often derived (Padberg, 1973) by studying the

incompatibility graph H. Graph H contains a vertex for every binary variable and an edge for each pair of

incompatible variables, that is variables that cannot have both value 1 in a feasible solution. Here, in-

compatibility of alignment edges (x-variables) and duplications (y-variables) follows directly from con-

straints (2)–(4), and graph H has node set E W D and an edge between all pairs of incompatible alignment

edges and duplications. Similar to the multiple sequence alignment approach (Althaus et al., 2005), we

introduce maximal clique inequalities, which generalize (2).

Maximal clique inequalities Sets K = KE W KD of pairwise incompatible alignment edges and duplications

correspond precisely to the cliques of the incompatibility graph H, with KE 4 E and KD 4 D1 W D2. If there

is no alignment edge or duplication that is incompatible with all alignment edges and duplications in K, the

corresponding clique is maximal. The following maximal clique inequality is valid for P:

X
e2KE

xe +
X
d2KD

ydp1: (6)

Since the incompatibility of duplications is determined by their target alone, maximal clique inequalities

can be characterized similarly to the multiple sequence alignment problem (Althaus et al., 2005), which

allows for their efficient separation (see Supplementary Material).

Duplication island inequalities The next class of constraints is motivated by the following observation. If

a subset of genes is produced exclusively by duplications that also originate within this set, a duplication

cycle, according to Definition 4, cannot be avoided. Therefore, Theorem 2 requires at least one of the genes in

every set to be aligned, to be labeled as a loss, or to be the product of a duplication originating outside the set.

Figure 2 gives an example of a fractional solution that is cut off by a duplication island inequality.

In the following, we consider duplications in G1 and define D : = D1 and V : = V 1. For duplications in G2,

the same holds. Consider the graph G0 obtained by augmenting the alignment graph G with directed arcs A

as follows: For every duplication d 2 D, we add an arc from the node representing the ith element in

origin(d) to the node representing the ith element in target(d), for all i = 1 . jorigin(d)j. Furthermore, for

every (u‚ v) 2 A, we let D((u‚ v)) be the set of duplications d in D such that there exists an i with u

representing the ith element in origin(d) and v representing the ith element in target(d). Then for any set

S 4 V, D(VyS‚ S) denotes the set of duplications inducing arcs in the cut-set of (VyS, S), that is,

D(VyS‚ S) =
[

(u‚ v)2A:
u2VyS‚ v2S

D((u‚ v)):
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Theorem 2. For every set S 4 V, the following inequality is valid for P:

X
v2S

zv +
X
v2S

XjG2j

k = 1

xfv‚ v2
k
g +

X
d2D(VyS‚ S)

ydq1 (7)

Proof. Assume, to the contrary, that the sum on the left-hand side of inequality (7) is 0. Let graph G00 be

obtained from graph G0 by removing all alignment edges whose corresponding x-variable is 0 and all arcs

(u‚ v) 2 A with yd = 0 for all d 2 D((u‚ v)). Since every position in the genome must be covered [constraint

(4)], and since
P

v2S zv +
P

v2S

PjG2j
k = 1 xfv‚ v2

k
g = 0, exactly one incoming arc in A must be incident to every

node v 2 S. As
P

d2D(VyS‚ S) yd = 0, these arcs must originate at a node in S. Thus, if we repeatedly traverse,

starting at an arbitrary node in S, the unique incoming arc backward in G00, we will never leave node set S

and hence, ultimately close a cycle. Due to constraint (3), the corresponding solution is infeasible. -

Lifted duplication cycle inequalities Again, we consider duplications in G1 and define D : = D1 and

V : = V 1. For G2, a symmetric argument applies. In this section, we introduce the lifted duplication cycle

inequalities, a class of constraints that dominate (3). The high-level idea that this class of constraints is

based on is similar to the one underlying the lifted mixed cycle inequalities introduced in Althaus et al.

(2005). Consider a set of duplications C 4 D, which is partitioned into sets C1‚ . . . ‚ Ct. If C satisfies

(C1) for r = 1‚ . . . ‚ t‚ all duplications in Cr are pairwise incompatible

(C2) every set fd1‚ . . . ‚ dtg, where dr is chosen arbitrarily from Cr for r = 1‚ . . . ‚ t, forms a cycle

according to Definition 4 then the inequality

X
d2C

ydpt - 1 (8)

is valid for P. Inequalities (3) are a special case of (8) in which every set Cr has cardinality one. If,

additionally,

(C3) C is maximal with respect to properties (C1) and (C2), that is, C cannot be extended without

violating (C1) or (C2).

we call (8) a lifted duplication cycle inequality. Figure 3 gives an example of a fractional solution that is cut

off by a lifted duplication cycle inequality.

