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Abstract

In the following article we provide an exposition of exact computational methods

to perform parameter inference from partially observed network models. In particular,

we consider the duplication attachment (DA) model which has a likelihood function

that typically cannot be evaluated in any reasonable computational time. We consider

a number of importance sampling (IS) and sequential Monte Carlo (SMC) methods for

approximating the likelihood of the network model for a fixed parameter value. It is

well-known that for IS, the relative variance of the likelihood estimate typically grows

at an exponential rate in the time parameter (here this is associated to the size of

the network): we prove that, under assumptions, the SMC method will have relative

variance which can grow only polynomially. In order to perform parameter estima-

tion, we develop particle Markov chain Monte Carlo (PMCMC) algorithms to perform

Bayesian inference. Such algorithms use the afore-mentioned SMC algorithms within

the transition dynamics. The approaches are illustrated numerically.

Key words: Network Models, Sequential Monte Carlo, Markov chain Monte Carlo

1 Introduction

Cellular functions are based on the complex interplay of proteins, therefore understanding

the structure and dynamics of these protein-protein interaction (PPI) networks is paramount

to gain insight into biological systems. Proteins are at the heart of the relationship between

genotype and phenotype and the last years have witnessed large investments to investi-

gate large-scale PPI networks of several model organisms. As a consequence, a significant

amount of data has been collected and extensive studies on protein interaction networks

have been carried out due not only to technical advances but also to developments in bioin-

formatic and statistical methods. Probabilistic models are indispensable for characterising

the process of protein evolution and are particularly valuables as they provide a sound basis
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for likelihood-based inference, as an alternative to statistical analysis based on summary

statistics. A number of theoretical models have been developed to explain both the net-

work formation, evolution and current structure. A popular class of mathematical models

includes the duplication-attachment (DA) models, which specify probability distribution for

the inclusion of new nodes and edges in the network. Therefore the network becomes the

result of an evolutionary stochastic process, where the number of nodes in the network has

increased though a series of node adding events. The probability distributions that govern

network evolution depend on a vector of unknown parameter which are usually the main

focus of statistical inference. More technical details will be given in section 2.

This article contains an exposition of the challenges associated to parameter inference for

network models and it focuses on exact computational methods. The approaches proposed

are a valuable alternative to heuristic but fast analysis based on summary statistics, such

as approximate Bayesian computation, which often provide approximations of the posterior

distributions of the parameter which are not well understood. The class of models we con-

sider, have a likelihood, associated to an observed network Gt of t vertices, with parameters

θ ∈ Θ ⊆ Rd, d ≥ 1. The likelihood can be written as the expectation w.r.t a probability

that sequentially removes the vertices of the network until some terminal state is reached:

Lθ(Gt) = Eθ
[ t−t0−1∏

k=0

(
Hk(νk:t;Gt)

)]
where νk is a vertex of Gt, V ⊆ N is the vertex set, E is the edge set, Hk : Vt−k+1 ×

E × Vt → R+, t − t0 is the deterministic number of steps associated to the terminal state

and the probability associated to the expectation can be written
∏t−t0−1
k=0 pθ(νk|νk+1:t),

νk+1:t = (νk+1, . . . , νt) (if t ≥ k + 1, otherwise it is the null vector). We make the model

and terminology precise in Section 2; see Wiuf et al. (2006) for examples of such models. In

most scenarios of practical interest one cannot compute the likelihood exactly, unless t−t0 is

very small (e.g. 10); direct calculation, for a single θ, is an O((t− t0)2t−t0) operation at best

- see Wiuf et al. (2006). Often, in the literature, one resorts to numerical methods based

upon Monte Carlo and particularly importance sampling. This procedure introduces a mu-

tually absolutely continuous probability with joint mass function
∏t−t0−1
k=0 qθ(νk|νk+1:t) (and

associated expectation operator Eqθ) and then uses the simple change of measure formula

Lθ(Gt) = Eqθ
[ t−t0−1∏

k=0

(
Hk(νk:t;Gt)wk,θ(νk:t)

)]
where wk,θ(νk:t) = pθ(νk|νk+1:t)/qθ(νk|νk+1:t). This idea is adopted in Wiuf et al. (2006)

(see also Guetz & Holmes (2011), which we discuss later in the article) and indeed, Wiuf
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et al. (2006) choose a particularly clever proposal, based upon the optimal importance

distribution e.g. Robert & Casella (2004). However, as is well-known in the literature, such

IS procedures, with estimates of the likelihood:

1

N

N∑
i=1

t−t0−1∏
k=0

(
Hk(νik:t;Gt)wk,θ(ν

i
k:t)
)

with {νik:t}1≤i≤N sampled i.i.d. from qθ, are known to perform extremely badly in practice;

often the relative variance of such estimates are O(κt−t0), with κ > 1 (see e.g. Cérou et

al. (2011) or Whiteley et al. (2012)). One method which deals with this issue, at least for

some classes of models, is that of sequential Monte Carlo methods. This algorithm generates

a collection of samples (also called particles) in parallel, using the same ideas as IS, except

when the weights are too variable, in some sense, the samples are sampled with replacement

from the current particle set and weights reset to 1; see Doucet & Johansen (2011) for an

introduction, and we describe this algorithm in details in Section 3. For some classes of

models, estimates of quantities such as Lθ(Gt) have a relative variance of O(t − t0); these

results are extended for the network models considered in this article and we show that the

relative variance will grow only polynomially in t − t0 (Proposition 3.1). In addition, we

consider a more advanced SMC method called the discrete particle filter (DPF) (Fearnhead,

1998) and illustrate its applicability for likelihood estimation for the given class of network

models.

The discussion so far has focussed upon estimation of the likelihood for a single θ ∈ Θ.

To infer the parameter, we will follow a Bayesian procedure and place a prior probability

distribution on the parameter; we will then seek to sample from the associated posterior

distribution using MCMC. This is a particularly challenging problem, as the ‘obvious’ idea

of sampling a posterior proportional to

t−t0∏
k=0

(
Hk(νk:t;Gt)

) t−t0∏
k=0

pθ(νk|νk+1:t)p(θ)

where p(θ) is the prior on θ, is very complex (see the discussion in e.g. Andrieu et al. (2010)

for simpler models). However, one algorithm has been developed for these class of problems

in Andrieu et al. (2010). This method can use any of the SMC or DPF methods within the

proposal mechanism, and we develop such algorithms in Section 3.

