
Research Articles

Assembling Single-Cell Genomes

and Mini-Metagenomes From Chimeric MDA Products

SERGEY NURK,1,* ANTON BANKEVICH,1,* DMITRY ANTIPOV,1 ALEXEY A. GUREVICH,1

ANTON KOROBEYNIKOV,1,2 ALLA LAPIDUS,1,3 ANDREY D. PRJIBELSKI,1

ALEXEY PYSHKIN,1 ALEXANDER SIROTKIN,1 YAKOV SIROTKIN,1

RAMUNAS STEPANAUSKAS,4 SCOTT R. CLINGENPEEL,5 TANJA WOYKE,5

JEFFREY S. MCLEAN,6 ROGER LASKEN,6 GLENN TESLER,7 MAX A. ALEKSEYEV,8

and PAVEL A. PEVZNER1,9

ABSTRACT

Recent advances in single-cell genomics provide an alternative to largely gene-centric me-
tagenomics studies, enabling whole-genome sequencing of uncultivated bacteria. However,
single-cell assembly projects are challenging due to (i) the highly nonuniform read coverage
and (ii) a greatly elevated number of chimeric reads and read pairs. While recently de-
veloped single-cell assemblers have addressed the former challenge, methods for assembling
highly chimeric reads remain poorly explored. We present algorithms for identifying chi-
meric edges and resolving complex bulges in de Bruijn graphs, which significantly improve
single-cell assemblies. We further describe applications of the single-cell assembler SPAdes

to a new approach for capturing and sequencing ‘‘microbial dark matter’’ that forms small
pools of randomly selected single cells (called a mini-metagenome) and further sequences all
genomes from the mini-metagenome at once. On single-cell bacterial datasets, SPAdes

improves on the recently developed E + V-SC and IDBA-UD assemblers specifically designed
for single-cell sequencing. For standard (cultivated monostrain) datasets, SPAdes also
improves on A5, ABySS, CLC, EULER-SR, Ray, SOAPdenovo, and Velvet. Thus, recently
developed single-cell assemblers not only enable single-cell sequencing, but also improve on
conventional assemblers on their own turf. SPAdes is available for free online download
under a GPLv2 license.

Key words: bacterial assembly, chimeric reads, de Bruijn graph, multiple displacement

amplification (MDA), single cell.

1Algorithmic Biology Laboratory, St. Petersburg Academic University, Russian Academy of Sciences,
St. Petersburg, Russia.

2Department of Mathematics and Mechanics; 3Theodosius Dobzhansky Center for Genome Bioinformatics;
St. Petersburg State University, St. Petersburg, Russia.

4Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine.
5DOE Joint Genome Institute, Walnut Creek, California.
6J. Craig Venter Institute, La Jolla, California.
7Department of Mathematics and 9Department of Computer Science and Engineering, University of California,

San Diego, La Jolla, California.
8Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina.
A preliminary version of this article appeared in Nurk et al. (2013).

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 20, Number 10, 2013

Mary Ann Liebert, Inc.

Pp. 714–737

DOI: 10.1089/cmb.2013.0084

714

1. INTRODUCTION

The standard techniques for next generation sequencing (NGS) require at least a million

bacterial cells to sequence a genome. Since most bacteria cannot be cultivated in the laboratory

(Rappe and Giovannoni, 2003; Tringe and Rubin, 2005) and thus cannot be sequenced, much of the

bacterial diversity remains below the radar of NGS projects. The ‘‘microbial dark matter’’ describes

microbes and even entire bacterial phyla that have yet to be cultured and sequenced. For example, only a

fraction of the >10,000 bacterial species in the human microbiome have been sequenced (Nelson et al.,

2010; Wylie et al., 2012). Single-cell sequencing (Stepanauskas, 2012; Lasken, 2012) has recently

emerged as a powerful approach to complement largely genecentric metagenomic data with whole-genome

assemblies of uncultivated organisms.

Currently, multiple displacement amplification (MDA), pioneered by Roger Lasken and colleagues

(Lasken, 2007), is the dominant approach to whole-genome amplification prior to single-cell sequencing.

High throughput single-cell genomics pipelines are well established at various centers including the Single

Cell Genomics Center at Bigelow Laboratory, DOE Joint Genome Institute, and J. Craig Venter Institute.

The single-cell sequencing pipelines typically generate many random single-cell genomes, then PCR

(polymerase chain reaction) and sequence their 16S rRNA genes for identification and target selection for

whole-genome sequencing. Genome assembly of reads from MDA-amplified genomes is, however, chal-

lenging because of highly nonuniform read coverage, as well as elevated levels of chimeric reads and read

pairs. Despite these challenges, recent computational advances (Chitsaz et al., 2011; Peng et al., 2012;

Bankevich et al., 2012) have opened the possibility of sequencing the genome of any bacterial cell. In

particular, the SPAdes assembler (Bankevich et al., 2012) was recently used to sequence the pathogens

Porphyromonas gingivalis (McLean et al., 2013b) and Chlamydia trachomatis (Seth-Smith et al., 2013)

from bacterial cells extracted from a hospital environment and clinical samples, respectively.

However, sequencing the vast majority of bacteria in the human microbiome still remains a distant goal.

The bottleneck is that it is unclear how to isolate and capture low-abundance cells from a complex sample.

While there is a great interest in investigating the rare bacterial species in the human microbiome, currently

there is no technology for efficiently and comprehensively capturing very low-abundance cells of such

complex samples and for surveying the diversity as a whole. Indeed, capturing and sequencing even

100,000 randomly chosen single cells from the human microbiome is unlikely to comprehensively sample

the bacterial diversity, since many of the > 10, 000 species in the human microbiome are underrepresented

(Huttenhower et al., 2012; Li et al., 2012). Even if a more targeted approach is being applied, sequencing

100,000 single cells is prohibitively expensive. The question thus remains of how to sample bacterial

diversity in a more economical way.

McLean et al. (2013a) recently developed a new approach for analyzing the ‘‘microbial dark matter’’

based on forming random pools of single flow-sorted cells and sequencing all cells in the resulting mini-

metagenome at once. These pools only contain a small number of cells as opposed to metagenomics

samples, which often contain billions of cells from different species. Since the experimentally formed mini-

metagenome has lower complexity than the original metagenome, the assembly of individual genomes

from such mini-metagenomes may be more feasible than the assembly of entire metagenomes.

Assembly of mini-metagenome MDA reads is even more challenging than for single-cell MDA reads

and thus requires additional algorithmic developments. From an algorithmic perspective, mini-metagenome

sequencing can be thought of as sequencing an unusually large bacterial genome (formed by all genomes

within a mini-metagenome) with extremely nonuniform coverage. Moreover, the elevated number of

chimeric reads and read pairs (typical for single-cell sequencing) is likely to present an even more difficult

challenge in the case of mini-metagenomes, where intergenomic chimeric reads (resulting from concate-

nated fragments of different genomes) can be formed.

This article addresses computational challenges arising in single-cell and mini-metagenome sequencing.

This includes detection of chimeric edges in de Bruijn graphs (Section 2 and Appendix A), analyzing

complex bulges (Section 3 and Appendix B), and estimating genomic distances by aggregating read-pair

information (Section 4 and Appendix C). We incorporate these algorithmic developments into the SPAdes

assembler (Bankevich et al., 2012) and demonstrate (Section 5) that it improves on existing single-cell

sequencing tools E + V-SC (Chitsaz et al., 2011) and IDBA-UD (Peng et al., 2012). SPAdes also performs

well on standard (multicell) projects. (We refer to a conventional sequencing project using cultivated

strains as multicell sequencing.) In particular, we show that it improves on A5 (Tritt et al., 2012), ABySS

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 715

(Simpson et al., 2009), CLC,1 EULER-SR (Chaisson et al., 2009), Ray (Boisvert et al., 2010), SOAPde-

novo (Li et al., 2010), and Velvet (Zerbino and Birney, 2008) in multicell bacterial assemblies. In Section

5.4, we also benchmark SPAdes on simulated mini-metagenomes obtained by mixing various single-cell

read datasets and investigate the computational limits of mini-metagenome sequencing for assessing low-

abundance bacterial species.

2. IDENTIFYING CHIMERIC EDGES IN DE BRUIJN GRAPHS

MDA often results in chimeric reads (formed by concatenating fragments from different regions of the

genome) and chimeric read pairs (formed by two reads sampled from distant regions of the genome). See

Lasken and Stockwell (2007), Chitsaz et al. (2011), and Woyke et al. (2009) for the extent of chimeric

reads and read pairs in single-cell projects. Chimeric reads result in chimeric edges in de Bruijn graphs.

Single-cell projects often result in a large increase in the number of chimeric edges as compared to standard

assembly projects. Most existing assemblers were not designed to cope with this dramatic increase in the

number of chimeric edges.

2.1. Double-stranded de Bruijn graphs

Let DB(Genome, k) be the de Bruijn graph (Compeau et al., 2011) of a circular genome, Genome, and

its reverse complement, Genome
0, where vertices and edges correspond to (k - 1)-mers and k-mers,

respectively. Genome and Genome
0 each traverse a cycle in this graph; these two cycles form the genome

traversal of the graph. If a genome has multiple chromosomes or linear chromosomes, the genome traversal

of DB(Genome, k) may consist of multiple paths or cycles. The genomic multiplicity of an edge is the

number of times the traversal passes through this edge. We often work with condensed graphs (Bankevich

et al., 2012), where each edge is assigned a length (in k-mers), and the length of a path is the sum of its edge

lengths (rather than the number of edges).

2.2. Chimeric edges in de Bruijn graphs

Let DB(Reads, k) be the de Bruijn graph constructed from a set of reads, Reads, from Genome and their

reverse complements. In the idealized case with full coverage of Genome and no read errors, the graphs

DB(Reads, k) and DB(Genome, k) coincide; however, in reality these graphs differ because of coverage

gaps and read errors. Edges in DB(Reads, k) may correspond to genome fragments (correct edges) as well

as arise either from errors in reads or from chimeric reads (false edges).2

While in DB(Genome, k) the genome traversal consists of a pair of cycles, in DB(Reads, k) these cycles

may be broken into multiple paths. The genome traversal defines the genomic multiplicities of edges in

DB(Reads, k) (or the condensed graph).3 Since false edges are not traversed by the genome traversal in

DB(Reads,k), they have genomic multiplicity zero.

Assemblers use various algorithms to iteratively remove false edges and transform the de Bruijn graph

DB(Reads, k) into a smaller assembly graph. In SPAdes (and most other assemblers), all such transfor-

mations are done simultaneously on both forward and complementary vertices and edges. We use the

notation DB+ (Reads, k) to denote the current assembly graph at any intermediate stage of assembly, and

DB*(Reads, k) to denote the final assembly graph.