Note that although the general definition of lifted duplication inequalities by (C1)–(C3) is analog to the

general definition of lifted mixed cycles in Althaus et al. (2005), their specific characteristics differ

significantly. The latter involves alignment edges among three or more sequences, whereas the former

d1: 1/2

d2: 1/2

d5: 1/2 d4: 1/2

d6: 1/2

d3: 1/2

A B C D A B C D A B C D

FIG. 2. A duplication island: Fractional values on the edges representing duplications d1‚ . . . ‚ d6 denote a feasible

solution to the LP relaxation. In particular, no (lifted) duplication cycle inequality is violated. This solution is cut-off by

the duplication island constraints.
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comprises duplications as hyperedges, that is, pairs of origin and target, in the pairwise setting. Conse-

quently, their characterization in Proposition 1 is more involved and exhibits ‘‘less structure’’ that can be

directly exploited in their separation.

3.3. A branch-and-cut approach

A branch-and-cut approach combines the ideas of branch-and-bound and cutting planes. First, the

linear programming (LP) relaxation of the ILP is solved. If the optimal solution to the LP relaxation is

not integral, cutting planes are used to cut off the current fractional solution without losing any of the

feasible integral solutions. If no further cutting planes can be found, and the current solution is still not

integral, the problem is split into subproblems, and the algorithm proceeds along the branches, provided

the best feasible solution found so far does not allow one to prune them. In the next three theorems, we

show that the cutting planes captured by the inequalities described in the previous section, respectively

relaxations of them, can be found efficiently, which is crucial for the overall performance of the branch-

and-cut algorithm.

Maximal clique inequalities can be separated similarly to the multiple sequence alignment prob-

lem (Althaus et al., 2005). The proof of the following theorem can be found in the Supplementary

Material.

Theorem 3. Let n be the length of the longer of the two genomes. Then for a given point (x�‚ y�‚ z�)
2 R

jEj + jDj + jV j
+ , it can be determined in time O(n3) whether a maximal clique inequality (6) is violated.

Next, we will show that a slightly relaxed version of constraint (7) can be separated efficiently. We

define the multiplicity a(d, S) of a duplication d in the cutset of a cut (VyS, S):

a(d‚ S) : = jf(u‚ v) 2 A : u 2 VyS‚ v 2 S ^ D(u‚ v) 3 dgj: (9)

Theorem 4. For ‘ 2 f1‚ 2g, let D := D‘, V := V ‘, n : = jV j, and m = jV �‘j, where �‘ is the complement of

‘ in {1, 2}. For a given point (x�‚ y�‚ z�) 2 R
jEj + jDj+ jV j
+ , it can be determined in time O(n3:5

ffiffiffiffiffiffiffi
jDj

p
) whether

the following relaxation of a duplication island constraint (7) is violated.

X
v2S

z�v +
X
v2S

Xm

k = 1

x�fv‚ v
�‘
k
g +

X
d2D(VyS‚ S)

a(d‚ S) � y�dq1 (10)

Proof. For an arbitrary node s 2 V , we let graph Gs(V, A, w) contain a node vi for every gene G‘[i] in

genome G‘. Arc set A = A1 W A2, where A1 contains an arc (u, v) of weight w(u‚ v) :=
P

d2D((u‚ v)) y�d
for every pair of vertices (u‚ v) 2 V · V with D(u,v) s ;. A2 contains an arc (s, v) of weight

d1: 1/2 d2: 1/2

d3: 1/2 d4: 1/2 d5: 1/2 d6: 1/2

d7: 1

A B C D A B C D A B C D

FIG. 3. A feasible fractional solution to the LP relaxation that is cut off by the lifted duplication cycle constraint.