This article is structured as follows. In Section 2 we consider the model and likelihood

for a test model which is considered throughout the article. In Section 3 we review and

develop computational methods for these network models. This is split into two types; one

for approximating the likelihood for a fixed parameter (using SMC) and the other, which
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uses these afore-mentioned methods, to infer parameters in Bayesian way and is based upon

MCMC. In Section 3 we also give our relative variance result for the SMC method. In

Section 4 the approaches are numerically implemented and compared on small to medium

sized networks. In Section 5 the article is concluded and some avenues for future work are

discussed. The proof of our main result can be found in the appendix.

2 Modelling and Likelihood

2.1 Model

In the following discussion, we will be dealing with random graphs, so some probabilistic

notations are introduced below. LetGt be an undirected graph of t vertices, without multiple

edges or self loops. DA models are essentially growth models, where the graph only expands

through time and never loses nodes or edges. At each time step, a node is added through

either a duplication or an attachment event. In the case of an attachment, the new node

attaches to an old one, chosen uniformly over the graph, while in the case of a duplication

event, an existing node is randomly picked to duplicate, and the new node is created by

copying with a certain probability each of its model’s links (independently). The new node

is then linked to the existing graph with a specified probability and it is, therefore, possible

that it is added with no links to any existing node. Let V ⊆ N be the vertex set with

associated σ−algebra V let E be the edge set with associated σ−algebra E . Given such a

graph Gt, let δ(Gt, ν), ν ∈ V denote the graph with ν deleted (i.e. both the node and its

associated edges). A vertex ν is said to be removable if Gt can be created by copying a

vertex in δ(Gt, ν). If Gt contains removable nodes it is said to be reducible, otherwise it is

irreducible.

Let θ ∈ Θ and consider a stochastic process {Gt}t∈{t0,t0+1,... } on probability space

(Ω,F ,Pθ), with Ω = (V×E)N, F = (V ⊗E )N, where for eachA ∈ F , Pθ(A) is B(Θ)−measurable

(B(Θ) are the borel sets on Θ). A duplication-attachment model is such a stochastic process

that starts at an irreducible graph Gt0 and undergoes Markov transitions according to a

transition probability which is only non-zero if Gt+1 can be obtained by copying a vertex

in Gt. In Wiuf et al. (2006) it is stated that the likelihood associated to a given (reducible)

graph Gt can be written in the recursive manner:

Lθ(Gt) =
1

t

∑
ν∈R(Gt)

ωθ(ν,Gt)Lθ(δ(Gt, ν))
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with Lθ(Gt0) = 1, ωθ(Gt, ν) = Pθ(Gt|δ(Gt, ν)) the transition probability and R(Gt) is the

collection of removable vertices of Gt.

Let θ = (π, p, q, r), the DA model follows two transition rules.

1. Choose and duplicate νold in Gt uniformly and call the copy as νnew. Create a link

between νnew and any node that links to νold with probability p. Link νold to νnew

with probability q.

2. Choose and duplicate νold in Gt uniformly and call the copy as νnew. Create a link

between νold and νnew with probability r.

In every transition, we follow rule 1 with probability π, and rule 2 with probability 1− π.

2.2 Likelihood Computation

One observes a reducible graph Gt, for which it is possible to obtain an irreducible graph

Gt0 . Define, V(Gt) as the vertex set of Gt and for k ∈ {1, 1, . . . , t− t0 − 1}:

Vt−k:t := {νt−k:t ∈ V(Gt) : νt−k 6= νt−k+1 6= · · · 6= νt}

for k ≥ 1

δk(Gt, νt−k+1:t) = δ(δk−1(Gt, νt−k+1:t), νt−k+1) νt−k+1:t ∈ Vt−k:t

with δ0(Gt, νt+1) := Gt and Vk := Wk(νt−k+1:t) = R(δk(Gt, νt−k+1:t)) (k ∈ {1, . . . , t− t0}).

Then it follows that:

Lθ(Gt) =
∑

νt0+1:t∈Vt0+1:t

[ t−t0+1∏
k=0

{ IWk(νt−k+1:t)(νt−k)ωθ(δ
k(Gt, νt−k+1:t), νt−k)

t− k

}]
. (1)

3 Computational Methods

We now consider a collection of numerical (SMC) techniques, first to approximate the like-

lihood (1) for one θ and then a method to sample from the marginal posterior

π(θ|Gt) ∝ Lθ(Gt)p(θ)

which uses these SMC approaches.

3.1 Importance Sampling

The underlying idea of Wiuf et al. (2006) is to introduce a probability qθ0(νt0+1:t) on Vt0+1:t,

with θ0 ∈ Θ, such that qθ0(νt0+1:t) > 0 for each νt0+1:t ∈ Vt0+1:t. Note that θ0 is termed
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a driving value and can help one approximate Lθ(Gt) for many θ; see Griffiths & Tavaré

(1994). The proposal qθ0 is decomposed as

qθ0(νt0+1:t) =

t−t0−1∏
k=0

qθ0(νt−k|νt−k+1:t)

and hence we have the change of measure formula

Lθ(Gt) = Eqθ0

[ t−t0−1∏
k=0

{ IWk(νt−k+1:t)(νt−k)ωθ(δ
k(Gt, νt−k+1:t), νt−k)

(t− k)qθ0(νt−k|νt−k+1:t)

}]
where Eqθ0 is the expectation w.r.t. qθ0(νt0+1:t). The estimate of the likelihood is then:

1

N

N∑
i=1

t−t0−1∏
k=0

{ IWk(νi
t−k+1:t)

(νit−k)ωθ(δ
k(Gt, ν

i
t−k+1:t), ν

i
t−k)

(t− k)qθ0(νit−k|νit−k+1:t)

}
(2)

with {νit0+1:t}1≤i≤N sampled i.i.d. from the probability qθ0 .

The idea is that given Gt and the ordered list νt−k:t one can easily determine the graph

that is obtained after removing k+ 1 vertices; so one can sample the vertices. A clear point,

not mentioned by Wiuf et al. (2006), is that the conditionally optimal importance sampling

proposal (that is minimizing the variance of the importance weights, given νt−k+1:t) is

qθ(νt−k|νt−k+1:t) ∝ IWk(νt−k+1:t)(νt−k)ωθ(δ
k(Gt, νt−k+1:t), νt−k) (3)

although, the authors use this proposal in their simulations. As noted in the introduction,

estimates such as (2) often have a relative variance that is O(κt−t0), κ > 1. The explosion

of variance is due to the phenomenon of weight degeneracy (see Doucet & Johansen (2011)

and the references therein), which is essentially that the variance of the product term in (2)

generally increases as the number of product terms increases. This issue is clearly undesirable

for any problem, even when t is small; see Whiteley et al. (2012) for some discussion.