While most false edges correspond to easily detectable subgraphs, called tips and bulges, some form

chimeric edges, which are hard to identify. Chimeric edges arise from chimeric reads, which are abundant

in single-cell datasets. While chimeric edges in the de Bruijn graph represent a major obstacle to con-

structing long contigs, in standard (multicell) assembly datasets, chimeric edges usually have low coverage

1CLC Assembly Cell 3.22.55708 (CLC Bio, www.clcbio.com).
2Due to uneven coverage in single-cell datasets, contaminants may have coverage comparable to the target genome.

Contaminants should be filtered out from the reads before assembly and/or from contigs after assembly; methods for
this are beyond the scope of this article. For this article, contaminants with sufficient coverage are regarded as part of
Genome and their edges are regarded as ‘‘correct edges’’ rather than ‘‘false edges.’’

3In reality, the genomic multiplicities of edges in DB(Reads, k) are unknown since it is unknown how Genome

traverses DB(Reads, k). However, we can estimate some multiplicities even with highly nonuniform coverage, and we
can often identify when the multiplicities are zero or nonzero by analyzing the graph structure.

716 NURK ET AL.

and thus are easily identified as false and removed by the conventional assemblers. However, this approach

does not work for single-cell datasets, where coverage is nonuniform and the level of chimerism is high

(Lasken and Stockwell, 2007; Chitsaz et al., 2011). For such datasets, low coverage does not characterize

false edges since many correct edges also have low coverage (Fig. 1). For example, there are 117 chimeric

edges in in the graph DB+ (Reads, 55) constructed for the single-cell E. coli dataset ECOLI-SC, but only 2

chimeric edges in in the graph DB+ (Reads, 55) constructed for the multicell E. coli dataset ECOLI-MC

(see Results for the description of the ECOLI-SC and ECOLI-MC datasets).

Our chimeric edge identification procedure is based on the following assumptions for bacterial genomes:

(i) since chimeric edges in the condensed de Bruijn graphs are typically short,4 we assume that edges longer

than n have genomic multiplicity of at least 1, and (ii) since edges longer than N (referred to as long edges)

in the condensed de Bruijn graph tend to have genomic multiplicity 1, we assume that all long edges have

genomic multiplicity 1.5 In our experience, the parameters n = 250 and N = 1500 work well across many

bacterial genomes we analyzed.

Since genomic multiplicities of edges in DB+ (Reads, k) are unknown, we attempt to bound them. An

edge e with genomic multiplicity bounded by c
lower

(e) from below and by c
upper

(e) from above has

capacity (c
lower

(e), c
upper

(e)).

Ideally, an edge with genomic multiplicity m should be assigned capacity (m, m). In the absence of

information about exact genomic multiplicities, we assign capacities to all edges in the condensed graph of

DB+ (Reads, k) as follows, where the second and third categories are dictated by assumptions (i) and (ii)

above:

0

10

20

30

40

0 100 200 300 400

Coverage

C
o

u
n

t

chimeric edges
short genomic edges

FIG. 1. Coverage of chimeric and short genomic edges in the de Bruijn graph of the ECOLI-SC single-cell dataset

(described in the Results section). The heights of red columns in the histogram give the number of occurrences of

chimeric edges in the graph in each coverage bin. The heights of the blue columns give the number of occurrences of

short (length less than n = 250) genomic edges in the graph in each coverage bin.

4Out of 117 chimeric edges in the graph DB+ (Reads, 55) constructed for the single-cell E. coli dataset ECOLI-SC,
115 have length £ n = 250. Here and in further statistics, DB+ (Reads, 55) is the graph that we obtain after doing initial
simplifications, including removing condensed edges with average coverage below 10 that satisfy some additional
length and topology conditions.

5This holds for 97% of long edges in DB(Genome, 55) for the E. coli reference genome. Since this assumption is
incorrect for 3% of long edges, it may potentially trigger errors in our chimeric identification procedure. However, it
hardly ever triggers errors in practice.

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 717

(clower(e)‚ cupper(e)) =

(0‚1) if Length(e) � n;

(1‚1) if n < Length(e) � N;

(1‚ 1) if N < Length(e):

8><
>:

To simplify this presentation, we assume that an assembly algorithm successfully removes all (or the vast

majority of) bulges and tips, resulting in an intermediate assembly graph DB+ (Reads, k), but fails to remove

chimeric edges. Thus, the search for chimeric edges amounts to finding edges of genomic multiplicity zero.

2.3. Chimeric edges and circulations in networks

A graph with capacity constraints on the edges is referred to as a network. Given a vertex v and a

function f on edges of a network G, we define influxf (v) =
P

e f (e), where the sum is taken over all

incoming edges e of the vertex v. We define outfluxf (v) similarly. A function f is called a circulation in

the network G if influxf (v) = outfluxf (v) for each vertex v in G, and c
lower

(e) £ f (e) £ c
upper

(e) for

each edge e in G.

The circulation problem is to find a circulation in a network (Ford and Fulkerson, 1962). Genomic

multiplicities define a circulation in the network DB+ (Reads, k) with capacity constraints. There are

usually multiple circulations in this network, and we do not know which of them corresponds to the actual

genomic multiplicities. However, if an edge e has f (e) = 0 in all circulations, then it must be a false edge and

in most cases represents a chimeric edge.6 A polynomial-time algorithm for finding all such edges in the

network is described in appendix section 7 a.1. We remark that this strategy is based on the assumption that

the genome corresponds to a cycle in the graph, which often fails for real data. Since in DB+ (Reads, k) the

genome traversal may be broken into multiple subpaths, a circulation in it may not even exist. To address this

complication, we break the network into smaller subnetworks and analyze their subcirculations.

The operation of breaking an edge (v, w) in a graph G removes (v, w) from G; adds two new vertices v*

and w* (called the sink and the source, respectively); and adds two new edges (v, v*) and (w*, w) with the

same capacity as the edge (v, w). Given a weighted graph G and a positive integer t, we define Gt as the

graph obtained from G by breaking all edges longer than t. To break the de Bruijn graph into subnetworks,

we break all long edges (Fig. 2).7 After this transformation, the graph DB+ (Reads, k) is typically

decomposed into many connected components. For the ECOLI-SC dataset described in the Results section,

the graph is decomposed into 114 nontrivial connected components (containing more than one vertex).

a b c

FIG. 2. Example of breaking long edges in an assembly graph. (a) Subgraph of assembly graph where the four

diagonal edges are long edges, while the horizontal edge in the center is not long. (b) Result of breaking the four long

edges contains a connected component (in the center) with two sources (red vertices) and two sinks (blue vertices). The

capacities of the edges starting (ending) at the newly formed sources (sinks) are inherited from the capacities of the

broken edges. (c) Result of breaking long edges in a subgraph similar to the subgraph in (c) but with different directions

on some edges.

6False edges may arise from bulges, tips, chimeric edges, or other errors. This criterion is likely to find false edges
due to chimeric edges and tips. False edges in bulges usually are not detected by this criterion, since a circulation
through the correct path in a bulge can be rerouted through the incorrect path. False edges in tips potentially can be
detected by this criterion, although, tip detection should consider other factors such as edge length. We first eliminate
most bulges and tips using algorithms from Bankevich et al. (2012), and thus, when this algorithm is run, most false
edges are chimeric.

7The graph may also have sources and sinks due to other reasons, e.g., gaps in coverage and chromosome ends.

718 NURK ET AL.

A circulation (genome traversal) in DB+ (Genome, k) defines a flow (Ford and Fulkerson, 1962) between

sources and sinks of every connected component of DB +
N (Genome, k) satisfying the capacity constraints.

Similarly to DB(Genome, k), for many components in DB+ (Reads, k), the genome traversal also defines a

flow satisfying the capacity constrains. Thus, the search for chimeric edges in DB+ (Reads, k) can be

performed independently in each component.8

Many components have a particularly simple structure with two sources and two sinks (Fig. 2b and c).

The only flow that satisfies the capacity constraints in Figure 2b (resp., Fig. 2c) assigns flow 0 (resp., flow

2) to the edge (u, v). Thus (u, v) is classified as chimeric in Figure 2b and as correct in Figure 2c.

Unfortunately, the above procedure fails for some connected components (e.g., when the outgoing edge

from vertex v in Fig. 2a is missing). Furthermore, such components tend to be large. For example, when

assembling reads from a single E. coli cell (the ECOLI-SC dataset), the procedure fails only for 10% of all

components, but these components contain most (52%) vertices of the graph. Below we describe an

approach to identify chimeric edges in such components.

2.4. Chimeric edges and critical cut-sets

Given a subset U of vertices in the graph, the cut-set, denoted cut(U), is the set of all edges (u, v) in the

graph such that u 2 U and v 2 U (where U denotes the set of vertices of the graph that do not belong to U).

We define c
lower

(U) [resp., c
upper

(U)] as the sum of lower (resp., upper) capacities of all edges from

cut(U). A cut-set cut(U) is balanced if clower(U)pcupper(U) and unbalanced otherwise. According to

Hoffman’s Circulation Theorem (Ford and Fulkerson, 1962), a circulation exists if and only if every cut-set

in the network is balanced.

A cut-set cut(U) is critical if clower(U) = cupper(U). We remark that if cut(U) is critical, then all edges

from U to U should be long, since otherwise cupper(U) =1 (all edges that are not long have upper

capacity 1).

It is easy to see that for a critical cut-set cut(U), all edges (u‚ v) 2 cut(U) must have genomic multi-

plicity equal to c
lower

(u, v), while all edges (v‚ u) 2 cut(U) must have genomic multiplicity equal to

c
upper

(v, u). Indeed, if the lower capacity of any edge (u‚ v) 2 cut(U) is increased by 1, the cut-set would

become unbalanced [as c
lower

(U) + 1 > c
upper

(U)], implying that no circulation exists. Similarly, the upper

capacity of any edge (v‚ u) 2 cut(U) cannot be decreased, implying that the genomic multiplicity of (v, u)

must be equal to c
upper

(v, u). In particular, for a critical cut-set cut(U), all crossing edges (u‚ v) 2 cut(U)
with c

lower
(u, v) = 0 must be chimeric.

We apply the same criterion to unbalanced cuts, which also occur in real data. Namely, we identify all

edges crossing an unbalanced cut-set as chimeric. Indeed, if such edges had lower capacity larger than 0,

the cut-set would be even more unbalanced.

SPAdes analyzes only certain types of critical cut-sets that are common in de Bruijn graphs of reads (see

appendix section 7.2).

2.5. Interstrand chimeric edges

For an edge (u, v) connecting genomic (k - 1)-mers u and v at genomic coordinates i and j, respectively,

we define the offset as the distance jj - ij between u and v in the genome. An edge is called an interstrand

edge if u and v belong to the opposite strands of the genome.

Due to artifacts of MDA (Lasken and Stockwell, 2007), the de Bruijn graph typically contains many

interstrand chimeric edges with small offsets (Fig. 3). For example, in graph DB+ (Reads, 55) constructed

for reads from the ECOLI-SC dataset, after doing initial simplifications including removing condensed

edges with average coverage below 10 that satisfy some additional length and topology conditions, there

are still 117 chimeric connections. Of those, 113 are interstrand chimeric connections, and 109 of the

interstrand chimeric connections have offsets smaller than 50000 bp.