Edges d1, d3, d2, d5, d7 together form a violated constraint, partitioned into C1 = {d1,d3}, C1 = {d2, d5}, and C3 = {d7}.
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w(s‚ v) := z�v +
Pm

k = 1 x�fv‚ v
�‘
k
g for every v 2 V with v s s. Then, for every S�V with s 2 V � S, the sum on

the left-hand side of inequality (10) equals the weight of the cut (VyS, S) in Gs:

X
(u‚ v)2A1[A2:
u2VyS‚ v2S

w(a) =
X

(u‚ v)2A1:
u2VyS‚ v2S

w(u‚ v) +
X

(s‚ v)2A2:v2S

w(s‚ v)

=
X

(u‚ v)2A1:
u2VyS‚ v2S

X
d2D((u‚ v))

y�d +
X
v2S

�
z�v +

Xm

k = 1

x�fv‚ v
�‘
k
g

�

=
X

d2D(VyS‚ S)

a(d‚ S) � y�d +
X
v2S

z�v +
X
v2S

Xm

k = 1

x�fv‚ v
�‘
k
g:

The last step follows directly from the definition of a(d, S) [see (9)]. Determining set S* that minimizes the left-

hand side of inequality (10) is thus equivalent to computing the minimum s - t cut in Gs over all s 2 V . This

can be reduced to 2n - 2 maximum flow problems, that is, from an arbitrary node s to all t s s and from all

t s s to s, each taking time O(n2
ffiffiffiffiffiffi
jAj

p
) using Goldberg-Tarjan’s preflow push-relabel algorithm. -

We show next how to separate a certain relaxation of the lifted duplication cycle constraints efficiently.

The separation algorithm exploits the following characterization of this class of constraints:

Proposition 1. An inequality of the form (8) with C =
St

i = 1 Ci‚ C � Dj, is a lifted duplication cycle

inequality if and only if there exists a sequence of non-empty intervals [a1‚ b1]‚ [a2‚ b2]‚ [at‚ bt] such that for

i = 1‚ . . . ‚ t, it holds

(P1)
T

d2Ci target(d) = [ai + 1‚ bi + 1]
(P2) 8d 2 Ci : origin(d) \ [ai‚ bi] 6¼ ;
(P3) 8d 2 DjyC : target(d) \ [ai + 1‚ bi + 1] 6¼ ; !

origin(d) \ [ai‚ bi] = ; _ 9d0 2 Ci + 1 : target(d) \ origin(d0) = ;

where [at + 1, bt + 1] : = [a1, b1] and Ci + 1 : = C1.

Intuitively, property (P1) captures condition (C1), property (P2) ensures that (C2) is satisfied, and (P3)

implies maximality. Notice that condition (P3) is not equivalent to requiring C to be maximal with respect

to (P1) and (P2), since a duplication satisfying (P3) might intersect interval [ai + 1, bi + 1] only partially. A

formal proof of Proposition 1 follows.

Proof. To prove sufficiency, assume set C has the claimed structure (P1)–(P3). For i = 1‚ . . . ‚ t, any two

duplications in Ci contain at least one common vertex in their target violating constraint (4) and are thus

incompatible. Furthermore, any set of duplications fdlI ‚ . . . ‚ dltg with dli 2 Ci‚ i = 1‚ . . . ‚ t forms a cycle

according to Definition 4 since, due to properties (P1) and (P2), origin(di + 1) X target(di) s ;. Finally,

assume C is not maximal with respect to (C1) and (C2). Consider a duplication d =2C such that C W {d}

satisfies (C1) and (C2). In particular, there exists 1 £ r £ i such that d is incompatible with all duplications

in Ci and thus, target(d) X [ai + 1, bi + 1] s ;. From condition (P3), it follows that either origin(d) X [ai,

bi] = ;, in which case d does not lie on a common cycle with any duplication from Ci - 1, or

9d0 2 Ci + 1 : target(d) \ origin(d0) = ;, which implies that there exists a duplication d0 2 Ci + 1 such that d

and d0 do not lie on a common cycle, violating in both cases condition (C2).

To prove necessity, we show that every set C that satisfies (C1), (C2), and (C3) exhibits the claimed

structure (P1)–(P3). For i = 1‚ . . . ‚ t‚ let[ai + 1‚ bi + 1] : =
T

d2Ci target(d) where [at + 1, bt + 1] : = [a1, b1]. Due

to condition (C1), [ai, bi] s ; and thus, property (P1) is satisfied. By the definition of cycles, (C2) implies

that the origin of every duplication in Ci intersects the target of every duplication in Ci - 1, i = 1‚ . . . ‚ t,

where C0 : = Ct. For intervals target(d0) with non-empty intersection, d0 2 Ci - 1, this is equivalent

to
T

d02Ci - 1 target(d0) \ origin(d) 6¼ ;, for all d 2 Ci, which satisfies (P2). Finally, assume (P3)

does not hold, that is, there exists a duplication d 2 DyC with (i) target(d) \ [ai + 1‚ bi + 1] 6¼ ;, (ii)

origin(d) \ [ai‚ bi] 6¼ ;, and (iii) 8d0 2 Ci + 1 : target(d) \ origin(d0) 6¼ ;. Due to constraint (4), (i) causes d

to be incompatible with all duplications in Ci. Properties (i) and (ii) imply, by the definition of cycles (see

