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ABSTRACT

Next-generation sequencing (NGS) technologies need new methodologies for alternative
splicing (AS) analysis. Current computational methods for AS analysis from NGS data are
mainly based on aligning short reads against a reference genome, while methods that do not
need a reference genome are mostly underdeveloped. In this context, the main developed
tools for NGS data focus on de novo transcriptome assembly (Grabherr et al., 2011; Schulz
et al., 2012). While these tools are extensively applied for biological investigations and often
show intrinsic shortcomings from the obtained results, a theoretical investigation of the
inherent computational limits of transcriptome analysis from NGS data, when a reference
genome is unknown or highly unreliable, is still missing. On the other hand, we still lack
methods for computing the gene structures due to AS events under the above assumptions—
a problem that we start to tackle with this article. More precisely, based on the notion of
isoform graph (Lacroix et al., 2008), we define a compact representation of gene struc-
tures—called splicing graph—and investigate the computational problem of building a
splicing graph that is (i) compatible with NGS data and (ii) isomorphic to the isoform graph.
We characterize when there is only one representative splicing graph compatible with input
data, and we propose an efficient algorithmic approach to compute this graph.
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1. INTRODUCTION

Next-generation sequencing (NGS) technologies allow massive and parallel sequencing of bio-

logical molecules (DNA and RNA) and have a huge impact on molecular biology and bioinformatics

(Metzker, 2010). In particular, RNA-Seq is a recent technique to sequence expressed transcripts, charac-

terizing both the type and the quantity of transcripts expressed in a cell (its transcriptome). Challenging tasks

of transcriptome analysis via RNA-Seq data (Trapnell et al., 2010; Nicolae et al., 2011; Feng et al., 2011) are

reconstructing full-length transcripts (or isoforms) of genes and estimating their expression levels.

A gene is a DNA region coding for a protein, and in eukaryotic organisms it is composed of exons

(coding regions or exon-coding regions) alternated with introns (noncoding regions). DNA and RNA
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molecules are sequences of the nucleotides {a, c, g, t} and {a, c, g, u}, respectively. During transcription,

the DNA sequence of the gene is replicated into a pre-mRNA molecule, substituting each occurrence of

the nucleotide t (in DNA) with the nucleotide u (in pre-mRNA). Then, the splicing phase removes gene

introns from the pre-mRNA molecule, which is transformed into a mature mRNA (messenger RNA), also

called a transcript (Fig. 1). Finally, mRNA is translated into a protein. Notice that only exons are

concatenated in an mRNA. The most recent studies indicate that alternative splicing (AS) is a major

mechanism, generating functional diversity in humans and vertebrates, as at least 90% of human genes

exhibit splicing variants. This process allows production of different mRNAs (or gene isoforms) starting

from a single pre-mRNA molecule by including or excluding different exon-coding regions of the gene.

The annotation of alternative splicing variants and AS events, in order to differentiate and compare

organisms, is one of the central goals in transcriptomics. Alternative splicing is involved in the onset of

several diseases (Caceres and Kornblihtt, 2002). AS can be summarized in the following five events as

reported in Figure 2: (a) exon skipping (one exon may be removed or retained); (b) mutually exclusive

exons (only one of two exons can be retained); (c) alternative donor site (only one prefix of an exon is

retained by changing the right exon boundary); (d) alternative acceptor site (only one suffix of an exon is

retained by changing the left exon boundary); and (e) intron retention (an exon substring is spliced out)

(Sammeth et al., 2008).

The most widely used pipeline in transcriptomics (Trapnell et al., 2012) starts by aligning all input reads

against a reference genome, just as other available pipelines do. We point out that in some cases, such as

highly fragmented or altered data (usually extracted from tumor tissues), reads cannot be reliably aligned

against the reference genome, which is obtained from healthy individuals. At the same time, the use of NGS

data without a reference genome is simply not as advanced, hence justifying our interest.