For every vertex v in the de Bruijn graph of a doubly stranded genome, there exists a complementary

vertex denoted v0. Similarly, for every (condensed) edge (u, v), there exists a complementary edge (v0, u0).

8This component-wise approach is more robust to the failure of the underlying assumption that Genome traverses a
cycle in the graph, than the whole-graph circulation approach, since the resulting components are much smaller than the
entire de Bruijn graph and failure of the search in one component does not affect the treatment of other components.

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 719

Note that the genomic multiplicity of (u, v) is the same as for (v0, u0), and their capacities are also the same

since capacities are assigned based on edge lengths.

A cut-set cut(U) is semi-critical if clower(U) = cupper(U) - 1. It is easy to see that if both (u, v) and its

complementary edge (v0, u0) have lower capacities 0 and belong to the same semi-critical cut-set cut(U),

they can both be classified as chimeric. Indeed, if the lower capacity of these edges increased from 0 to 1,

the semi-critical cut would become unbalanced (clower(U) + 2 >cupper(U)), implying that no circulation

exists. Thus, each semi-critical cut identifies each pair of complementary crossing edges as chimeric. We

noticed that semi-critical cuts are often triggered by interstrand chimeric edges with small offsets.

Consider the situation shown in Figure 3, where edge (a, u) has capacity (1, 1) and edge (v0, b0) has

capacity (0, N). If the edge (u, v0) has lower capacity 1, then the cut-set cut({u}) is critical, implying that

the edge (u, v) is chimeric. However, if (u, v0) has lower capacity 0, then the cut-set cut({u}) is not critical

and does not provide evidence that the edge (u, v) is chimeric. But, in this case, the cut-set cut({u, v0}) is

semi-critical with two complementary crossing edges (green edges in Fig. 3); thus, the two green edges are

classified as chimeric.

An additional complication arises if a part of the genome located between chimeric junctions contains

repeats. In this case, instead of a single edge (u, v0), the graph may contain a path with multiple edges from

u to v0. SPAdes uses a heuristic to resolve such situations: We search for a path from u to v0 and even if the

path contains more than one edge, we consider edge (u, v) chimeric and remove it.

3. REMOVING COMPLEX BULGES

3.1. Bulges and bulge corremoval

Errors in reads often result in two short paths between the same two vertices in the de Bruijn graph,

where the two paths have roughly the same length and represent similar sequences. Such pairs of paths may

aggregate into larger subgraphs called bulges (see Fig. 4a). Assemblers use various bulge removal algo-

rithms (and additional steps) to transform the de Bruijn graph DB(Reads, k) into a smaller assembly graph

DB*(Reads, k). While they remove the vast majority of bulges, they fail to remove some complex bulges.

The number of such complex bulges varies widely across various genomes. However, we noticed that even

a small number of complex bulges may significantly reduce assembly quality, since such bulges confuse the

repeat, resolving algorithms that attempt to increase the contig lengths by using paired reads.

In this section, we describe an algorithm for removal of complex bulges that evade the ‘‘bulge cor-

removal’’ algorithm from Bankevich et al. (2012). One approach to removing bulges is to map the de

Bruijn graph onto a smaller graph. SPAdes tries to find a mapping that satisfies the following conditions:

(i) Every path in the de Bruijn graph maps to a path in the assembly graph.

(ii) For every path q in the assembly graph, there exists a path in the de Bruijn graph that maps onto q.9

Some bulge removal algorithms either do not explicitly map the de Bruijn graph onto the assembly graph

or use mappings that may violate conditions (i) and/or (ii). For example, they may find a bulge formed by

FIG. 3. Interstrand edge (u, v) and its complementary edge, (v0, u0), both shown in green. The horizontal paths

correspond to the two opposite DNA strands in a genome. Capacities are listed on each edge.

9In fact, SPAdes creates the assembly graph as a subgraph of the de Bruijn graph so that paths in the assembly graph
also represent paths in the de Bruijn graph.

720 NURK ET AL.

two paths in the de Bruijn graph and either remove one of the paths or merge these paths into a single one,

without considering the impact on other edges incident to these paths. Removing one of the paths may lead

to deterioration of assemblies, since important information (along with some correct paths) may be lost.

Merging the paths may introduce artificial paths into the assembly graph, violating condition (ii) (see Fig.

4e and f).

SPAdes (Bankevich et al., 2012) introduced the bulge corremoval procedure, which satisfies conditions

(i) and (ii). For each edge (u, v) (with length below a threshold) in the condensed de Bruijn graph, SPAdes

searches for a path from u to v of length approximately equal to the length of (u, v). If such an alternative

path exists, the two paths P and (u, v) form a simple bulge. To remove a simple bulge, the edge (u, v) is

projected onto this path and is removed afterward. Applied iteratively,10 the bulge corremoval strategy

eliminates the vast majority of bulges. Figure 4a–c illustrates how a bulge with multiple paths is simplified

by this strategy. However, for some bulges (such as Fig. 4g), no edge in the bulge has an alternative path,

implying that the algorithm from Bankevich et al. (2012) will not be able to remove such bulges. Below we

describe an algorithm satisfying conditions (i) and (ii) for removing the majority of the remaining complex

bulges.

3.2. Blob corremoval

Let G be a directed acyclic graph (DAG) with vertex set V and edge set E. G may be a multigraph. For

vertices v and w in G, we define v 3 w if there exists a directed path from v to w in G. Every mapping f:

V / V induces a mapping f: E / E such that for an edge e = (u, v), we have f (e) = (f (u), f (v)) (though in

the case of a multigraph, there may be multiple edges of this form to select). A mapping f: V / V is called a

a b c d e f g h

FIG. 4. Illustration of bulge removal algorithms. For illustrative purposes, the vertices of the condensed graph are

shown in white; the additional vertices present in the uncondensed graph are shown as small solid circles in the color

(black, red, or blue) of the condensed edge on which they lie. Dotted green arrows indicate projection operations (not

graph edges). (a–c) Algorithm A: The bulge corremoval algorithm from Bankevich et al. (2012). (a) A bulge in the de

Bruijn graph. In (b), the blue edges have alternative paths while the red edges do not have alternative paths. After

applying the bulge corremoval procedure to the blue edges, graph (b) is transformed into graph (c). There are now

alternative paths for red edges in (c), and the graph is further transformed into a single condensed edge representing the

bold path in (c). (e–f) Algorithm B: Merging paths instead of projecting paths. Merging two paths in (e) results in a

graph (f) with an artificial (blue) path violating condition (ii). (g–h) Algorithm C: Blob corremoval. Complex bulge (g)

is not removed by the bulge corremoval procedure from Bankevich et al. (2012). Applying the new ‘‘blob corremoval

procedure’’ to blob (g) simplifies it via the projections shown in (h). Thick edges denote the tree to which we project the

blob. The blob corremoval procedure may also be applied to (a) to directly simplify it to a single condensed edge in one

step via the projections shown in (d); this achieves the same result as bulge corremoval did with two sets of projections,

(b) and (c).

10SPAdes (Bankevich et al., 2012) iteratively runs bulge corremoval, tip removal, and chimeric edge removal
procedures with gradually changing thresholds. Within each bulge corremoval pass, edges are prioritized in order from
lowest to highest coverage.

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 721

projection if (1) for every vertex v 2 V , we have f (f (v)) = f (v), (2) for every pair of vertices v and w, if

v 3 w then f (v) 3 f (w), and (3) for every edge e, f (f (e)) = f (e).

A projection f defines the induced DAG Gf on the vertex set Vf = f (V). Clearly, for every path v1‚ . . . ‚ vm

in G, there exists at least one path in Gf that traverses the projected vertices f (v1)‚ . . . ‚ f (vm) in Gf. We limit

our attention to projections of DAGs onto directed trees (i.e., projections f such that Gf is a directed tree)

and additionally require that every path and its projection have similar lengths. Figs. 4d and 4h show the

directed trees and projections of DAGs shown in Figs. 4a and 4g.

Breaking edges longer than t in the assembly graph DB+ (Reads, k) results in a graph DB+
t (Reads, k)

that typically consists of many connected components. A blob is a component of DB+
t (Reads, k) that is a

DAG with a single source and one or more sinks. SPAdes analyzes blobs in DB+ (Reads, k) and for each

blob, attempts to find a directed tree (with root at the source and leaves at the sinks of the blob) such that

there exists a projection of the blob onto this tree.

This leads to a blob corremoval procedure, which generalizes the bulge corremoval procedure from

Bankevich et al. (2012) and satisfies conditions (i)–(ii). A generalized notion of blob and an efficient

algorithm to search for trees and projections are described in Appendix B.

4. ESTIMATING GENOMIC DISTANCES BY AGGREGATING
READ-PAIR INFORMATION

Recently developed assemblers SPAdes and Telescoper emphasized a new approach to aggregating

read-pair information (Bankevich et al., 2012; Pham et al., 2013; Vyahhi et al., 2012; Bresler et al., 2012).

In order to resolve the repeats, one needs to estimate the (set of) genomic distances between any two edges

in the de Bruijn graph. Key features of SPAdes (Bankevich et al., 2012) and Telescoper (Bresler et al.,

2012) include algorithms to approximate these distances by aggregating distance estimates obtained from

individual read pairs. Below we complement the heuristics for estimating distances between the edges in

the de Bruijn graph described in Bankevich et al. (2012); Pham et al. (2013); Vyahhi et al. (2012); and

Bresler et al. (2012) by a rigorous likelihood model.

Let g denote the true (but unknown) gap in the genome between the edges A and B of the condensed de

Bruijn graph: g is the distance from the end of A to the start of B, measured in k-mers. Denote the lengths of

edges A and B in k-mers as ‘A and ‘B.

Let n
il

be a random variable representing the insert length in nucleotides. Let F
il

denote the insert length

probability distribution function and F̂il be an estimate obtained by aligning paired-end reads to the edges

longer than N50 (see Bankevich et al., 2012).

Let (l, r) be a pair of reads that aligns to the pair of edges (A, B). Read l maps to edge A at offset pl, while

read r maps to edge B at offset pr. Let ‘r denote the length of read r in nucleotides.

Given g, the observed insert length of (l, r) is xIL
* = ‘A - pl + 1 + g + pr + ‘r (see Fig. 5). The likelihood

for the single observation can be written as

Lg(pl‚ pr) = Fil(‘A - pl + 1 + g + pr + ‘r) - Fil(‘A - pl + g + pr + ‘r): (1)

Given the collection of all alignment positions (p(i)
l ‚ p(i)

r), we can maximize the product of likelihood (1)

(or maximize the sum of their logarithms) to get an estimate ĝA‚ B of the gap between the edges (A, B). A

similar approach is used by the Telescoper assembler (Bresler et al., 2012). Note, however, that likelihood

(1) is not the proper likelihood of the observed insert length n�
il

since the edges have finite length (pre-

venting observation of insert sizes above the edge length), and the gap is nonzero (preventing observation

of some smaller inserts that fall into the gap). Thus, the distribution of n�
il

differs from the distribution of

nil. This difference in many cases can be neglected, for example, in the case where the edges are long

enough compared to the mean insert length.