THE DUPLICATION-LOSS SMALL PHYLOGENY PROBLEM 651



Definition 4), that for every cycle C that contains an arbitrary duplication d0 2 Ci, replacing d0 by d results

in a cycle C0. Therefore, C W {d} satisfies (C1) and (C2), which is in contradiction to (C3). -

The high-level idea of the separation algorithm is to construct a graph whose nodes represent elements

that satisfy (P1) and whose edges connect intervals that satisfy (P2). Similar to the separation of lifted

mixed cycles in the multiple sequence alignment problem (Althaus et al., 2005), a potential violation of a

slightly relaxed variant of a lifted duplication cycle can be detected by a shortest path computation.

Theorem 5. For ‘ 2 f1‚ 2g, let D := D‘, V := V ‘, n : = jV j and m = jV �‘j, where �‘ is the complement of ‘
in {1, 2}. For a given point (x�‚ y�‚ z�) 2 R

jEj + jDj+ jV j
+ , it can be determined in time O(n3 + jDjn2) whether

the relaxation of a lifted duplication cycles (8), in which for every interval [ai, bi] in Proposition 1

ai = bi‚ i = 1‚ . . . ‚ t, is violated.

Proof. We construct an arc-weighted graph G = (V, A, w) in the following way. Similar to the

alignment graph, we have one node for every gene in the given genome. With a slight abuse of notation, we

compute, for every pair of nodes vi and vj, the set of duplications D(i‚ j) whose origin contain vi and whose

target contain vj, that is, D(i‚ j) := fd 2 D : i 2 origin(d) ^ j 2 target(d)g. For every non-empty set D(i‚ j),
we add an arc from node vi to node vj. We define the weight of an arc as

w((vi‚ vj)) := 1 -
X

d2D(i‚ j)

y�d:

The violation of a lifted duplication cycle having the claimed structure, given by the sequence of nodes

vi1 ‚ vi2 ‚ . . . ‚ vit , with vij 2 [aj‚ bj], is

Xt

j = 1

X
d2Cj

y�d - t + 1 = 1 -
Xt

j = 1

�
1 -

X
d2Cj

y�d

�
= 1 -

Xt

j = 1

w((vij ‚ vij + 1
))‚

where vit + 1 : = vi1. Note that sets D(ij‚ ij + 1)‚ j = 1‚ . . . ‚ t, satisfy (P1)–(P3) and thus the last equality

follows. The most violated lifted duplication cycle of the relaxed kind can therefore be obtained by

computing the shortest arc-weighted path in G from every node v to itself (if it exists).

Implemented naı̈vely, the weight of the arcs in A can be determined in O(jDjn2). Note that due to

constraint (4), the arc weights are all non-negative and we can compute the shortest paths by Dijkstra’s

algorithm. Since graph G has O(n2) arcs and Dijkstra’s algorithm is called n times, the shortest cycle in G

can be found in time O(n3). -

4. MEDIAN OF THREE SPECIES

The alignment model introduced in Holloway et al. (2012) is restricted to cherries of a species tree, that

is, to subtrees with two leaves. In this section, we formulate a generalization of the alignment model that

captures the median-of-three problem, which is of key importance in the reconstruction of ancestral

genomes in a phylogenetic tree. The steinerization method (Blanchette et al., 1997) starts with an initial

assignment of genomes to ancestral nodes. In each iteration, until convergence, it traverses the tree and

improves for every internal node the ancestral genome assigned to it by computing the median of its three

neighbors, its immediate ancestor, and its two descendants. Convergence to the global optimum is not

guaranteed. In contrast, applying the method proposed by Holloway et al. to pairs of nodes in a phylo-

genetic tree can only be used as the initialization step in this context, as convergence would be reached after

the first iteration.