The most studied problem when a reference genome is unknown is de novo transcript assembly [attacked

with methods such as Trinity (Grabherr et al., 2011), TransAbyss (Robertson et al., 2010), and Oases

(Schulz et al., 2012)]. All those methods are built on the concept of de Bruijn graphs; this construction

results in tools that are computationally expensive and can find only most of the annotated isoforms, while

providing a large amount of nonannotated full-length transcripts that need to be experimentally validated.

In fact, these tools have to employ sophisticated steps to process the de Bruijn graph before computing the

transcripts or the assembly.

Moreover, there is an additional problem. When the reference is unknown, it is impossible to align a

transcript against the genome. Since such an alignment is the standard procedure for determining the gene

structure from the full-length transcripts, that procedure cannot be applied in our setting. In fact, the

computed transcripts should be split into putative exons by identifying common portions, a procedure that

can easily become time consuming for genes that exhibit a complex structure (for instance, the TTN gene

has over 300 exons with an exon-coding region longer than 80,000 bases and more than 40 transcripts).

Another limitation of the current approaches is that they are not well suited to the analysis of the whole

genome, since transcripts should be clustered together according to the originating gene—a task that is

made harder by repeated regions in the genome. From the computational and algorithmic perspective a

theoretical study of the inherent limits of current methods built only on RNA-Seq data is missing. In fact in

this article, we are interested in a theoretical study of a compact representation of AS events in genes that

may be built from RNA-Seq data and of the main computational problems that may arise. Moreover, we are

aiming to make genome-wide analysis a task that is manageable on a standard workstation, providing a

concise result, such as a graph or an easy-to-understand listing of AS events for each gene, even if for the

originating gene the input RNA-Seq data is unknown.

For this purpose, we study and adapt the notion of isoform graphs (Lacroix et al., 2008), which has been

introduced as a tool for studying isoform quantification. Since the original setting is orthogonal to ours,

where abundance is not considered, we need to introduce a different definition in which only unweighted
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FIG. 1. Mechanism of gene ex-

pression. Rectangles A, B, C, and D

represent exons while the thin lines

represent introns.
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isoform graphs are considered. We also acknowledge the influence that a graph representation of splice

variants—the splicing graph (Heber et al., 2002)—has on our approach.

The focus of our article is to reconstruct the isoform graph from NGS data (i.e., RNA-Seq single reads)

without a known reference genome. More precisely, a fundamental question we are going to investigate in

this article is: Under which conditions can the reconstruction of a gene structure be efficiently accom-

plished using only information provided by RNA-Seq data? In order to partially answer this question, we

introduce the formal definition of the computational problem of reconstructing the gene structure from

RNA-Seq data when the solution is represented by an isoform graph, and we study when the problem can

be uniquely or efficiently solved. Moreover, we give some necessary or sufficient conditions to infer the

isoform graph, and finally we describe an efficient heuristic for our problem, even on data violating the

conditions necessary to exactly infer the isoform graph. The proposed algorithm explores a hashing

technique for short reads, and it works in time that is linear in the total size of the input data.

We believe that our article introduces some fundamental problems and definitions that deserve a more

thorough exploration toward the understanding of the possibilities and limitations of computing the distinct

gene structures from which genome-wide RNA-Seq or short reads data have been extracted, without any

knowledge of the reference genome.

2. THE ISOFORM GRAPH AND THE SGR PROBLEM

Briefly, a splicing graph is the graph representation of a gene structure, inferred from a set of RNA-Seq

data, where isoforms correspond to paths of the splicing graph, while splicing events correspond to

specific subgraphs. In this section, first we give a formal (computational) definition of gene. Then we

formalize the problem of reconstructing the splicing graph that represents the gene G whose input is the

RNA-Seq data derived from the transcripts of G.