In general, given the edge gap, g, and the alignment position, pl, of the left read, we ‘‘observe’’ the insert

length distribution through the ‘‘window’’ determined by the gap and the lengths of the entities involved (Fig. 5).

The true likelihood of the observed data can be obtained as follows:

Lg(pl‚ prj(l‚ r) 2 (A‚ B)) =
P(n

il
= n�

il
)P(n

il
= n�

il
jl 2 A)

P(r 2 Bjl 2 A)P(l 2 A)

722 NURK ET AL.

As shown in Appendix C, this likelihood can be taken (up to a multiplicative constant that does not

depend on g) as

Lg(pl‚ prj(l‚ r) 2 (A‚ B))

=
F̂il(‘A - pl + 1 + g + pr + ‘r) - F̂il(‘A - pl + g + pr + ‘r)

Ĥ(‘B + ‘A + g - 1) - Ĥ(‘B + g - 1) - Ĥ(‘A + g - 1) + Ĥ(g - 1)

· F̂il(‘A + g + ‘B - pl) - F̂il(‘A + g - pl)
� �

:

where the cumulative insert length distribution is H(t) =
Pt

x = -1
Fil(x), and its estimate is

Ĥ(t) =
Pt

x = -1
F̂il(x). Given the set of read-pair alignments (p(1)

l ‚ p(1)
r)‚ . . . ‚ (p(n)

l ‚ p(n)
r), we calculate ĝ, the

maximum likelihood estimate of the gap, as

ĝ = argmax
g

Xg

i = 1

log Lg p
(i)
l ‚ p(i)

r

��(l‚ r) 2 (A‚ B)
� �

:

5. RESULTS

5.1. Metrics

The N50 (resp., NG50) metric is the maximum contig size such that the total length of contigs of that size

or larger represents at least 50% of the assembly length (resp., reference genome length). When assembling

a genome with an exact or close reference, NG50 is preferred; when assembling a genome without a

reference, N50 is used since NG50 isn’t even possible. While N50 and NG50 are in widespread use, they

can be artificially increased by improperly concatenating contigs (which introduces misassemblies) or by

adding sequences that are not present in the genome.

We use metrics NA50 and NGA50, introduced and justified in Gurevich et al. (2013), instead of the

standard N50 or NG50 metrics, to overcome these problems. To compute NA50, contigs are aligned to a

reference genome. If a contig has a misassembly or has nonaligning sequences such as large gaps or

indels, the contig is broken into blocks that do align. Then we compute N50 using these aligned blocks

instead of using the original contigs. Similarly, NGA50 is computed as NG50 applied to these adjusted

blocks.

In some of our experiments, the fraction of the genome assembled is below 50%, so NGA50 would be

0 for all assemblers, and thus, we use NA50.

a

b

FIG. 5. Observed insert length distribution between edges A and B of the assembly graph, given alignment positions

pl and pr (left-most coordinates of left and right reads) and gap size g. Reads are shown in blue; in general, they can

have different lengths, although on the Illumina platform, they have the same length. The insert length of this read pair

goes from the start of the left read (pl) to the end of the right read (red point). A histogram of the full insert length

distribution is shown on the right end of the figure; the black part of the histogram is observable while the gray part is

unobservable due to finite edge length and the particular value of g. Edge B ends at the dotted vertical line, thus

truncating the observable part of this histogram. Panels (a) and (b) illustrate different combinations of gap length and

edge lengths, resulting in different portions of the distribution being observable.

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 723

5.2. Benchmarking

We compared a number of single-cell and conventional assemblers on two E. coli paired-end Illumina

libraries described in Chitsaz et al. (2011): a single-cell library (ECOLI-SC) and a multicell library

(ECOLI-MC). They consist of 100 bp paired-end reads with average insert sizes 266 bp for ECOLI-SC and

215 bp for ECOLI-MC. Both E. coli datasets have 600 · coverage. The E. coli K-12 MG1655 reference

length is 4639675 bp with 4324 annotated genes.

Tables 1 and 2 present the benchmarking results for various assemblers.11 Table 1 illustrates that single-

cell assemblers significantly improve upon the conventional assemblers in single-cell projects. Table 2

shows that recently developed single-cell assemblers IDBA-UD and SPAdes also improve upon the

conventional assemblers in standard (multicell) projects by most metrics.

5.3. Running time of SPAdes

On a 32 CPU (Intel Xeon X7560 2.27GHz) computer with 16 threads, the total run time for SPAdes on

ECOLI-SC was 4 hours 55 minutes, while for ECOLI-MC it was 3 hours 23 minutes.

5.4. From genomes to mini-metagenomes

Below we investigate the performance of SPAdes on artificially simulated mini-metagenomes and

demonstrate that it is capable of assembling a significant portion of each genome in a mini-metagenome. In

addition to simulations, we also applied this assembly algorithm to a real mini-metagenome dataset; details

are in McLean et al. (2013a).

We applied SPAdes to a simulated mini-metagenome that consists of four bacterial species with known

genomes. We mixed together reads (in various proportions), from four different MDA-amplified single-cell

Table 1. Comparison of Assemblers on ECOLI-SC, a Single-Cell E. coli Dataset

Assemblera NGA50 # contigsb
Longest

contig

Total

length MAc MMd INDe Nsf GF (%)g
No.

genesh

Conventional (multicell) assemblers

A5 13310 745 101584 4441145 8 11.97 0.19 0.00 90.141 3453

ABySS 68534 179 178720 4345617 5 2.71 2.66 17.07 88.268 3704

CLC 32277 503 113285 4656964 3 4.76 2.87 7.40 92.378 3768

EULER-SR 26580 429 140518 4248713 18 9.37 218.72 58.14 85.005 3419

Ray 53903 296 210612 4649552 13 2.34 0.87 0.00 91.864 3838

SOAPdenovo 16606 569 87533 4098032 7 114.38 11.08 1295.26 79.861 3038

Velvet 22648 261 132865 3501984 2 2.07 1.23 0.00 74.254 3098

Single-cell assemblers

E + V-SC 32051 344 132865 4540286 2 1.85 0.70 0.00 92.162 3793

IDBA-UD 98306 244 284464 4814043 7 2.08 0.11 0.00 95.763 4062

SPAdes 2.4 110782 274 268093 4929226 2 3.28 0.49 2.52 96.157 4060

aComparisons were performed with QUAST 1.2 (Gurevich et al., 2013). In each column, the best assembler by that criteria is

indicated in bold.
bOnly contigs of length ‡ 500 bp were used.
cMA: number of misassemblies. Misassemblies are locations on an assembled contig where the left flanking sequence aligns over

1 kb away from the right flanking sequence on the reference.
dMM: Mismatch (substitution) error rate per 100 kb.
eIND: number of indels per 100 kb. MM and IND are measured in aligned regions of the contigs.
fNs: Count of undefined bases (Ns) per 100 kb.
gGF (%): The genome fraction is the fraction of the genome covered by the contigs. For single-cell projects, the total assembly size

often exceeds the genome length due to contaminants and other reasons (see Woyke et al., 2011). The genome fraction filters out these

issues.
hThe number of genes sequenced at full length is out of a list of 4324 annotated genes from www.ecogene.org for E. coli.

11ABySS 1.3.4, EULER-SR 2.0.1, Ray 2.0.0, Velvet, Velvet-SC, and E + V-SC were run with vertex size 55. A5
and CLC 3.22.55708 were run with default parameters. SOAPdenovo 1.0.4 was run with vertex sizes 27–31. IDBA-
UD 1.1.0 was run in its default iterative mode. SPAdes 2.4 was run iteratively with vertex sizes 21, 33, and 55.

724 NURK ET AL.

bacterial projects at the DOE Joint Genome Institute and Bigelow Laboratory. The genomes of these

bacteria vary in GC content and genome length: Prochlorococcus marinus (Rocap et al., 2003) (31% GC,

1.7 Mb genome length), Pedobacter heparinus (Han et al., 2009) (42% GC, 5.0 Mb genome length),

Escherichia coli (Blattner et al., 1997) (51% GC, 4.6 Mb genome length), and Meiothermus ruber (Tindall

et al., 2010) (63% GC, 3.0 Mb genome length). Table 3 shows the assembly statistics for each of these

datasets. Note that as simulated datasets, these are highly idealized and do not exactly match what would be

found in the environment, but they are useful for modeling the ability of the assembler to deal with different

mixtures. We expect a significantly higher frequency of misassemblies when analyzing real, environmental

metagenomes due to the following reasons: a) the coanalyzed cells may contain similar genome regions

that can cross-assemble; b) the coanalyzed cells may have less divergent GC content than the four model

strains studied here; and c) intergenomic chimeras may form when MDA is performed on a pool of cells.

Analysis of real mini-metagenomes is described in McLean et al. (2013a).

In the first simulation, we randomly selected a fixed fraction of reads from each genome, mixed them

together, and assembled the resulting dataset with SPAdes. This simulation was repeated 10 times, varying

Table 2. Comparison of Assemblers on ECOLI-MC, a Multicell E. coli Dataset

Assemblera NGA50 # contigs

Longest

contig

Total

length MA MM IND Ns GF (%)

No

genes

Conventional (multicell) assemblers

A5 43651 176 181690 4551797 0 0.40 0.13 0.00 98.476 4178

ABySS 105525 96 221861 4619631 2 2.45 0.52 3.01 99.202 4242

CLC 86964 112 221549 4547925 2 0.37 0.22 0.00 98.655 4239

EULER-SR 110153 100 221409 4574240 8 2.98 47.15 0.37 98.438 4206

Ray 83128 113 221942 4563341 2 2.10 0.20 0.00 98.162 4194

SOAPdenovo 62512 141 172567 4519621 1 26.56 5.58 14.03 97.405 4134

Velvet 78602 120 242032 4554702 3 0.70 0.20 0.00 98.824 4211

Single-cell assemblers

E + V-SC 54856 171 166115 4539639 0 1.21 0.15 0.00 98.329 4149

IDBA-UD 106844 110 221687 4565529 3 1.03 0.09 0.00 98.810 4221

SPAdes 2.4 134076 102 285228 4642173 2 2.50 0.73 2.46 99.482 4262

aComparisons were performed with QUEST 1.2 (Gurevich et al., 2013). In each column, the best assembler by that criteria is

indicated in bold.