Definition 5. (Median of Three Problem). Let x be a node in the phylogenetic tree whose parent is u

and whose two children are v and w. Then, the median genome G(x) minimizes

c(G(u)! G(x)) + c(G(x)! G(v)) + c(G(x)! G(w)):

For ease of notation, we refer to G(u), G(v), G(w), and G(x) as G1, G2, G3, and Gm, respectively. Figure 4

depicts the phylogenetic scenario with (unknown) median genome Gm, its immediate ancestor G1, and the
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two descendants G2 and G3. Compared to the Two-Species Small Phylogeny Problem introduced in

Section 2, an alignment of G1, G2, and G3 has to express the evolutionary history transforming G1 into G2

and G3 along two generations. Compared to the classical sequence alignment problem, the alignment of

three sequences in the duplication-loss scenario is not equivalent to the cycle-free combination of all

pairwise alignments. It requires additional variables and constraints that ensure the consistency of dupli-

cation events and the fulfillment of the visible history condition. The restriction of the median problem to

the inference of the evolutionary history from Gm to G2 and G3 represents an instance to the 2-SPP and can

be modeled analogously using alignment variables xfv2
i
‚ v3

j
g, loss variables zvi

j
‚ i 2 f2‚ 3g, and duplication

variables d 2 D2 [ D3. Since the alignment of the three genomes G1, G2, and G3 also has to express the

evolutionary history that transforms G1 into Gm, we introduce alignment variables xfv1
i
‚ v2

j
g and xfv1

i
‚ v3

j
g, loss

variables ẑv1
j
, and duplication variables ŷd‚ d 2 Dm (Fig. 4). A loss variable ẑv1

j
denotes the loss of gene

G1[j] from G1 to Gm. Since Gm is unknown, we model a duplication d 2 Dm from G1 to Gm as being

composed of an origin in G1 and a target in G2 or G3 (see duplication d in Fig. 4). Genes in G2 and G3 that

are aligned to genes in the origin of a duplication d 2 Dm are paralogous to the genes in the target of d. It is

worth noting that this model allows us to relax the visible history condition (see Definition 2) in that we

also consider duplications d 2 Dm whose origin is subsequently modified arbitrarily, including its complete

loss (relocation). The reason is that the origin of such a duplication is fully preserved in G1, even if it is

modified subsequently. The strict visible history condition as formulated in Definition 2 can be enforced

through additional constraints (Supplementary Material D).

4.1. Additional constraints

Concerning the pairwise alignment of genomes G2 and G3, constraints (2)–(5) remain valid. Ad-

ditionally, we have to model the initial occurrence of each gene in G2 and G3. A gene i in G2 (G3) either

(i) has been present as gene j in G1 already,

(ii) arose from a duplication event d 2 Dm from G1 to Gm, or

(iii) results from a duplication event d0 2 D2 (d0 2 D3) from Gm to G2 (G3).

Scenario (i) is captured by xfv1
j
‚ v2

i
g = 1 (xfv1

j
‚ v3

i
g = 1), scenario (ii) by ŷd = 1, and scenario (iii) by yd0 = 1.

To avoid inconsistencies between duplications d1‚ d2 2 Dm that represent the same duplication from G1

to Gm but whose target might have been modified from Gm to G2 or G3, we allow only one of the two

variables ŷd1
‚ ŷd2

to be active. Therefore, technically case (ii) must be captured by either ŷd1
= 1 or by i

corresponding to a gene j in G3 (G2), that is, xfv2
i
‚ v3

j
g = 1, and gene j lying in the target of a duplication

d2 2 Dm with ŷd2
= 1. For example, in Figure 4, the duplication of genes ab from G1 to Gm is subsequently

modified from Gm to G2 by a loss of gene a. Therefore, the rightmost gene b in G2 is aligned to the

rightmost gene b in G3 (not shown), that is, xv2
7
‚ v3

6
= 1. Let such a relationship be indicated by variable

a b a c d

a b a c a b

c a a b a c d a b a c ab

ŷd = 1
x { v 1

1 ,v 2
3 } = 1

yd = 1

G1

G2 G3

Gm

ẑv 1
4

= 1

,

FIG. 4. The figure illustrates the four different types of variables used to express the evolutionary history along two

generations. Leftmost gene a in G1 is retained in Gm, G2, and G3 [scenario (i)]. Genes ab are duplicated from G1 to Gm,

modeled by duplication d with origin in G1 and target in G3 [Scenario (ii)]. The rightmost gene a in Gm is lost subsequently

in G2. Genes ca are duplicated from Gm to G2 [Scenario (iii)]. Gene d is lost from G1 to Gm.
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n(v2
i
‚ v3

j
). Since exactly one of the three scenarios applies, we require for each gene i in G2 (analog for genes

in G3),

XjG1j

j = 1

xfv1
j
‚ v2

i
g +

X
d2Dm

v2
i
2target(d)