Let s = s1s2 � � � sjsj be a sequence of characters, which is a string. Then s[i : j] denotes the substring

sisi + 1 � � � sj of s, while s[: i] and s[j :] denote respectively the prefix of s ending with the i-th symbol and the

suffix of s starting with the j-th symbol of s. We denote with pref(s, i) and suff(s, i), respectively, the prefix and

suffix of length i of s. Among all prefixes and suffixes, we are especially interested in LH(s) = pref(s, jsj/2)

and RH(s) = suff(s, jsj/2), which are called the left half and the right half of s1. Given two strings s1 and s2,

Event Resulting alternative isoforms

(a) Exon
skipping A B C

A B C

A C

(b) Mutually
exclusive exons A B C D

A B D

A C D

(c) Alternative
donor site A A B

A B

A A B

(d) Alternative
acceptor site A B B

A B B

A B

(e) Intron
retention A A A

A A

A A A

FIG. 2. Basic alternative splic-

ing events. The exon-coding re-

gions involved in each event are

highlighted in gray. The isoforms

are represented by dashed paths.

1In this article, by x/2 we mean Px/2R.
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their overlap ov(s1, s2) is the length of the longest suffix of s1 that is also a prefix of s2. The fusion of s1 and

s2, denoted by u(s1, s2), is the string s1[: js1j – ov(s1, s2)]s2 obtained by concatenating s1 and s2 after

removing from s1 its longest suffix that is also a prefix of s2. We extend the notion of fusion to a sequence

of strings Æs1‚ . . . ‚ skæ as u(Æs1‚ . . . ‚ skæ) = u(s1‚ u(Æs2‚ . . . ‚ skæ)) if k > 2, and u(Æs1‚ s2æ) = u(s1‚ s2).
In this article we consider discrete genomic regions (i.e., a gene or a set of genes) and their full-length

isoforms or transcript products of the genes along these regions. A gene isoform is a concatenation of some

of the exon-coding regions of the gene respecting their order in the genomic region. Alternative splicing

regulates how different exon-coding regions are included to produce different full-length isoforms or

transcripts, which are modeled here as sequences of blocks. Formally, a block b is an abstract object

containing a string, denoted by s(b), typically taken over the alphabet S = {a, c, g, t}. Notice that two

blocks can contain equal strings.

In our framework, a gene exon-coding region is a sequence (that is, an ordered set) B = Æb1‚ b2‚ . . . ‚ bnæ
of blocks, and the string exon-coding region for B is the string s(b1)s(b2) � � � s(bn) obtained by orderly

concatenating the strings of the blocks in B. Intuitively a gene exon-coding region is the sequence of all the

exon-coding regions on the whole genomic sequence for the studied gene. We define a block isoform f

compatible with B, as a subsequence of B, that is f = Æbi1 ‚ . . . ‚ bik æ where ij < ij + 1 for 1 £ j < k. A sequence

of blocks that are consecutive in some isoforms is called a strip (of blocks). The string of a strip is the

concatenation of the strings of the blocks that compose the strip. We distinguish between classical isoforms

(defined on exons or genomic regions) and block isoforms (defined on blocks). Nonetheless, we will use

interchangeably the terms isoforms and block isoforms whenever no ambiguity arises. By a slight abuse of

language, we define the string of f, denoted by s(f), as the concatenation of the strings of the blocks of f.

Definition 1. An expressed gene is a pair CB, FD, where B is a gene exon-coding region, F is a set of

block isoforms compatible with B, where (i) each block of B appears in some isoform of F; (ii) for each

pair (bi, bj) of blocks of B, appearing consecutively in some isoform of F, there exists an isoform f 2 F

such that exactly one of bi or bj appears in f.

We point out that Definition 1 is mostly compatible with that of Lacroix et al. (2008), where a block is

defined as a maximal sequence of adjacent exons, or exon fragments, that always appear together in a set of

isoforms or variants. One of the main differences between those definitions is that ours explicitly allows

blocks with identical strings.

Given an expressed gene G = ÆB‚ Fæ, the isoform graph of G is a directed graph GI = (B, E), where an

ordered pair (bi, bj) is an arc of E iff bi and bj are consecutive in some isoforms of F. Figure 3 represents

two examples of expressed genes and their isoform graphs. Notice that GI is a directed acyclic graph, since

the sequence B is a topological order of GI. Moreover, isoforms correspond to paths in GI, while the

converse is not always true. For example, in Figure 3b the path Cb1, b2, b3, b4, b6D is not an isoform.