Table 3. Genome Statistics and SPAdes Assembly Statistics for Each of Four Bacterial

Datasets Used to Simulate a Mini-Metagenome

Dataset

E. coli M. ruber P. heparinus P. marinus

Genome statistics

Genome length (Mb) 4.6 3.0 5.0 1.7

GC 51% 63% 42% 31%

No. genes annotated 4324 3105 4339 1732

RefSeq accession NC_000913.2 NC_013946.1 NC_013061.1 NC_005072.1

Citation Blattner et al. (1997) Tindall et al. (2010) Han et al. (2009) Rocap et al. (2003)

Assembly statistics:a

Misassemblies 3 8 2 2

NA50 (kb)b 119 33 149 223

Longest contig (kb) 224 113 946 404

Genome fraction (%) 99.4 75.3 97.8 94.4

No. genes assembled 4236 2097 4136 1600

aThe number of reads for these genomes varied from 10 million to 27 million (no normalization was done). In this table, each dataset

is assembled separately. Only contigs of length ‡ 500 contributed to the statistics.
bNA50 is N50 of contigs aligned to the reference and broken into blocks at breakpoints from misassemblies, large gaps, or indels.

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 725

the fraction as 1/2
m with m = 0‚ 1‚ . . . ‚ 9 (the same fraction 1/2

m applies to all genomes). The assembled

contigs were aligned against individual genomes to compute the assembly statistics. (In Table 4 we present

statistics for M. ruber and P. heparinus.) In particular, even with a relatively small fraction 1/64 of selected

reads, SPAdes assembled 1779 out of 4339 genes for P. heparinus, 1366 out of 4324 genes for E. coli,

and 710 out of 3105 genes for M. ruber. This is significantly larger than the number of complete genes captured

in a typical metagenomics project. However, for P. marinus, only 55 out of 1732 genes were assembled.

In the second simulation, we formed a mini-metagenome using all reads from three species and varied

the coverage for the fourth. For the fourth species, we selected either a genome with high GC content

(M. ruber) or low GC content (P. heparinus). Table 5 illustrates that SPAdes recovers a substantial fraction

of an underrepresented genome within a mini-metagenome. Even with a small fraction of reads in the

underrepresented genome (e.g., 1/256), we recovered a large number of genes (more than 450 genes for

M. ruber and P. heparinus). Tables 4 and 5 demonstrate that the assembly quality of an individual genome

depends mainly on the coverage of this genome, rather than on what fraction of the mini-metagenome this

genome represents. We remark that since all genomes in this simulation differ significantly in GC content,

Table 4. SPAdes Assemblies of a Simulated Mini-Metagenome Consisting of E. coli, M. ruber,

P. heparinus, and P. marinus, Using a Fraction of the Reads from all the Genomes

Assemblya

All 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Assembly statistics

No. contigs (‡ 500 bp)b 851 899 928 1097 1900 3095 3371 2576 1693 960

Total contigs length (kb) 13600 13047 12370 11596 10722 9051 6570 4098 2297 1095

N50 (kb) 112 110 112 64 30 11 4 2 1 1

Multi-species contigsc 0 0 1 0 0 1 0 1 0 0

E. coli

Misassemblies 3 4 4 4 4 15 16 27 21 7

NA50 (kb) 119 127 134 59 25 4 2 1 1 1

Longest contig (kb) 269 310 268 222 118 64 46 20 7 3

Genome fraction (%) 99.4 99.2 99.2 99.1 97.0 84.1 56.1 28.4 11.3 3.0

No. genes (out of 4324) 4248 4238 4234 4168 3707 2565 1366 566 176 37

M. ruber

Misassemblies 14 12 5 15 13 10 14 8 8 12

NA50 (kb) 44 33 39 24 20 14 9 10 8 3

Longest contig (kb) 113 133 119 114 108 109 93 61 50 39

Genome fraction (%) 76.3 69.5 62.4 56.7 49.1 39.7 29.9 22.2 15.7 10.9

No. genes (out of 3105) 2160 1950 1777 1533 1219 939 710 521 357 214

P. heparinus

Misassemblies 1 2 6 11 11 13 26 27 17 12

NA50 (kb) 185 207 165 96 70 27 12 4 2 1

Longest contig (kb) 946 410 426 307 337 379 225 102 34 32

Genome fraction (%) 97.8 96.6 94.3 88.4 82.5 71.3 57.6 40.4 24.9 12.1

No. genes (out of 4339) 4148 4038 3855 3524 3133 2401 1779 1125 548 189

P. marinus

Misassemblies 9 9 3 3 5 2 1 0 1 0

NA50 (kb) 101 63 104 43 21 9 8 12 1 0

Longest contig (kb) 215 150 136 74 58 24 19 12 1 0

Genome fraction (%) 79.6 67. 51.9 38.7 25.7 13.2 4.2 0.9 0.3 0.0

No. genes (out of 1732) 1276 1061 846 646 399 192 55 15 3 0

aA fraction 1/2m (for m = 0‚ . . . ‚ 9) of the reads were selected at random from each genome. For each fraction, aggregate assembly

statistics are shown in the assembly statistics section, and a breakdown of the same assembly by genome is shown in subsequent

sections (using the contigs or blocks that map to that genome).
bOnly contigs of length ‡ 500 contributed to the statistics.
cA multispecies contig is defined as a contig that aligns to multiple genomes (at least 10% of its length aligns to one of the genomes

and at least 10% to another one) but cannot be aligned to a single genome. Such contigs represent assembly errors. This table illustrates

that SPAdes generated very few multispecies contigs.

726 NURK ET AL.

partitioning contigs into four groups by GC content is usually sufficient to attribute the contigs to the

various genomes. In the case of genomes with similar GC content, one should use more advanced binning

methods developed for metagenomics studies.

6. CONCLUSION

Since 2008, when the first NGS assemblers were released, many excellent assemblers have become

available. Since most of them use a de Bruijn graph approach, they often generate rather similar assemblies,

at least for bacterial projects. Recent developments in single-cell genomics tested the limits of conventional

assemblers and demonstrated that they all have room for improvement. Our benchmarking illustrates that

single-cell assemblers not only enable single-cell sequencing but also improve upon conventional as-

semblers on their own turf.

7. APPENDIX A: CHIMERIC EDGES

7.1. Finding edges with zero flow in all circulations

As was shown in Section 2.3, an edge e such that f (e) = 0 in all circulations is likely to be a false edge. In

most cases, e will be chimeric. Thus, one can test if an edge is chimeric by setting its lower capacity to 1

and checking if there exists a circulation in the resulting network. Below, we describe a faster algorithm for

finding chimeric edges.

We say that an edge e belongs to a circulation f if f (e) > 0. Let f be a circulation in a network G (with

lower and upper capacities on each edge). A function h is also a circulation in G if and only if h - f is a

circulation in the residual network of f. (See Cormen et al., 2009, paragraph 26.2, for background on

residual networks.) Thus, an edge e belongs to a circulation if and only if either (i) e belongs to circulation f

or (ii) e belongs to a circulation in the residual network of f. Since lower capacities in the residual network

do not exceed 0, edge e belongs to a circulation in the residual network of f if and only if it belongs to a

cycle formed by the edges in this network. The edges that do not belong to any cycle are exactly the ones

that connect vertices from different strongly connected components of the residual network of f.

Table 5. SPAdes Assemblies of a Simulated Mini-Metagenome Consisting of E. coli, M. ruber,

P. heparinus, and P. marinus, Using all Reads from Three of the Genomes and a Fraction

of the Reads from the Fourth

Assemblya

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

Assemblies using fractions of M. ruberb

Multi-species contigs 0 0 0 0 0 0 1 1 1

Misassemblies 14 6 8 11 13 14 14 17 11

NA50 (kb) 47 45 27 15 11 10 7 4 2

Longest contig (kb) 137 120 118 106 114 114 62 45 49

Genome fraction (%) 70.0 63.7 58.3 52.4 43.0 34.2 27.1 21.5 16.7

No. genes (out of 3105) 1973 1797 1585 1327 1022 822 618 464 330

Assemblies using fractions of P. heparinus

Multi-species contigs 0 0 1 1 0 2 0 0 0

Misassemblies 2 5 8 12 19 23 14 19 15

NA50 (kb) 163 165 131 87 33 11 3 2 1

Longest contig (kb) 426 439 396 339 333 227 89 40 33

Genome fraction (%) 96.6 94.0 88.7 81.6 71.2 56.7 40.6 24.5 12.9

No. genes (out of 4339) 4043 3815 3527 3116 2488 1752 1113 534 228

aWe used all reads from three of the genomes and a randomly selected fraction 1/2m (for m = 0‚ . . . ‚ 9) of the reads from the fourth

(M. ruber or P. heparinus).
bThe assemblies using fractions of the M. ruber dataset are separate from the assemblies using fractions of the P. heparinus dataset.

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 727

Thus, edges that do not belong to any circulation in network G can be found as follows: (1) Find an

arbitrary circulation f. (2) Find the edges that do not belong to f nor to any cycle in the residual network of f.

Step 1 requires a single run of a Ford-Fulkerson max-flow search algorithm (Ford and Fulkerson, 1962).

Step 2 requires a single run of the Kosaraju-Sharir linear-time algorithm (Aho et al., 1983), which searches

for strongly connected components.

With only slight changes, the same algorithm can be applied independently for each component, re-

sulting in the long-edge breaking procedure described in Section 2.3.

The chance of the procedure failing for some component increases with the size of the component.

During our experiments, no component with more than 100 vertices could be successfully processed by the

algorithm, so we apply this algorithm only for components smaller than this.

It can be shown that in this setting, the max-flow search takes only O(jVjjEj2) time, where jEj and jV j
respectively are the numbers of edges and vertices in the component rather than in the whole graph. With

jVj bounded by 100, this procedure becomes practically linear for the whole graph.

7.2. Examples of chimeric edges and critical cuts

Bankevich et al. (2012) described a simple rule for identification of chimeric edges that we restate as

follows: An edge (u, v) with lower capacity 0 is chimeric if (i) u has exactly one incoming edge with upper

capacity 1; (ii) u has at least one outgoing edge with lower capacity 1; and (iii) v has at least two incoming

edges [including (u, v)]. We remark that under conditions (i) and (ii), the edge (u, v) is a crossing edge for a

critical cut-set cut({u}) and thus also satisfies the criteria defined in the main text.

This rule, while useful, identifies only a fraction of chimeric edges. Below we describe some other (more

complex) subgraphs of the assembly graph for which the algorithm from Bankevich et al. (2012) fails while

the algorithm from the current article succeeds. While condition (iii) is not related to the cut-set criteria

defined in the main text, it is still useful to filter false positives in chimeric edges detection: if (u,v) is

chimeric, the genome path must enter v through another edge, and thus, v must satisfy (iii). Hence, in each

of the cases described below, we also add condition (iii) for vertex v.

Let u1‚ . . . ‚ u‚ . . . ‚ ul be a path in the assembly graph and (u, v) be an edge with lower multiplicity 0 (Fig.