ŷd +
X
d2D2

v2
i
2target(d)

yd +
XjG3j

j = 1

n(v2
i
‚ v3

j
) = 1: (11)

Variable n(v2
i
‚ v3

j
) corresponds to the product of xfv2

i
‚ v3

j
g and

P
d2Dm‚ j2target(d) ŷd , which can be expressed by

linear constraints in a straightforward way (Nemhauser and Wolsey, 1988). Similarly, each gene in G1 must

have been lost from G1 to Gm or appear (aligned) in at least one of G2 or G3. Therefore, for every gene i in

G1, we introduce constraints

ẑv1
i

+
XjG2j

j = 1

xfv1
i
‚ v2

j
g +
XjG3j

j = 1

xfv1
i
‚ v3

j
gq1 (12)

ẑv1
i

+
XjG2j

j = 1

xfv1
i
‚ v2

j
gp1‚ ẑv1

i
+
XjG3j

j = 1

xfv1
i
‚ v3

j
gp1:

Note that this model does not allow a gene from G1 to be lost both from Gm to G2 and from Gm to G3.

However, for a median minimizing (5), it is always preferable (i.e., has smaller cost) to not contain such a

gene. That is, it is better to imply a single loss of the gene from G1 to Gm as opposed to two losses from Gm

to G2 and G3.

Furthermore, we have to ensure that alignments between different pairs of genomes in the multiple

alignment are consistent. That is, we have to generalize constraint (2) to sets of incompatible alignment

edges containing edges between all three pairs of genomes. In particular, cycles being composed of both

alignment edges and arcs representing the order of genes on the genomes are introduced in the multiple

sequence alignment context as mixed cycles (Reinert, 1999). Mixed cycles represent a contradictory or-

dering of the genes in the alignment. We introduce lifted mixed cycle inequalities into our model that are

shown in Althaus et al. (2005) to dominate the mixed cycle inequalities and can be separated in time O(n3),
where n is the total number of genes in the three genomes.

Finally, we have to ensure consistency of duplications d 2 Dm and alignment edges between G1 and G3

(G2 analog). A duplication d 2 Dm with target region [k‚ . . . ‚ l] in G2 and an alignment edge xfv1
i
‚ v3

j
g are not

consistent if G3[j] lies between two genes G3[j0] and G3[j†] that are aligned to the interval [k‚ . . . ‚ l] in G2

(Fig. 5). This scenario would imply that duplication d 2 Dm from G1 to Gm has a nonconsecutive target

region as it encloses a gene already present in G1. We exclude such solutions by adding, for every pair of

duplication d 2 Dm and alignment edge xfv1
i
‚ v3

j
g, the following constraints:

Xj - 1

n = 1

xfv2
s ‚ v3

ng +
XjG3j

n = j + 1

xfv2
t ‚ v3

ng + ŷd + xfv1
i
‚ v3

j
gp3 8kps < tpl

A limitation of our model is that it does not capture the subsequent modification of the target of a

duplication d 2 Dm from Gm to both G2 or G3. Since, in either G2 or G3, the target of a duplication in Dm

A D

A B D

A

G1 :

G2 :

A B D

A B

G3 :

d
B

B

C

C

FIG. 5. This figure illustrates a pair of inconsistent duplication d 2 Dm and alignment edge fv1
4‚ v3

5g. The presented

solution corresponds to the median genome Gm = ABDACB, which implies a nonconsecutive duplication of AB

enclosing the conserved gene C. Transitive alignment edges between G1 and G3 not shown.
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has to be covered by the corresponding ŷ-variable [inequality (11)], and since we only consider duplications

with identical origin and target, modifications (duplications or losses) are valid only in the branch where the

genes in the target are covered indirectly by the n-variables. Notice that this limitation does not cause our

model to be infeasible. However, the cost of our solution in this case might not be optimal.