The representation (1) also allows one to consider a single importance distribution on the

space of permutations, associated to the removal of vertices, as adopted in Guetz & Holmes

(2011). The latter authors identify a clever proposal based upon models on permutations.

However, such a technique is likely to fail as t−t0 grows; such importance sampling methods

are often subject to the curse of dimensionality and have a cost of O(κt−t0) for some κ > 1

- see Bickel et al. (2008). One idea that can get around this problem is the work in Del

Moral et al. (2006) (see Beskos et al. (2011)) as implemented by Guetz & Holmes (2011),

but needs to store N samples of t − t0 vertices in parallel; this is more expensive than the

methods to be discussed below.
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3.2 Sequential Monte Carlo

A potential way to deal with the exponential order of the relative variance of IS, as used for

example for hidden Markov models Doucet & Johansen (2011), is to adopt SMC methods.

This procedure simulates a collection of particles in parallel, sequentially, and the particles

evolve via sampling and resampling. The algorithm is designed to approximate a sequence

of probabilities of increasing dimension.

Define

wk(νt−k:t) =
IWk(νt−k+1:t)(νt−k)ωθ(δ

k(Gt, νt−k+1:t), νt−k)

(t− k)qθ0(νt−k|νt−k+1:t)
,

then, consider the algorithm:

1. For i ∈ {1, . . . , N} sample νit from qθ0(·) and calculate w0(νit). Set k = 0.

2. Normalize the weights w̄ik = wk(νit−k:t)/
∑N
j=1 wk(νjt−k:t) and resample the particles;

denote them (ν̃it−k:t)1≤i≤N . Set k = k + 1; if k = t− t0 stop.

3. For i ∈ {1, . . . , N} sample νit−k|ν̃it−k+1:t from qθ0(·|ν̃it−k+1:t) and calculate wk(νit−k, ν̃
i
t−k+1:t).

Denote the particles (νit−k:t)1≤i≤N and return to 2.

The estimate of the likelihood (computed after steps 1. and 3.) is

LNθ (Gt) =

t−t0−1∏
k=0

[
1

N

N∑
i=1

wk(νit−k:t)

]
(4)

and is unbiased for any fixed N (Del Moral, 2004). We remark that the algorithm provides

consistent estimates as N grows; see Del Moral (2004) for details. We have the following

result, whose proof is given in the appendix. The notations and assumptions are also fully

described in the appendix. The expectation below, is w.r.t. the process associated to SMC

algorithm just described.

Proposition 3.1. Assume (A1). Then if N > ξ(t− t0)
∑t−t0−1
k=0 ξk(t− t0), we have

E
[(LNθ (Gt)

Lθ(Gt)
− 1
)2]
≤ 4ξ(t− t0)

N

t−t0−1∑
k=0

ξk(t− t0)

where LNθ (Gt) is as (4).

Remark 3.1. The constants ξ(t − t0), ξk(t − t0) depend upon the number of removable

nodes. In the case that q(·|νt−k+1:t) is uniform on the number of removable nodes, one can

show that ξk(t − t0) = t − t0 − k and that ξ(t − t0) ≤ t − t0; so if N > (t − t0)3, then the

relative variance of the likelihood estimate grows at most as (t − t0)3. This is opposed to

the exponential order for IS. In general, one does not expect the relative variance to grow

linearly, as is the case for many other models; we explain this below.
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3.2.1 Some Remarks

The SMC algorithm targets the sequence of probabilities:

πk(νt−k:t) ∝
k∏
j=0

{ IWj(νt−j+1:t)(νt−j)ωθ(δ
k(Gt, νt−j+1:t), νt−j)

(t− j)

}
.

If one uses the optimal proposal (3), then importance weights are proportional to∑
νt−k

πk(νt−k:t)

πk(νt−k+1:t)
.

The algorithm may not perform well if there is a significant discrepancy between these two

probabilities. In practice one does not expect this to be the case, but this issue could be

dealt with by the approach in Doucet et al. (2006). We note that at time k, one does not

need to store N trajectories of length k (the reasons for which are rather technical); see

Jacob et al. (2013) for details.

The resampling mechanism in point 2., is the operation of sampling the particles with

replacement according the current collection of weights. There are a wide variety of tech-

niques to perform resampling and we will use the stratified resampling approach; see Doucet

& Johansen (2011) and the references therein for details. Resampling generally deals quite

well with the weight degeneracy problem, but induces another problem, called path degen-

eracy. When resampling at every time step, at given time k reasonably large (relative to

t− t0) the nodes that have been removed at the start (i.e. say νt−s:t, for some s) are almost

the same for each particle; this is because one never changes these values and this is the

path-degeneracy problem (see Doucet & Johansen (2011) for further details). This is why

we do not expect that the result in Proposition 3.1 to lead to a linear growth of the relative

variance. However, as the algorithm evolves on a finite state-space the variance of the wk

can be well-behaved. In this scenario, the dynamic resampling approach (e.g. Del Moral

et al. (2012)) will partially alleviate the path degeneracy issue, which should not be overly

troublesome for this problem. Here one will only resample when the weights are sufficiently

variable; one way to meaure this is via the effective sample size (ESS):

1∑N
i=1 w̄

i
k

.

This is a number between 1 and N and generally resampling occurs if ESS < N/2. The ESS

is simply an indication of the perfomance of the algorithm and is not a fool-proof measure.

For example, all of the samples may be in equally ‘bad’ parts of the state-space, leading to

an ESS which is very high, but here the algorithm is not performing well. This issue will
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also manifest itself in the context of network models, because, initially and close to reaching

the irreducible network, many samples could be similar. As an additional performance

indicator, we consider the number of unique particles, which can help to determine how

well the SMC algorithm is performing. Throughout the article, we use the SMC algorithm

with dynamic resampling (unless otherwise stated), and we remark that the estimate of the

normalizing constant is still unbiased. This estimate is as follows; suppose one resamples s

times at times r1, . . . , rs and let r0 + 1 = 0 and rs+1 = t− t0− 1, then we have the estimate

LNθ (Gt) =

s∏
k=0

1

N

N∑
i=1

rk+1∏
j=rk+1

wj(ν
i
t−j:t).