6a). We require that u s u1, u s ul, and v is not on the path. Consider a cut-set cut(U) with

U = fu2‚ . . . ‚ ul - 1g. If (i) the upper capacity of the edge (u1, u2) is 1, (ii) the lower capacity of the edge (ul - 1, ul)

is 1, and (iii) the edge (u1, u2) is the only incoming edge in U, then cupper(U) = clower(U) = 1. Thus (u, v) is a

crossing edge for a critical cut-set cut(U), implying that (u, v) is chimeric. This approach removes 99 out of

117 chimeric edges in the assembly of the E. coli dataset.

Another common situation is when, for a vertex u, there exists one incoming edge (a, u) and two

outgoing edges: (u, v) with lower capacity 0 and (u, b) with lower capacity 1 (Fig. 6b). In this case, we

apply the following approach to test whether the edge (u, v) is chimeric. First, we remove the edge (u, v)

and condense the edges (a, u) and (u, b) into a single edge (a, b), which we artificially declare as long. Then

we break all long edges in the resulting graph and analyze the connected component containing vertex a.

Let C be the set of all vertices of the original graph belonging to this component (Fig. 6b). We further

define a set U = C W {u} and consider the cut-set cut(U). If it is critical, then (u, v) is chimeric since it is a

crossing edge for this cut. This approach removes 78 out of 117 chimeric edges in our E. coli dataset.

Combining all our methods removes all but four chimeric connections in our E. coli dataset.

a b

FIG. 6. (a) Edge (u, v) is classified as chimeric since it is a crossing edge for a critical cut. (b) Removal of edge (u, v)

reveals a connected component C (after breaking long edges) with the number of incoming long edges exceeding the

number of outgoing long edges by 1. This component reveals that (u, v) is a crossing edge in a critical cut.

728 NURK ET AL.

APPENDIX B: BULGES

8.1. Search for local blobs

Let G be a graph. A subset B of the vertices of G is called well localized if for every x 2 B,

(1) Either all incoming edges of x come from vertices of B, or they all come from vertices of B.

(2) Either all outgoing edges of x go to vertices of B, or they all go to vertices of B.

A vertex of S whose incoming edges all come from vertices of B is called a source of a well-localized set

B. Similarly, a vertex of B whose outgoing edges all go to vertices of B is called a sink of a well-localized

set B.

A well-localized set B such that its induced subgraph is a DAG with a single source s can be viewed as a

generalization of a blob defined in Section 3. We refer to such sets B as local blobs.

For each vertex s 2 G, we are interested in a local blob with source s that satisfies the following two

conditions:

D1. It contains a bulge (i.e., at least one sink is connected to the source with multiple paths);

D2. It contains a proper skeleton, which is a directed subtree of G satisfying additional properties that

will be described in appendix section 8.2.

We define the set D(s) of vertices dominated by vertex s by the following recursive rule: s 2 D(s)
and x 2 D(s) if all the parents of x in G are in D(s), and there is no edge in G from x to s. It is easy to

see that the subgraph of G induced by D(s) is a DAG and for any local blob B with source s, we have

B�D(s).

A vertex v 2 G is called interfering with a set of vertices B if v =2 B and there exist edges (x, v) and (x, y)

with x‚ y 2 B.

Let I(B) be the set of all vertices in G interfering with B. It is easy to see that B is a well-localized set if

and only if I(B) is empty.

Consider a vertex s 2 G and a set B0�D(s) containing s. Let Closure(B0, s) be the minimal local blob

with source s that contains B0. It is easy to see that the intersection of two local blobs is also a local blob, so

Closure(B0, s) is uniquely defined.

Suppose a vertex u is interfering with B0; then it is easy to see that all local blobs that contain B0 must

contain u and also must contain all paths from s to u. Thus one can find Closure(B0, s) (or determine that it

does not exist) using the procedure shown in Algorithm 1.

Algorithm 1: Closure

1: procedure Closure(B0, s)

2: global G 8 Graph G is used implicitly in the operations below.

3: B) B0

4: if I(B) = ; then return B

5: else if I(B) contains a vertex from outside of D(s) then

6: Closure(B0,s) does not exist and the search terminates.

7: end if

8: Take an arbitrary vertex u from I(B).

9: Add u and vertices that belong to all paths from s to u to B.

10: return Closure(B, s)

11: end procedure

On each recursive call of the procedure, we have Closure(B) = Closure(B0) and B is a strictly larger

set than B0. Thus, the procedure will either stop and report that Closure(B0, s) does not exist, or else I(B)

will become empty, in which case B is a minimal local blob with source s that contains B0.

8.2. Construction of skeleton trees

In this section, we give an algorithm for finding a certain directed tree (called a skeleton tree) in a local

blob. In most cases, a nontrivial local blob consists of a tree formed by genomic edges, plus a number of

erroneous edges. The complex bulge removal algorithm aims to find a tree that could be a tree of genomic

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 729

edges and to project the rest of the edges of the blob on it. It is convenient to describe this algorithm in

terms of conventional (uncondensed) assembly graphs in which each edge has length 1.

We view a complex bulge as an induced subgraph B of the assembly graph such that B is a DAG with a

single source s (i.e., a vertex with no incoming edges) and possibly multiple sinks (i.e., vertices with no

outgoing edges) such that the length of every path between s and a sink is not greater than n = 250. We say

that B is a bulge if it is not a tree, that is, there are multiple paths connecting s with some sink.

For a vertex v, we define height(v) as the length of a longest path in B connecting it to a sink of B. Note

that sinks have height 0.

First, we introduce artificial vertices, so that for every vertex v, the length of each path from v to a sink is

height(v). To do this, we iterate over all edges (v, u) of B and if height(v) - height(u) = m > 1, we split

(v, u) into m subedges: (v, a1), (a1‚ a2)‚ . . . ‚ (am - 2‚ am - 1)‚ (am - 1‚ u), where a1‚ a2‚ . . . ‚ am - 1 are arti-

ficial vertices.

For a DAG D, we define V(D) and E(D) as the sets of vertices and edges of graph D. For a vertex v of D,

we define sinksD(v) as the set of sinks reachable from v in D and CD(v) as the set of all children of v in D.

We define composition of functions, g � f, as (g � f)(v) = g(f (v)).

We define a skeleton of B (Fig. 7) as a pair (T, f) such that:

(1) T is a directed tree. The vertices of T are a subset of the vertices of B. This subset must include the

source and all sinks of B. The edges of T are any directed edges formed from these vertices. We do

not require that the edges of T be edges of B but if they are (i.e., T is a directed subtree of B), we call

the skeleton (T, f) proper.

(2) f: B / T is a projection of vertices of B onto vertices of T (i.e., f is surjective and f � f = f). In

particular, f is the identity when restricted to the vertices of T.

(3) f maps vertices consistently with edges, that is for each edge (u‚ v) 2 B, we have that (f (u), f (v)) is an

edge in T. This property allows us to extend f to the set of edges by defining f ((u, v)) = (f (u), f (v)). It

further implies that for each vertex v, we have f (CB(v))�CT (f (v)).

Lemma 1. Let (T, f) be a skeleton of B. Then the following properties hold:

(a) f preserves connectivity: if a vertex v is connected to a sink t with a path in B, then f (v) is connected

to f (t) = t by a path in T, i.e., sinksB(v)� sinksT (f (v)) for any vertex v of B.

(b) f preserves heights: height(f (v)) = height(v).

(c) For any two distinct vertices v1 and v2 of the same height in T, we have sinksT (v1) X sinksT (v2) = ;.
(d) If (T, f) is proper, then for any vertex u of T, we have sinksB(u) = sinksT(u), which further implies

that sinksB(f (v)) = sinksT (f (v)) for any vertex v of B.

a b c

FIG. 7. (a) Graph B. Vertices of the graph are iteratively removed and projected (with mapping g) to form a tree (b).

Blue ellipses show groups of vertices that were projected onto the same vertex; g maps each vertex of B to the ellipse

that contains it. (b) A representation of all skeleton trees of B. Each skeleton tree is formed by selecting one vertex of B

from each ellipse and connecting the selected vertices by the same edges that connect the ellipses; these are not

necessarily edges of B, however. (c) Thick edges denote a proper skeleton of graph B; this is a skeleton of B that is also

a subtree of B. This was constructed by finding an embedding of panel (b) into graph B.

730 NURK ET AL.

Proof. Conditions (a) and (b) automatically follow from consistency of mapping of edges and vertices,

while (c) is true by virtue of T being a tree.

To prove (d): since T is a subtree of B, for any vertex u of T, we have sinksT (u)� sinksB(u). On the other

hand, (a) implies sinksB(u)� sinksT (u). Thus, sinksB(u) = sinksT (u). Finally, for any vertex v of B, we

have u = f (v) is a vertex of T, so sinksB(f (v)) = sinksT (f (v)).

Eliminating a complex bulge means that we replace B with a proper skeleton. Figure 7 illustrates a graph,

all of its skeletons, and a proper skeleton.

We will construct a proper skeleton in two steps. First, in Algorithm 2 (ConstructSkeleton), we

construct a skeleton (S, g). Then, in Algorithm 3 (ConstructProperSkeleton), we construct an

embedding j of S into B such that (j(S), j � g) is a proper skeleton.

Algorithm 2: ConstructSkeleton

1: procedure ConstructSkeleton(B)

2: S) B

3: for all vertices v 2 B do
4: g(v)) v

5: end for

6: for k) 1 / height(s) do

7: for all ordered pairs of vertices u s v in S with height(u) = height(v) = k do

8: if CS(u)�CS(v) then

9: Replace every edge (w, u) in S with an edge (w, v).

10: Remove vertex u from S.

11: for all vertices w such that g(w) = u do

12: Redefine g(w)) v

13: end if

14: end for

15: end for

16: return (S, g)

17: end procedure

8.2.1. Constructing a skeleton. In the ConstructSkeleton algorithm, we construct a skeleton of a

given DAG B by iteratively compressing B and eventually producing a pair (S, g) where S is a DAG and g is

a mapping of B onto S. From the description of the ConstructSkeleton algorithm, it is clear that g maps

vertices consistently with edges and thus can be extended to the set of edges by defining g((u, v)) = (g(u),

g(v)). Furthermore, g is a height-and connectivity-preserving projection of B onto S. It is also clear that the

vertices of S represent a subset of the vertices of B and contain the source and all sinks. In Theorem 4, we

will show that if B possesses a proper skeleton, then S is a tree, and thus the constructed pair (S, g)

represents a skeleton. Although the constructed pair (S, g) depends on the order in which our algorithms

process the pairs of vertices, we prove below in Theorem 4 that the skeletons are isomorphic, that is S is

unique up to isomorphism. First we develop some needed additional results.

For the remainder of Appendix B, let (S, g) be the result of ConstructSkeleton(B). The following

lemma follows directly from the definition of ConstructSkeleton.

Lemma 2. (a) For any vertex v 2 B, we have sinksB(v)� sinksS(g(v)).

(b) For any vertex v 2 S, we also have sinksS(v) = Wu: g(u) = vsinksB(u).

(c) Since g maps edges and vertices consistently, for any vertex v 2 S, we have CS(v) = g(CB(v)).