5. EXPERIMENTAL RESULTS

In the following two sections, we evaluate our branch-and-cut approach for the Two-Species Small

Phylogeny problem as well as its extension to the Median of Three problem.

5.1. Two-species alignment

In this section, we compare our preliminary implementation of the branch-and-cut approach outlined in

Section 3.3, referred to as DupLoCut, to the iterative ILP method by Holloway et al. (2012). The im-

plementation of the latter method was provided by the authors of Holloway et al. We implemented Du-

pLoCut in C + + and used cplex version 12.4 as ILP solver for both tools. We ran both methods single

threaded, except for the Vibrionaceae dataset in which we allowed (only) the implementation by Holloway

et al. to use up to 10 threads. We used the same scoring scheme as Holloway et al., which assigns alignments

of homologous genes a cost of 0, a loss of length x a cost of x (i.e., k = 1), and every duplication event is

charged with cost 1. For benchmarking, we used two sources of data, real-world data and simulated data.

Real-world instances We compared the two approaches on two sets of real-world instances that were also

used in Holloway et al. (2012). The sets contain the stable tRNA and rRNA contents of 12 Bacillus and 6

Vibrionaceae lineages that were preprocessed as discussed in Holloway et al. (2012). They are linearized

according to their origin of replication and inverted segments are manually reinverted. The average number

of stable tRNA and rRNA genes is &120 for the bacillus and &140 for the vibrio genomes. For both

sets we ran both algorithms for all pairs of genomes leading to 66 pairs for Bacillus and 15 pairs for

Vibrionaceae. The average run time of the tool by Holloway et al. on the Bacillus instances was around 67

seconds, while DupLoCut took less than 1.5 seconds.

The superiority of our approach however becomes apparent when comparing the two methods on the

Vibrionaceae pairs. On several instances, the method by Holloway et al. ran for a couple of hours whereas

DupLoCut is able to find the optimal solution within seconds. For two instances that were not solved

within 2 weeks of computation by the iterative ILP method, we found the optimal ancestral genome in

33 min and 49 min, respectively. On average, neglecting instances that could not be solved by Holloway et

al., we achieve an improvement of a factor of *200. On none of the instances did DupLoCut require more

than 1 hour.

Simulated instances The simulation of artificial instances follows the strategy of Holloway et al. (2012)

and tries to capture characteristics of the real-world instances. The simulation is performed in the following

steps. First, a random sequence R of length n and alphabet size a is simulated where the alphabet symbols at

each position are independent and identically distributed. In the second step, l moves (single gene loss or

duplication event) are applied to R where the length of a duplication follows a Gaussian distribution with

mean 5 and standard deviation 2, and the start position of every move is uniformly distributed. This

sequence is then used as the ancestor genome X, and two extant genomes are generated by applying l moves

to X for each of them. In Table 1, we present running-time results for several settings of parameters n, l, and

a where we simulated 50 instances for each setting. For the selected parameter settings, the ratios l/n and

a/n are based on the values observed in Bacillus data (l/n&0.1, a/n&0.5) (Holloway et al., 2012) except

for the second setting where we doubled the number of moves. For the remaining three parameter settings,

we examined the impact of different genome lengths between 100 and 400 genes. The results in Table 1

show that running time increases with increasing genome length and increasing distance between the two

genomes. Nevertheless, even for 400 genes, the average running time of DupLoCut is still within seconds

while the implementation of Holloway et al. requires almost 1 hour.

The enormous improvement in running time is a prerequisite to a generalization of the pairwise case to

the median of three-species setting. In the next section, we show that the repeated reoptimization of

medians of three neighbors leads to an improvement in the prediction.
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5.2. Median of three

In this section, we demonstrate that our median-of-three model can improve the quality of predicted

ancestral genomes in a phylogenetic tree. All results in this section refer to the relaxed variant of the visible

history condition (see Section 4). Imposing the stricter requirement formulated in Definition 2 yielded very

similar results (not shown).

We generated five balanced phylogenetic trees, each with 128 extant species. For each internal node, the

two descendant genomes were generated as in the pairwise alignment benchmark. We generate a random

genome of length n = 100 and alphabet size a = 50 at the root node. All other genomes along the tree were

generated by applying five random moves (single gene loss or duplication event) to their direct ancestor.

Following the steinerization method, we first initialized the genomes of all internal nodes bottom up by

solving the two-species alignment problem for their two immediate descendants. This initial genome

assignment corresponds to the solution output by the SPP-heuristic introduced in Holloway et al. (2012).