As one expects the algorithm with dynamic resampling to perform better than resampling at

each time-point; the relative variance of this estimate should not be worse than O((t− t0)3)

as discussed above.

3.3 Discrete Particle Filter

As mentioned, the simulation (either IS or SMC) will evolve on a finite state-space. The

SMC method should deal with the exponential order of the relative variance of the likelihood

estimate, but does not necessarily exploit the nature of the state-space; one may want to

consider an alternative approach. In this scenario, one can use the discrete particle filter

modified to the current situation. The algorithm is now described.

1. Set S0 = R(Gt), for each νt ∈ S0 compute

w0(νt) =
1

t
ωθ(Gt, νt) w̄0(νt) =

w0(νt)∑
νt∈S0

w0(νt)
.

2. At times 1 ≤ k ≤ t− t0 − 1

(a) If Card(Sk−1) ≤ N , set S′k−1 = Sk−1, Ck−1 = ∞ and go to (b). Otherwise,

perform the resampling step described below, which returns S′k−1 and Ck−1.

(b) Set Sk = {νt−k:t : νt−k+1:t ∈ S′k−1, νt−k ∈Wk(νt−k+1:t)}

(c) For each νt−k:t ∈ Sk compute

wk(νt−k:t) =
1

t− k
ωθ(δ

k(Gt, νt−k+1:t), νt−k)
wk−1(νt−k+1:t)

1 ∧ Ck−1wk−1(νt−k+1:t)

w̄k(νt−k:t) =
wk(νt−k:t)∑

νt−k:t∈Sk
wk(νt−k:t)

.

In part 2 (a), we have the following procedure.
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• Set Ck−1 to be the unique solution of∑
νt−k+1:t∈Sk−1

1 ∧ Ck−1wk−1(νt−k+1:t) = N.

• Keep the Lk−1, νt−k+1:t whose weights are greater than 1/Ck−1. For the remaining

Card(Sk−1)− Lk−1 particles perform the following stratified resampling scheme.

• Normalize the weights w̄k−1(νt−k+1:t) of the remaining |Sk−1| −Lk−1 and label them

to obtain the normalized weights ŵk−1(νit−k+1:t), i ∈ {1, . . . ,Card(Sk−1)− Lk−1}.

• Construct the CDF: for i ∈ {1, . . . ,Card(Sk−1)− Lk−1}

Qk−1(i) :=

i∑
j=1

ŵk−1(νjt−k+1:t), Qk−1(i) := 0.

• Sample U1 uniformly on [0, 1/(N − Lk−1)] and set Uj = U1 + (j − 1)/(N − Ln−1),

j ∈ {2, . . . , N − Lk−1}

• For i ∈ {1, . . . ,Card(Sk−1)− Lk−1}, if there exist a j ∈ {1, . . . , N − Lk−1} such that

Qk−1(i− 1) < Uj ≤ Qk−1(i), then νit−k+1:t survives.

• Set S′k−1 to be the set of surviving particles from the resampling and the Lk−1 samples

that were maintained.

The only stochasticity in the algorithm is brought about by the resampling mechanism.

The finite state-space of the samples is exploited by deterministically diversifying the par-

ticles, forcing them to explore each part of the state-space. This algorithm differs slightly

from the standard DPF in that the support for a given particle may be different than an-

other. It is exact, if Card(St−t0−2) ≤ N , but this is unlikely to be possible in practice; as

we noted earlier the exact calculation is worse than exponential order in t − t0. One can

show, using the same reasoning as Whiteley et al. (2010) that the estimate:

LNθ (Gt) =

t−t0−1∏
k=0

∑
νt−k:t∈Sk

wk(νt−k:t)

is unbiased for any fixed N . In general, for a large network, this algorithm may be very

expensive to implement initially. However, it can be used, once the network is sufficiently

small (e.g. half way through an SMC algorithm). The algorithm has been shown to be

rather efficient relative to other methods in the context of switching state-space models.

We expect that this method will work rather well for moderate size networks and perhaps

much better than SMC; thus we do not analyze the relative variance of the estimate of the

likelihood as this is expected to be at least as good as SMC.
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3.4 Parameter Estimation

In the discussion above, we have reviewed and developed methods for likelihood estimation,

for one fixed θ, we will now show how these approaches can be used to perform Bayesian

parameter estimation. Let p(θ) be a proper prior density on Θ, then Bayesian parameter

inference is concerned with the posterior π(θ|Gt) ∝ Lθ(Gt)p(θ). As we have remarked, the

direct calculation of Lθ(Gt) is not possible, so for example, if one wanted to perform Monte

Carlo estimation associated to the posterior (which is often the only amenable way to do

inference) then one could not implement standard IS or MCMC algorithms, which will

require the evaluation of Lθ(Gt).

A recently evolving MCMC methodology in computational statistics turns out to be

rather useful for the class of problems of interest. These ideas are exact approximations

of idealized MCMC algorithms; in our context, the ideal algorithm would be simply to

sample from the posterior using e.g. Metropolis-Hastings or the Gibbs sampler. Since either

procedure would require us to evaluate Lθ(Gt), they are idealized algorithms. However,

as noted in Andrieu & Roberts (2009), one need only know the target probability up-to

an un-normalized, unbiased estimate. That is, given some auxilliary variable u ∈ U with

probability density fθ(u), (with associated probability measure Fθ(·)) if one has, for any

fixed θ ∈ Θ:

π(θ|Gt) ∝
(∫

U

Lθ(Gt, u)fθ(u)du
)
p(θ)

then one can construct an ergodic MCMC algorithm with target probability

π(θ, u|Gt) ∝ Lθ(Gt, u)fθ(u)p(θ)

and still obtain a Monte Carlo approximation of the posterior π(θ|Gt).

For each of the algorithms in Sections 3.2 and 3.3, we have remarked that the estimate

of the likelihood is unbiased. Thus, for example taking the SMC algorithm and denoting

all the simulated random variables by u, one could sample from the target π(θ, u|Gt) ∝

LNθ (Gt, u)fθ(u)p(θ), where the auxilliary variables are generated from the SMC algorithm

and LNθ (Gt, u) is the associated likelihood estimate. This is the idea which has been devel-

oped in Andrieu et al. (2010) and Whiteley et al. (2010) (for SMC and the DPF respectively).