Theorem 3. If B has a proper skeleton (T, f), then (a) f � g = f and (b) g � f = g. Thus, (c) the restrictions

of f and g from domain B to f 0: V (S) / V (T) and g0: V (T) / V (S), are inverses.

Proof. (a) Assume that there is a vertex v of B such that f (g(v)) s f (v) and v has minimum height.

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 731

By construction, all sinks of B are also sinks of S, and are fixed points for both f and g. Thus, all sinks t of

B satisfy f (g(t)) = t = f (t) and have height 0. Therefore, the height of v is at least 1.

Let w be a vertex of B such that w 2 CB(v); then g(w) 2 CS(g(v)).
Since CS(g(v)) = g(CB(g(v))), there exists a vertex w0 2 B such that g(w0) = g(w) and w0 2 CB(g(v)).
Since height(w) = height(w0) < height(v), we have f (w) = f (g(w)) = f (g(w0)) = f (w0).
Since f preserves connectivity, we have sinksB(w0)� sinksB(g(v))� sinksB(f (g(v))) = sinksT (f (g(v)))

and sinksB(w0)� sinksB(f (w0)) = sinksB(f (w))� sinksB(f (v)) = sinksT(f (v)).

Since f (g(v)) and f (v) are vertices of T that have common sinks, we have f (g(v)) = f (v), a contradiction.

(b) Assume that there is a vertex v of B such that g(f (v)) s g(v) and v has minimum height.

Since vertices g(v) and g(f (v)) produced by the ConstructSkeleton algorithm are distinct and have

the same height, we have CS(g(v)) 6� CS(g(f (v)).
By Lemma 2(c), we have CS(g(v)) = g(CB(g(v))).

Since all vertices in CB(g(v)) have a smaller height than v, we further have CS(g(v)) = g(CB(g(v))) =
S(g(v)) = g(CB(g(v))) = g(f (CB(g(v)))).

Since (T, f) is a proper skeleton, we have f (CB(g(v)))�CT (f (g(v))) = CT (f (v))�CB(f (v)).

By Lemma 2(c), we have g(CB(f (v))) = CS(g(f (v)).

Combining these formulas gives

CS(g(v)) = g(CB(v)) � g(CB(f (v))) = CS(g(f (v))‚

a contradiction.

(c) Let v 2 S. By (a), g(f (v)) = g(v), and since g is a projection onto S, we have g(v) = v. Thus,

g(f (v)) = v.

Similarly, if v 2 T , then f (g(v)) = f (v) = v. -

Theorem 4. If B has a proper skeleton (T, f), then S is a tree and the restriction of g to g0: T / S gives

an isomorphism of trees.

Proof. Let (v, w) be an edge in T. Since T is a proper skeleton, (v, w) is also an edge in B. Since g: B / S

maps vertices and edges consistently, (g(v), g(w)) is an edge in S. Thus, g maps edges of T to edges of S.

Let (v, w) be an edge in S. By construction, there exists an edge (s‚ t) 2 E(B) such that (v, w) = (g(s),

g(t)). Since v‚ w 2 S, we have (f (v)‚ f (w)) = (f (g(s))‚ f (g(t))) = (f (s)‚ f (t)) 2 E(T).
Let f 0: V (S) / V (T) be the restriction of f to V (S) and f 0: E(S) / E(T) be defined as f 0((v, w)) = (f (v),

f (w)). We have just shown this is well defined.

Thus, both f 0: S / T and g0: T / S are graph homomorphisms. We show that they are inverse homo-

morphisms: for v 2 S, we have g0(f 0(v)) = g(f (v)) = g(v) (by Theorem 3), which equals v (by construction).

Conversely, for v 2 T , we have f 0(g0(v)) = f (g(v)) = f (v) = v (where f (v) = v follows since T is a skeleton

and v 2 T).

Thus, S and T are isomorphic graphs; since T is a tree, so is S. -

Algorithm 3: ConstructProperSkeleton

1: procedure ConstructProperSkeleton(v, B, S, g)

2: j(g(v))) v

3: if v is a sink of B then return j as-is

4: end if

5: for all injective mappings p: CS(g(v)) / CB(v) such that g � p = idCS(g(v)) do

6: if ConstructProperSkeleton(u, B, S, g) succeeds for each u 2 p(CS(g(v))) then
7: Combine all results of ConstructProperSkeleton calls into a single embedding j of RS(g(v)) into RB(v).

8: return the constructed embedding j

9: end if

10: end for

11: report that a skeleton rooted in vertex v cannot be constructed

12: end procedure

732 NURK ET AL.

8.2.2. Construction of a proper skeleton. Given a skeleton (S, g) of B, we describe

ConstructProperSkeleton (Algorithm 3), which finds a proper skeleton (T, f) isomorphic to (S, g) if one

exists, or reports that no such proper skeleton exists. Note that by Theorem 4, if S is not a tree, then B does

not have a proper skeleton, so first we check if S is a tree, and if not, we immediately report that there is no

proper skeleton.

For simplicity, we present the algorithm in recursive form, which has exponential complexity

due to repetitive recursive calls. This can easily be reduced to polynomial time using dynamic

programming.

First we require an additional definition. Let RD(v) be the induced subgraph of a DAG D that con-

sists of all vertices and edges reachable from vertex v 2 D. Note that if (T, f) is a proper skeleton of B,

then for each vertex v 2 T , we have that (RT (v), fv) is a proper skeleton of DAG RB(v) where fv: RB(v) /
RT (v) is the restriction of f to domain RB(v). Moreover, for each vertex v 2 T , tree RS(g(v)) is isomorphic to

RT(v).

For a vertex v 2 B, the algorithm ConstructProperSkeleton(v) determines if it is possible to find a

subtree of B rooted at v that is isomorphic to the subtree of S rooted at g(v). Specifically, the algorithm

either finds an embedding j of tree RS(g(v)) into DAG RB(v), such that (j(RS(g(v))), j � g) is a proper

skeleton, or reports that no such embedding exists.

To find a proper skeleton for B, we invoke ConstructProperSkeleton(s). If it fails, there is no proper

skeleton of B. If it succeeds and returns an injective map j: S / B, then T = j(S) is a subtree of B and (T,

j � g) is a proper skeleton of B.

Below we describe technical points of ConstructProperSkeleton.

To see that the domain of j is S, note that Step 2 maps g(v) 2 S to v 2 B, via j(g(v)) = v. Recursive

invocations in Steps 6–7 make assignments j(w0) = v0, where w0 are descendants of g(v) in S and v0 are

descendants of v in B.

Step 5 considers the ways to map children of g(v) in S to distinct children of v in B (with an additional

constraint to be described below). Such a map is an injection of the form p: CS(g(v)) / CB(v). Since B is a

subgraph of a de Bruijn graph over the 4-letter nucleotide alphabet, CB(v) contains at most 4 vertices. If

jCS(g(v))j > jCB(v)j, then no such p exists, and the procedure will fall through to Step 11 and fail.

Otherwise, the number of injective maps is jCB(v)j!/(jCB(v)j - jCS(g(v))j)! £ 4! = 24; thus, we can easily

iterate p through them.

However, there is a constraint that further reduces the candidates for p. If the algorithm succeeds and

eventually produces j: S / T, the restriction of f = j � g from domain B to domain S is j (since g is the

identity on S). Thus, by Theorem 3(c), j: S / T and g0: T / S (the restriction of g to T) are inverses. In Step

5, this further limits the choices of p to those satisfying g � p = idCS(g(v)).

Theorem 5. If a proper skeleton of B exists, then ConstructProperSkeleton(s) succeeds.

Proof. Let (T, f) be a proper skeleton of B. In Step 5 of ConstructProperSkeleton, if v 2 T , one can

choose p equal to f restricted to CS(g(v)). Since g � f = g and g = id on CS(g(v)), we have g � p = idCS(g(v)).

Since all values of f belong to T, the ConstructProperSkeleton procedure succeeds for all

u 2 p(CS(g(v))), and thus it also succeeds for v. Hence for each vertex v 2 T , ConstructProper-

Skeleton(v) successfully finds a proper skeleton in RB(v). Applying this to the source s of B gives a proper

skeleton of B. -

For the rest of this appendix section, assume that ConstructProperSkeleton(s) succeeds and returns

some embedding j: S / B and let T = j(S).

Lemma 6. T contains the source and all sinks of B.

Proof. Note that for v 2 S, we have g(v) = v and the assignment j(g(v))) v in Step 2 of

ConstructProperSkeleton reduces to j(v)) v.

Also note that as a skeleton, (S, g) must contain the source and all sinks of B.

Since ConstructProperSkeleton(s) succeeds, its initial invocation assigns j(s)) s for the source,

and recursive invocations include assignments j(v)) v for each sink.

Thus, the sources and sinks of B will be in the image of j, which is T. -

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 733

Lemma 7. j � g is a projection from B to T.

Proof. Note that S = g(G) and T = j(S), so the range of j � g is T.

Since we constructed j so that g � j = idS, the restriction g0: T / S is the left inverse of j: S / T, and thus,

j � g0 = idT.

Since j � g is the identity on its range, it is a projection. -

Theorem 8. (j(S), j � g) is a proper skeleton of B.

Proof. The call ConstructProperSkeleton(s) leads to recursive calls to ConstructProper

Skeleton(v) (in Steps 6–7). If ConstructProperSkeleton(s) succeeds, the vertices from the successful

recursive invocations form a tree isomorphic to S, and the maps p are combined over all vertices in this tree

to give an injection j: S / B for which g � j = idS. Thus T = j(S) is a subtree of B and j: S / T is a height-

preserving isomorphism of trees S and T. By Lemma 6, we have that T contains the source and all sinks of

B. By Lemma 7, j � g is a projection from B to T. Thus, (T,j � g) is a skeleton of B. Since T is a subtree of B,

this is a proper skeleton. -

Algorithm 4: RemoveComplexBulges

1: procedure RemoveComplexBulges

2: global G

3: for all s 2 V(G) do 8 s ranges over vertices in the condensed graph
4: B) {s}

5: while B�D(s) do

6: Let v be the closest vertex to s that is in D(s) but not in B

7: B = Closure(s, B W {v})

8: if height of B is larger than 250 or B contains more than 500 vertices then

9: break

10: end if

11: if G[B] is not a tree then 8 Condition D1

12: (S, g)) ConstructSkeleton(B)

13: if S is a tree then 8 Necessary condition for B to have a proper skeleton

14: j) ConstructProperSkeleton(s, G[B], S, g)

15: if the ConstructProperSkeleton procedure succeeded then 8 Condition D2

16: Replace G[B] with a tree j(S) 8 Project bulge onto a proper skeleton

17: break

18: end if

19: end if

20: end if

21: end while

22: end for

23: end procedure

8.3. Removing all complex bulges.

The procedure RemoveComplexBulges (Algorithm 4) presents the whole workflow of bulge removal.