After initialization, we applied four rounds of reoptimization and replaced the genome of every internal

node by the median of its three immediate neighbors. The root genome was re-estimated by computing the

pairwise alignment of its two children. We traversed the tree bottom-up, and up to 16 independent nodes

(number of CPU threads) at the same depth were processed in parallel. The running time for each tree was

between 60 and 180 minutes on an 8-core Intel Xeon machine using 16 threads.

Deviating from the standard procedure, we update a genome even if it yields a cost increase because of

the overestimation of the true cost of the median (see Section 1.1). In our experiments we obtained more

parsimony solutions and a higher prediction quality using this strategy. A possible explanation for this

behavior is that by this process the risk of getting stuck in a local minimum decreases. The total cost of the

complete tree after each round with respect to the cost after initialization is shown in Figure 6. For all five

trees the total cost was reduced by & 25% after four rounds of reoptimization.

To analyze whether the cost reduction also implies a more accurate reconstruction of ancestral genomes,

we compared all predicted genomes to the true genomes after each round. The number of duplication and

loss events determined by the pairwise alignment serves as a measure of distance. The average distance of

all ancestral genomes after each round is depicted in Figure 7. Note that the total distance at round init is

with respect to the (final) solution of the SPP-heuristic based on the pairwise model of Holloway et al.

(2012). In all cases, the average distance of the predicted genomes to the true genomes could be reduced by

more than 60%.

In Supplementary Figure S3, we show the same data grouped by node depth. The highest improvement is

achieved for nodes that are closer to the extant genomes and decreases toward the root. Nevertheless, even

for the direct descendants of the root the average distance to the true genomes decreased by &50%.

We also applied our method to real-world data. We took the National Center for Biotechnology In-

formation (NCBI) taxonomy of 12 Bacillus strains of four species (amyloliquefaciens, subtilis, thur-

ingiensis, and cereus) and extracted stable RNA genes. The ancestral genomes predicted after initialization

implied a total of 151 duplication and loss events. After four rounds of reoptimization, our method

converged to a prediction of ancestral genomes requiring only 121 duplication and loss events. Although

we cannot guarantee that the predicted genomes are really closer to the true sequences, the results from the

simulation benchmark encourage this assumption. A plot summarizing the results and the phylogenetic tree

together with the strains can be found in Supplementary Material A.

Table 1. Runtime Comparison of DupLoCut

and the Implementation by Holloway et al. (2012)

for 2-SPP on Simulated Data (See Text for Description of Settings)

Average run time in seconds
Setting

(n,l,a) DupLoCut Holloway et al.

(100,10,50) 0.4 22.0

(100,20,50) 1.7 491.2

(200,20,100) 1.4 239.7

(400,40,200) 22.0 3112.8
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FIG. 6. Total cost (number of duplication/loss operations) for five simulated phylogenetic trees after one to four steps

of reoptimization normalized by the total cost after initialization.

FIG. 7. Average distance of all inferred genomes from the true sequences after one to four steps of reoptimization

with the median of three algorithms for five simulated phylogenetic trees.

THE DUPLICATION-LOSS SMALL PHYLOGENY PROBLEM 657



6. CONCLUSION

The results from the runtime comparison show that our novel branch-and-cut algorithm is superior to the

previously proposed ILP-based approach. For larger instances (bigger n) or pairs of rather distant genomes

like in the Vibrionaceae dataset, the improvement is even more dramatic. Therefore, our branch-and-cut

algorithm allows us to solve instances that are more complex than the pairs of Bacillus genomes on a

desktop PC and does not require compute clusters to find the optimal ancestral genome in a reasonable

amount of time. Even more important than the mere improvement in runtime is that this efficiency allowed

us to extend the model to three species. This generalized model is of great importance for the widely used

steinerization method. For both simulated instances comprising 128 leaves and a set of Bacillus genomes,

we observed, after a few steps of reoptimization, a significant cost reduction for the complete tree compared

to the pairwise initialization proposed by Holloway et al. (2012). In our simulations, this reduction in cost

goes hand in hand with an improved prediction of ancestral genomes. The model we have proposed readily

captures inverted duplications. Although nonoverlapping inversions can easily be incorporated into our

formulation by additional variables, they might invalidate our separation procedures. Our software Du-

pLoCut is freely available online.
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