The simplified particle marginal Metropolis-Hastings algorithm that we propose is as fol-

lows, where fθ(·) could be associated to either the SMC algorithm in Section 3.2 or DPF

algorithm in Section 3.3. Below q(θ′|θ) is a positive conditional probability density (with

probability measure Q(·|θ)).
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1. Sample θ from the prior, U from Fθ(·) and compute the likelihood estimate LNθ (Gt, u).

Set θ0 = θ and i = 1.

2. Sample θ′|θi−1 ∼ Q(·|θi−1) and U from Fθ′(·) and compute the likelihood estimate

LNθ′ (Gt, u
′). Set θi = θ′ with probability:

1 ∧ LNθ′ (Gt, u
′)p(θ′)

LNθi−1(Gt, u)p(θi−1)
× q(θi−1|θ′)
q(θ′|θi−1)

otherwise set θi = θi−1. Set i = i+ 1 and return to the start of 2.

Under mild conditions, the above algorithm is ergodic; see Andrieu et al. (2010) or Whiteley

et al. (2010) for details. One major point is that N is a user-set parameter and this is

intrinsically linked to the (relative) variance of the likelihood estimator, which is important

in determining the (good) performance of this algorithm; see Andrieu et al. (2010). For

network models, according to Proposition 3.1, one should take N = O((t−t0)3) (see Remark

3.1). See also Doucet et al. (2012) for results on choosing N .

4 Numerical Illustrations

Throughout this Section all code was written in MATLAB.

4.1 Simulation Results for a Small Network

In this Section, we will investigate the methods in Section 3 and in particular in terms of

their accuracy along with some of the phenomona mentioned above. With regards to the

data, since the true likelihood is only computable when the size of the network is small, for

our purpose, we use the graph in Fig. 1 in Wiuf et al. (2006). It is an example of a graph

generated with parameter θ = (1, 0.66, 0.33, 0) under the DA model. It has 10 nodes where

most nodes are removable, at the end, this graph can be reduced to a single node. We have

five subsections in this part, Sections 4.1.1-4.1.3 simply display results of the IS method,

the SMC method and the DPF method respectively; Section 4.1.4 deals with the relative

variance between the true likelihood and each of estimates obtained by the above three

methods; then Section 4.1.5 compares the results of IS, SMC and DPF method obtained in

approximately the same computing time. Section 4.1.6 investigates the PMCMC algorithms

discussed in Section 3.4.
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4.1.1 Importance Sampling

We apply the IS method of Section 3.1 to our network model. Here and in the following

subsections, we fix three parameters in θ = (π, p, q, r) except p to the true values, i.e., π = 1,

q = 0.33, r = 0, and p ∈ {0.05, 0.15, . . . , 0.85}. We set the driving value θ0 = (1, 0.66, 0.33, 0)

except in Section 4.1.5, where we set θ0 = θ. Then we estimate the likelihood under these

different nine θ to obtain the estimated likelihood curve with respect to parameter p. We

run IS 30 times with both N ∈ {1000, 10000} respectively, then use the average to be the

estimator, and construct a confidence interval. In order to demonstrate the issue about the

relative variance of the IS method, we calculate the value of ESS at the end of a single run

for each parameter p ∈ {0.05, 0.15, . . . , 0.85}, with N ∈ {100, 1000, 10000}. The results are

given in Figure 1.

From Figure 1, plots (a) and (b) display the similarity of these two estimated curves:

they both approximate the true likelihood curve well, but not exactly. The main difference

in the plots are the expected improved accuracy and reduced variance as N grows. Plot

(c) shows that for each N ∈ {100, 1000, 1000}, the values of the ESS are quite low. As a

result, the variance of the un-normalized weights is quite large; this occurs due to the weight

degeneracy problem.

4.1.2 Sequential Monte Carlo Method

We now consider the SMC method to deal with the weight degeneracy. Similarly to the

previous subsection, we set π = 1, q = 0.33, r = 0, and let p ∈ {0.05, 0.15, . . . , 0.85}. In

order to keep consistency and potentially maximize the convergence rate, we also set the

driving value θ0 equal to (1, 0.66, 0.33, 0). After some experiments, we find that the strati-

fied resampling scheme (see e.g. Doucet & Johansen (2011)) outperforms other resampling

schemes which is why it is adopted. We consider two resampling schemes of both dynami-

cally resampling and resampling at each time, we run SMC 30 times with N ∈ {1000, 10000}

and also construct a confidence interval via the repeats. The results are in Figures 2 and 3.

From plots (a) and (b) in Figures 2 and 3 the performance of the estimation of the

likelihood curve improves as N grows, as one would expect. It is also clear that dynamically

resampling is more accurate; again this is expected as one does not resample ‘too often’

removing promising particles and exacerbating the path degeneracy problem. To investigate

the dynamically resampling SMC algorithm, we consider the ESS and the number of unique

particles, for a typical run of the algorithm, with N ∈ {100, 1000, 1000} in Figure 3.
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(a) N = 1000
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(b) N = 10000
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Figure 1: Simulation results of IS algorithm: figures (a) and (b) are plots of estimated likelihood

curve of 30 runs under N = 1000 and N = 10000 respectively, the red solid line with stars is the

true likelihood the blue solid line with stars is the mean of 30 estimates, and the other two blue

dashed lines are x̄− 2s and x̄+ 2s (s is the standard deviation accross the runs) respectively; figure

(c) are plots of ESS at the end of a single run for each p under N = 100, N = 1000 and N = 10000

(from upper to bottom).
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For plot (c) of Figure 3, firstly, for the results of UN , with N ∈ {100, 1000, 10000},

the value of UN tends to approach the sample size at the last time. This means that SMC

method works very well in this example, there is little path degeneracy, so that the results of

the SMC are reliable. Note at the first few times, the value of UN is quite low since we have

to choose 100, 1000, or 10000 at time one from 10, or 9, or an even smaller number of nodes.

Secondly, for the results of ESS, almost at every time, the ESS is above the resampling

threshold of N/2. This shows that the stratified resampling (dynamically) SMC can help to

deal with the variance of the weights, which was evident in the IS example. This also means

that this approach can help to deal with the relative variance issue encountered by IS, and

this will be verified in section 4.1.4. The results shown in this figure are quite satisfactory,

as one would hope for in such a simple example.
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(a) N = 1000, Resampling each time.
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(b) N = 10000, Resampling each time.
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(c) N = 1000
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(d) N = 10000

Figure 2: Simulation results of the stratified resampling at every time SMC algorithm and dynam-

ically resampling algorithm (bottom row). The estimates are the average across 30 runs with the

upper and lower lines the ± 2 standard deviations, across the runs.