We loop over all vertices in graph G. To find a local blob with source s that satisfies conditions (D1) and

(D2), we start with a well-localized set B = {s} and iteratively expand it by adding the closest vertex v to s

that is outside of B and taking the closure (Steps 6–7). Let G[B] denote the subgraph of G induced by vertex

set B; since G is a DAG, so is G[B]. If G[B] is a tree, it is not a bulge, and we continue trying to expand B

while possible. If G[B] is not a tree, it is a bulge, and we search for a proper skeleton. If it succeeds, we

eliminate the bulge by replacing it with the skeleton found.

To avoid performance issues, the maximum number of vertices in B is additionally bounded by a

constant Bmax (set to 500). It is easy to see that the total time spent on expansion of B is O(Bmax). The proper

skeleton search procedure can be implemented in almost linear time. Since it might be triggered after each

expansion step, the complexity of a blob search from a single vertex is close to O(Bmax
2). Finally, we

remark that the procedure is heuristic since expansion of B is performed in a greedy manner.

734 NURK ET AL.

APPENDIX C: LIKELIHOOD EVALUATION FOR ESTIMATING
GENOMIC DISTANCES

This section completes the likelihood evaluation started in Section 4; see that section for notation. The

true likelihood of the observed data can be computed as follows:

Lg(pl‚ prj(l‚ r) 2 (A‚ B)) = P(n
il

= n�
il
j(l‚ r) 2 (A‚ B))

=
P(n

il
= n�

il
)P(n

il
= n�

il
jl 2 A)

P((l‚ r) 2 (A‚ B))
=

P(n
il

= n�
il

)P(n
il

= n�
il
jl 2 A)

P(r 2 Bjl 2 A)P(l 2 A)
:

Note that P(l 2 A) does not depend on the edge gap g and thus can be omitted from the likelihood. The

probability P(r 2 Bjl 2 A) of the right read alignment to the edge B, given that the left read is aligned to the

edge A, can be calculated as

P(r 2 Bjl 2 A) =
X‘A

i = 1

P(r 2 Bjpl = i)P(pl = i): (2)

Here we assume that we can observe the flanking read alignment, when pl and pr take values from 1 to ‘A and

from 1 to ‘B, respectively. The probability P(pl = i) is proportional to the coverage ci of the position i of A. If

we assume uniform coverage of the edge A, then we can simply put P(pl = i) = 1/‘A. It is easy to see that

P(n
il

= n�
il
jl 2 A) = P(r 2 Bjpl = i) = Fil(‘A + g + ‘B - i) - Fil(‘A + g - i):

This allows us to rewrite (2) as follows:

P(r 2 Bjl 2 A) =
X‘A

i = 1

[Fil(‘A + g + ‘B - i) - Fil(‘A + g - i)]P(pl = i):

From now on, we assume uniform coverage of edge A. We calculate

P(r 2 Bjl 2 A) =
1

‘A

X‘A

i = 1

[Fil(‘A + g + ‘B - i) - Fil(‘A + g - i)]

=
1

‘A

X‘A - 1

i = 0

[Fil(‘B + g + i) - FIL(g + i)]:

(3)

Introduce H(t) =
Pt

x = -1
Fil(x) and its estimate Ĥ(t) =

Pt

x = -1
F̂il(x). Then (3) simplifies down to

P(r 2 Bjl 2 A) =
1

‘A

X‘A - 1

i = 0

[Fil(‘B + g + i) - Fil(g + i)]

=
1

‘A

[H(‘B + ‘A + g - 1) - H(‘B + g - 1) - H(‘A + g - 1) + H(g - 1)]:

ACKNOWLEDGMENTS

P.A.P. was supported by the Government of the Russian Federation grant 11.G34.31.0018. P.A.P. and

G.T. were supported by the U.S. National Institutes of Health (NIH) grant 3P41RR024851-02S1. G.T. was

also supported by the U.S. National Science Foundation (NSF) grant CCF-1115206. R.S. was supported by

NSF grants OCE-1148017, OCE-821374, and OCE-1019242. T.W. and S.R.C. were funded by the Office

of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. R.S.L. and J.S.M.

were supported by the Alfred P. Sloan Foundation grant 2007-10-19. J.S.M. was also supported by NIH

grant 1R01GM095373. R.S.L. was also supported by NIH grant 2R01HG003647.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 735

REFERENCES

Aho, A.V., Hopcroft, J.E., and Ullman, J.D. 1983. Data Structures and Algorithms. Addison-Wesley Publishing

Company, Boston.

Bankevich, A., Nurk, S., Antipov, D., et al. 2012. SPAdes: A new genome assembly algorithm and its applications to

single-cell sequencing. J Comp. Biol. 19, 455–477.

Blattner, F.R., Plunkett, G., Bloch, C.A., et al. 1997. The complete genome sequence of escherichia coli K-12. Science

277, 1453–1462.

Boisvert, S., Laviolette, F., and Corbeil, J. 2010. Ray: simultaneous assembly of reads from a mix of high-throughput

sequencing technologies. J. of Comp. Biol. 17, 1519–1533.

Bresler, M., Sheehan, S., Chan, A.H., et al. 2012. Telescoper: de novo assembly of highly repetitive regions. Bioin-

formatics 28, i311–i317.

Chaisson, M., Brinza, D., and Pevzner, P. 2009. De novo fragment assembly with short mate-paired reads: Does the

read length matter? Genome Res. 19, 336–346.

Chitsaz, H., Yee-Greenbaum, J., Tesler, G., et al. 2011. Efficient de novo assembly of single-cell bacterial genomes

from short-read data sets. Nat. Biotechnol. 29, 915–921.

Compeau, F., Pevzner, P., and Tesler, G. 2011. How to apply de Bruijn graphs to genome assembly. Nat. Biotechnol.

29, 987–991.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., et al. 2009. Introduction to Algorithms. The MIT Press, 3rd ed, Cambridge,

Massachusetts.

Ford, L.R., and Fulkerson, D.R. 1962. Flows in Networks. Princeton University Press, Princeton New Jersey.

Gurevich, A., Saveliev, V., Vyahhi, N., et al. 2013. QUAST: quality assessment tool for genome assemblies. Bioin-

formatics 29, 1072–1075.

Han, C., Spring, S., Lapidus, A., et al. 2009. Complete genome sequence of Pedobacter heparinus type strain (HIM 762-

3 T). Standards in Genomic Sciences 1.

Huttenhower, C., Gevers, D., Knight, R., et al. 2012. Structure, function and diversity of the healthy human micro-

biome. Nature 486, 207–214.

Lasken, R. 2007. Single-cell genomic sequencing using Multiple Displacement Amplification. Curr. Opin. Microbiol.

10, 510–516.

Lasken, R. 2012. Genomic sequencing of uncultured microorganisms from single cells. Nat. Rev. Microbiol. 10, 631–

640.

Lasken, R., and Stockwell, T.B. 2007. Mechanism of chimera formation during the Multiple Displacement Amplifi-

cation reaction. BMC Biotechnol. 7, 19.

Li, K., Bihan, M., Yooseph, S., and Methe, B.A. 2012. Analyses of the microbial diversity across the human micro-

biome. PLoS ONE 7, e32118.

Li, R., Zhu, H., Ruan, J., et al. 2010. De novo assembly of human genomes with massively parallel short read

sequencing. Genome Res. 20, 265–272.

McLean, J.S., Lombardo, M.-J., Badger, J.H., et al. 2013a. Candidate phylum TM6 genome recovered from a hospital

sink biofilm provides genomic insights into this uncultivated phylum. Proc. Natl. Acad. Sci. U. S. A. 110, E2390–

E2399.

McLean, J.S., Lombardo, M.-J., Ziegler, M.G., et al. 2013b. Genome of the pathogen porphyromonas gingivalis

recovered from a biofilm in a hospital sink using a high-throughput single-cell genomics platform. Genome Res. 23,

867–877.

Nelson, K., Weinstock, G., Highlander, S., et al. 2010. A catalog of reference genomes from the human microbiome.

Science 328, 994–999.

Nurk, S., Bankevich, A., Antipov, D., et al. 2013. Assembling Genomes and Mini-metagenomes from Highly Chimeric

Reads, 158–170. In Deng, M., Jiang, R., Sun, F., and Zhang, X., eds. Research in Computational Molecular Biology,

Lecture Notes in Computer Science, Vol. 7821. Springer Berlin Heidelberg.

Peng, Y., Leung, H.C., Yiu, S.-M., et al. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic

sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428.

Pham, S.K., Antipov, D., Sirotkin, A., et al. 2013. Pathset graphs: a novel approach for comprehensive utilization of

paired reads in genome assembly. J. Comput. Biol. 20, 359–371.

Rappe, M.S., and Giovannoni, S.J. 2003. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394.

Rocap, G., Larimer, F., Lamerdin, J., et al. 2003. Genome divergence in two Prochlorococcus ecotypes reflects oceanic

niche differentiation. Nature 424, 1042–1047.

Seth-Smith, H.M., Harris, S.R., Skilton, R.J., et al. 2013. Whole-genome sequences of Chlamydia trachomatis directly

from clinical samples without culture. Genome Res. 23, 855–866.

Simpson, J., Wong, K., Jackman, S., et al. 2009. ABySS: a parallel assembler for short read sequence data. Genome

Res. 19, 1117–1123.

736 NURK ET AL.

Stepanauskas, R. 2012. Single cell genomics: an individual look at microbes. Curr. Opin. Microbiol. 15, 613–620.

Tindall, B., Sikorski, J., Lucas, S., et al. 2010. Complete genome sequence of Meiothermus ruber type strain (21T).

Standards in Genomic Sciences 3, 26–36.

Tringe, S.G., and Rubin, E.M. 2005. Metagenomics: DNA sequencing of environmental samples. Nat. Rev. Genet. 6,

805–814.

Tritt, A., Eisen, J.A., Facciotti, M.T., et al. 2012. An integrated pipeline for de Novo assembly of microbial genomes.

PLoS ONE 7, e42304.

Vyahhi, N., Pyshkin, A., Pham, S., et al. 2012. From de Bruijn graphs to rectangle graphs for genome assembly. In

WABI, 249–261.

Woyke, T., Sczyrba, A., Lee, J., et al. 2011. Decontamination of MDA reagents for single cell whole genome

amplification. PLoS ONE 6, e26161.

Woyke, T., Xie, G., Copeland, A., et al. 2009. Assembling the marine metagenome, one cell at a time. PLoS ONE 4,

e5299.

Wylie, K.M., Truty, R.M., Sharpton, T.J., et al. 2012. Novel bacterial taxa in the human microbiome. PLoS ONE 7,

e35294.

Zerbino, D., and Birney, E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome

Res. 18, 821–829.

Address correspondence to:

Dr. Glenn Tesler

Department of Mathematics

University of California, San Diego

9500 Gilman Dr.

La Jolla, CA 92093-0112

E-mail: gptesler@math.ucsd.edu

ASSEMBLING SINGLE CELL GENOMES AND MINI-METAGENOMES 737