4.1.3 The Discrete Particle Filter Method

We begin by noting that the DPF method does not need a proposal density, whilst in the

previous IS and SMC sections, the proposal density is needed and represented by the driving
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Figure 3: Simulation results of the stratified resampling dynamically SMC algorithm: plots of the

average of 30 runs of ESS and UN at every time with θ = (1, 0.55, 0.33, 0) and θ0 = (1, 0.66, 0.33, 0),

under N = 100, N = 1000 and N = 10000 (from upper to bottom).

value. For a fair comparison, in the latter section 4.1.5, we will give simulation results of

IS and SMC with dynamical stratified resampling when θ = θ0. In this subsection, we

only need to set π = 1, q = 0.33, r = 0, and p ∈ {0.05, 0.15, . . . , 0.85}. Then we run the

DPF algorithm 30 times with N ∈ {100, 1000, 10000} respectively to obtain the estimated

likelihood curve and the confidence interval. Results are shown in Figure 4.

From the three plots in Figure 4 as N grows larger, the estimated likelihood curve tends

to be closer to the true likelihood and the confidence interval narrower (versus the other

methods). While the accuracy of the estimate is quite satisfactory, the estimated likelihood

curve when N = 1000 is almost the same as the true likelihood curve, and the confidence

interval is very narrow. Note that the exact calculation is O((t− t0)2t−t0) (which is of order

of about 4600) so one has almost the exact calculation when N = 10000. This is better

than the previously mentioned methods, but we are yet to account for the computational

time element.

4.1.4 Relative Variance

In this subsection, we consider the relative variances of the likelihood estimate, for each of

the methods implemented above. We focus on comparing relative variances as the size of

the network changes. We use the DA model to generate different sizes of network models,

from size 5 up to size 13. Then for each network model, we use the Monte Carlo methods to
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(a) N = 100
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(b) N = 1000
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(c) N = 10000

Figure 4: Simulation results of DPF algorithm: figures (a)-(c) are plots of estimated likelihood

curve of 30 runs under N = 100, 1000, 10000 respectively, the red solid line with stars is the true

likelihood the blue solid (or dashed) line with stars is the mean of 30 estimates, and the other two

blue (or green) dashed lines are x̄− 2s and x̄+ 2s respectively.
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SIZE IS STRA DPF

5 0.0003 0.0002 0.0000

6 0.0027 0.0030 0.0000

7 0.0043 0.0064 0.0000

8 0.0158 0.0142 0.0000

9 0.0149 0.0136 0.0010

10 0.0419 0.0128 0.0036

11 0.1512 0.0364 0.0084

12 0.5659 0.1115 0.0079

13 1.4224 0.3022 0.0657

Table 1: Relative variance of the estimates of the above three methods w.r.t the true likelihood:

here the results refer to the size of network from 5 up to 13, with θ = (1, 0.55, 0.33, 0), θ0 =

(1, 0.66, 0.33, 0) and N = 1000.

estimate the relative variance using 30 repeats and 1000 particles with θ = (1, 0.55, 0.33, 0),

θ0 = (1, 0.66, 0.33, 0) to obtain estimators. We remark that we can also obtain the true

likelihood. The results are displayed in Table 1 and the conclusions seem to be consistent

across different parameter values.

From this table, basically, for all of these three methods, as the size of network model

grows, the relative variance between the estimated likelihood and the true likelihood goes

larger; this is unsurprising as this is to be expected. Amongst these three methods, the DPF

method has the smallest value of the relative variance and is significantly more so. This tells

us that the DPF algorithm provides us more accurate and reproducible estimators, at least

for this example. As for the other two methods, for the size of network model below 10,

there are tiny differences, for the size of network model beyond 10, the stratified dynamically

resampling SMC gives better results than the IS method. This latter result is consistent

with the remarks in Section 3.1 and Section 3.2 and also the results in Section 4.1.1 and

Section 4.1.2.

4.1.5 CPU Time

Here we are mainly interested in comparing results of each of the methods obtained in

approximately the same (wall-clock) computation time. As we mentioned in the previous

subsection that the DPF method does not use a driving value so in order to obtain fair
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Figure 5: Plot of CPU time comparison: these are results of 30 runs under IS, SMC and DPF

algorithms. N = 1000 for IS and DPF algorithms; N = 550 for SMC algorithm. The blue solid

line with stars is the true likelihoood, the purple, red and light blue dashed lines with dots are

the mean of 30 SMC, IS and DPF estimates respectively, and the other two purple dashed lines,

two red dashed lines and two light blue dashed lines are x̄ − 2s and x̄ + 2s of SMC, IS and DPF

estimates respectively.

results we set θ = θ0 for the IS and SMC approaches.

After a few experiments, we find that when we set N = 1000 for both IS and DPF

algorithms, and set N = 550 for the SMC algorithm, then run 30 times for all of them, the

run times are 1274.67 seconds (IS), 1289.31 seconds(SMC) and 1272.13 seconds (DPF). The

estimated likelihood curves and confidence intervals are displayed in Figure 5.

In Figure 5, with regards to the estimated likelihood curves, the estimated likelihood

curve obtained by the DPF method is closest to the true likelihood curve, and the estimated

likelihood curve under the SMC method seems to a little closer to the true likelihood curve

than the estimated likelihood curve under the IS method. The confidence interval under the

DPF method is the narrowest, and the confidence interval under the SMC method is also a

little narrower than the confidence interval for the IS method. Thus, we can conclude that

for the given computation time and this specific example, the DPF method can provide us

the best estimator, and the SMC method is the second, then the IS method is the last.

4.1.6 Simulation Results for PMCMC

We will now test the two PMCMC algorithms (i.e. with SMC and the DPF - recall the SMC

will use dynamic resampling), we will compare to samples drawn exactly (via rejection sam-

pling) from the posterior density with those samples generated by the PMCMC algorithms.
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(b) PMCMC with SMC
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(c) PMCMC with DPF

Figure 6: Auto-correlation Plots for three MCMC Algorithms (small network).

The latter can be achieved when the observed network is small and we generate such a data-

set. It is also possible to run the idealized MCMC algorithm that just samples θ, which is

the best that either PMCMC algorithm can do; we also consider this in our simulations.

We generate a network model with 8 nodes and p = 0.66. We set only p unknown with a

uniform prior on [0, 1]. We use a proposal that is a random walk on the logit scale. The

results can be found in Figures 6-7.

In Figures 6-7, we can observe that the two PMCMC algorithms perform similiarly to

the marginal MCMC. In addition, they produce solutions consistent with i.i.d. sampling.

This is example is quite simple, but illustrates that such methodology can be useful for

network models. A more challenging example can be found in the next Section.

4.2 A Larger Network

Here we consider the application of the above methods for larger sized data. We apply these

methods to a graph with 100 nodes which is generated by the DA model with parameter

θ = (1, 0.66, 0.33, 0). 99 nodes are removable.
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(c) PMCMC with SMC
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(d) PMCMC with DPF

Figure 7: Density Plots for IID sampling and three MCMC Algorithms.

4.2.1 Results for the Likelihood Approximation

We now apply the three methods to approximate the likelihood of the graph. We set

θ0 = θ = (1, 0.66, 0.33, 0) in the IS and SMC algorithms.

Firstly, the results of the IS method are displayed in Figure 8; we considerN ∈ {100, 1000}.

From Figure 8, we see that for some parameters p, the corresponding log-likelihood is not

properly estimated as the importance weights are too variable and the values of the log-

weights become very small. This is supported by examining the ESS values, which for

either value of N never exceeds 7 and is often 1 (the results are not displayed). The overall

wall-clock computation time was 3578.41 and 40374.96 seconds for N = 100 and N = 1000.

Secondly, Figures 9-10 display results of the SMC method (dynamic resampling), we

consider again N ∈ {100, 1000}. Figure 9 shows that the variance issues of the IS method

is dealt with (here N = 1000, but similar results are obtained when N = 100). Figure 10

displays the values of ESS and UN. In general the algorithm performs reasonably well with

regards to these criteria, with a small issue (for this run) when there are around 25 removable

nodes left. At this stage it appear that the path degeneracy effect is taking hold, but the

algorithm does not collapse and the results are reasonably reliable (recall that Proposition
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Figure 8: Estimated loglikelihood curve of a single IS run under N = 100 and N = 1000. This is

for the larger network.

3.1 implies one would want N to be close to 993, so the performance seems quite good given

this). The overall computation time was 31932.43 and 347146.19 seconds when N = 100

and N = 1000. Whilst this is substantially larger than IS, the case when N = 100 is a

similar time to IS when N = 1000, but the former results are quite acceptable, whereas this

is not the case for the latter.

Lastly, we also apply the DPF method; the results when N = 100 is given in Figure

11. The results are similar to the results of the SMC method, also quite satisfactory. The

overall computation time was 414233.84 seconds, but in contrast to the SMC algorithm, all

the particles before resampling are unique and so one would expect better results in general.

The computational time when N = 100 is over 10 times that number when N = 100 for the

SMC.

4.2.2 Results for the PMCMC algorithm

We now consider parameter inference for p, when it has a uniform prior on [0, 1]. We run two

PMCMC algorithms, one which uses SMC and the other which uses a combination of the

DPF and SMC (as discussed in Section 3.3). The reason for using the combination approach

is due to the computation time of applying the DPF in each iteration, which was relatively

too long to just using SMC. We display results (for a typical run) for both procedures in

Figure 12; we ran 5000 iterations with a 500 iteration burn-in and display every fifth sample.

We use N = 100 for the SMC with this value adjusted for the combination (of the DPF and

SMC) to allow roughly the same computation time, which was about 1 week.
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Figure 9: Estimated loglikelihood curve of 50 SMC runs under N = 1000. The dashed lines are

x̄− 2s and x̄+ 2s respectively (across the runs). This is for the larger network.
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Figure 10: Plots of ESS and UN for a single SMC run at every time, with θ = (1, 0.55, 0.33, 0) and

θ0 = (1, 0.66, 0.33, 0). This is for the larger network.
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Figure 11: Estimated loglikelihood curve of 50 DPF runs under N = 100. The dashed lines are

x̄− 2s and x̄+ 2s respectively (across the runs). This is for the larger network.

In Figure 12 we can see that the SMC + DPF combination appears to mix marginally

better than the SMC when the computational time is close to the same. Given the previous

empirical results in this article, this is to be expected. The results appear to be quite

reliable, in the sense that we have run multiple independent chains with similar out-puts.

However, we must take into account that the parameter space is very low-dimensional and

the computation time has been quite long.

5 Summary

In this article we have considered computational methods for network models. We considered

two extensions to IS for estimating the likelihood (for a given parameter) for a class of

network models; namely SMC and the DPF. It was then shown how these algorithms can

be embedded into MCMC to perform paramater inference. As the relative variance of the IS

estimate of the likelihood typically grows at an exponential rate in the number of removable

nodes, this was the main motivation for using the two alternative approaches. We have

shown that the relative variance of the SMC method will only grow at a polynomial rate

in the number removable nodes. We then illustrated these methods on small to medium

sized networks and showed that the DPF and DPF inside MCMC seemed to perform better

versus the SMC based versions. In general, however, the computational time was much

higher and this value was quite high for each of our algorithms.

Future work of interest is as follows. We have shown that the SMC/MCMC methods
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(d) DPF +SMC

Figure 12: PMCMC plots. 5000 iterations are run with a 500 iteration burn-in and we display

every fifth sample. This is for the larger network.
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of this article seem to work well for small to medium size networks. However, for larger

networks, both memory and computational demands increase which makes it less attractive

to implement these exact computational methods. Whilst there are computational tricks to

help implementation Jacob et al. (2013) or Lee et al. (2010) it may be preferable to make

principled statistical approximations of the models (for example as in Jasra et al. (2011)) to

reduce the computational burdens. This is something that we are currently investigating.
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A Relative Variance Result

In this appendix, we omit all reference to the parameter θ and we assume that our as-

sumptions are global w.r.t θ, which will typically imply that Θ is compact. Recall that the

algorithm resamples at each time and we will assume that this is using the multinomial

method. The proof of our result relies heavily on the work in Cérou et al. (2011) and in

order to easily verify our proof, we will use the Feynman-Kac notations in that article. We

introduce the Markov kernel Mk : Vt−k+1:t → P(Vt−k:t), 1 ≤ k ≤ t − t0 − 1, where P(V)

are the collection of probabilities on a set V. The Markov kernel is, for xk−1 ∈ Vt−k+1:t,

xk ∈ Vt−k:t, xk = (x̃k, x
′
k) ∈ Vt−k+1:t ×Wt−k(x̃k)

Mk(xk−1, xk) = δxk−1
(x̃k)q(x′k|x̃k)

where the conditional probability q is as described in the algorithm of Section 3.2 (always

assumed to be positive, when x′k ∈ Wk(x̃k)). Further we use Gk : Vt−k:t → R+ 0 ≤ k ≤

t − t0 − 1, to denote the importance weights wk(·) in Section 3.2. We make the following

hypotheses. Note that if x ∈ Vt−k+1:t and one makes a transition via Mk, then the produced

state is y = (x, y′), with y′ ∈Wk(x).

(A1) For t− t0 fixed, there exist a 0 < ξ(t− t0) < +∞ such that

sup
0≤k≤t−t0−1

sup
(x,y)∈V2

t−k:t

Gk(x)

Gk(y)
≤ ξ(t− t0).

For each 1 ≤ k ≤ t− t0− 1, and t− t0 fixed there exists a ξk(t− t0) ∈ [1,∞) such that

for any (x, u) ∈ V2
t−k+1:t, (y′, v′) ∈Wk(x)×Wk(u), (y, v) = ((x, y′), (u, v′))

Mk(x, y) ≤ ξk(t− t0)Mk(u, v).
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The assumption simply says that the importance weights are lower-bounded away from zero

and upper-bounded, and that these bounds are uniform in the time parameter; the bound

can depend upon the number of removable nodes, which happens in practice. In addition,

the assumption on Mk is quite reasonable as the algorithm evolves upon a finite state-space.

We note that the constant ξk(t−t0) can depend upon the number of removable nodes, which,

again, one might expect in practice. We will use the notation Qk(x, y) = Gk−1(x)Mk(x, y),

with 1 ≤ k ≤ t− t0 − 1 and use the semi-group notation

Qk,n(xk, xn) =
∑

xk+1,...,xn−1

Qk+1(xk, xk+1) . . . Qn(xn−1, xn), k < n.

Qk,k is the identity. Let ϕ : Vt−n:t → R be any bounded function, we use the notation

Qk,n(ϕ)(xk) =
∑
xn
Qk,n(xk, xn)ϕ(xn).

Proof of Proposition 3.1. We simply need to show that for k < n,

sup
(x,y)∈V2

t−k:t

Qk,n(1)(x)

Qk,n(1)(y)
≤ ξ(t− t0)ξk+1(t− t0)

the proof will then follow directly from Theorem 5.1 and Corollary 5.2 of Cérou et al. (2011).

Noting thatQk,n(ϕ)(xk) = Qk+1(Qk+2,n(ϕ))(xk), it will suffice to show that, for any positive

and bounded function ϕ : Vt−k−1:t → R+, we have

sup
(x,y)∈V2

t−k:t

Qk(ϕ)(x)

Qk(ϕ)(y)
≤ ξ(t− t0)ξk+1(t− t0). (5)

We note that by (A1), it follows that for any (x, y) ∈ V2
t−k:t

Qk(ϕ)(x)

Qk(ϕ)(y)
≤ ξ(t− t0)

Mk+1(ϕ)(x)

Mk+1(ϕ)(y)
. (6)

So, now consider for any x ∈ Vt−k

Mk+1(ϕ)(x) =
∑

u∈Vt−k−1:t

Mk+1(x, u)ϕ(u)

=
∑

u∈Vt−k−1:t

Mk+1(x, u)I{x}×Wk+1(x)(u)ϕ(u)

≤ ξk+1(t− t0)Mk+1(y, v)I{y}×Wk+1(y)(v)
∑

u∈Vt−k−1:t

I{x}×Wk+1(x)(u)ϕ(u).

Then on multiplying both sides of the inequality by ϕ(v) and summing w.r.t. v, we have

Mk+1(ϕ)(x)
∑

v∈Vt−k−1:t

ϕ(v) ≤ ξk+1(t− t0)

( ∑
v∈Vt−k−1:t

Mk+1(y, v)I{y}×Wk+1(y)(v)ϕ(v)

)
×

∑
u∈Vt−k−1:t

I{x}×Wk+1(x)(u)ϕ(u)

≤ ξk+1(t− t0)Mk+1(ϕ)(y)
∑

u∈Vt−k−1:t

ϕ(u).
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Hence we shown that for any (x, y) ∈ V2
t−k:t

Mk+1(ϕ)(x)

Mk+1(ϕ)(y)
≤ ξk+1(t− t0).

On noting (6), (5) and the above arguments, the proof is completed.
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[13] Griffiths, R. & Tavaré, S. (1994). Simulating probability distributions in the coa-

lescent. Theo. Pop. Biol., 46, 131–159.

[14] Guetz, A. N. & Holmes, S. P. (2011). Adaptive importance sampling for network

growth models. Ann. Oper. Res., 189, 187–203.

[15] Jacob, P., Murray, L. & Rubenthaler, S. (2013). How to efficiently keep all the

trajectories in a particle filter. Technical Report, NUS.

[16] Jasra, A., De Iorio, M. & Chadeau-Hyam, M. (2011). The time machine: a simu-

lation approach for stochastic trees. Proc. Roy. Soc A, 467, 2350–2368.

[17] Lee, A., Yau, C., Giles, M., Doucet, A. & Holmes, C. C. (2010). On the utility of

graphics cards to perform massively parallel implementation of advanced Monte Carlo

methods. J. Comp. Graph. Statist., 19, 769–789.

[18] Robert, C. P. & Casella, G. (2004). Monte Carlo Statistical Methods. Second edition,

Springer:New York.

[19] Whiteley, N., Andrieu, C, & Doucet, A. (2010). Efficient Bayesian inference for

switching state-space models using discrete particle Markov chain Monte Carlo. Tech-

nical Report, University of Bristol.

[20] Whiteley, N., Kantas, N, & Jasra, A. (2012). Linear variance bounds for particle

approximations of time homogeneous Feynman-Kac formulae. Stoch. Proc. Appl., 122,

1840–1865.

[21] Wiuf, C., Brameier, M., Hagberg, O., & Stumpf, M. (2006). A likelihood approach

to the analysis of network data. PNAS, 103, 7566–7570.

29