The first aim of the article is to characterize when the isoform graph of an expressed gene can be

reconstructed from a set of substrings (i.e., RNA-Seq data) of the isoforms of the gene.

A B C D

A D

b1 b2 b3

b2

b1 b3

Isoforms

Blocks

Isoform
Graph

(a) Exon skipping.

A B C E

A B D E

b1 b2 b3 b4 b5 b6

b2

b1

b3

b4

b5

b6

(b) Alternative donor sites and mutually
exclusive exons.

FIG. 3. Two examples of ex-

pressed genes and their isoform

graphs. Capital letters correspond to

exons (of ‘‘classical’’ isoforms). In

(a) we have a skipping of the two

consecutive exons B and C of the

second isoform with respect to the

first one. Since there does not exist

an isoform with exactly one of exons

B or C, block b2 corresponds to the

concatenation of the two exons B and

C. In (b) we can find an alternative

donor site between exons A and A0,
which is a prefix of A, and two mu-

tually exclusive exons C and D.
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Notice that the isoform graph is the real gene structure that we would like to infer from data but, at the

same time, we must understand that the transcript data might not be sufficient to determine the isoform

graph, as we have no information on the genomic sequence and on the blocks in particular. Therefore we

aim to compute a slightly less informative kind of graph: the splicing graph GS, which is a directed graph

where each vertex v is labeled by a string s(v). Notice that the splicing graph gives no assurance that a

vertex is a block, nor does it contain any indication regarding whether (and where) the string labeling a

vertex appears in the genomic region.

For instance, let us consider the isoform graph of Figure 3b. Assume that s(b4) and s(b5) share a common

prefix, that is, the exons C and D can be respectively written as XC0 and XD0 (as shown in Fig. 4). Then if

we only know the strings of the isoforms, the splicing graph of Figure 4 could be as plausible as the isoform

graph of Figure 3b. However, observe that the isoform graph and the ‘‘alternative’’ splicing graph are

structurally identical (they are isomorphic) and only the labels change.

Since the case presented in the example is quite common, we formalize it with the notion of

ambiguous block’s borders and ambiguous expressed gene. Let CB, FD be an expressed gene. We say

that a block b 2 B is right-ambiguous if all the blocks succeeding b in the isoforms of F share a (not-

empty) prefix. Conversely, b is left-ambiguous if all the blocks preceding b in the isoforms of F share

a (not-empty) suffix. An expressed gene is ambiguous if some block in B is left-ambiguous or right-

ambiguous.

Clearly both isoform and splicing graphs are directed labeled graphs (isoform graphs are also acyclic).

Even though we distinguish those two kinds of graphs since they semantically represent two different views

of a gene structure, for ease of exposition, whenever no confusion arises, we will treat an isoform graph as a

special class of splicing graph.

In Figure 5 we give a different splicing graph for the same isoforms of Figure 4. Since both graphs are

correct explanations of the input isoforms, the figure points out the need to clearly differentiate between the

notion of the ‘‘true’’ isoform graph and of a ‘‘possible’’ splicing graph. Moreover, Figure 5 allows us to

make another observation. If the first (and topmost) isoform is removed, the splicing graph is still a correct

explanation of the remaining isoforms; therefore, there are some situations that we might not be able to

distinguish. These observations that multiple solutions are possible and multiple instances might have the

same solution are fundamental in our article.

We need a few more definitions related to the fact that we investigate the problem of reconstructing a

splicing graph, which explains a set of isoforms only from RNA-Seqs obtained from the gene transcripts.

Let CB, FD be an unknown expressed gene. Then, an RNA-Seq read (or simply read) extracted from CB, FD is

a substring of the string s(f) of some isoform f 2 F. Notice that we know only the nucleotide sequence of

each read and not its position in s(f). From this observation we can define the notion of splicing graph

compatible with a set of reads.

A B X C E

A B X D E

b 1 b 2 b 3 b 4 b 5 b 6

b 2

b 1

b 3

b 4

b 5

b 6

Isoforms

Blocks

Isoform

Graph

FIG. 4. An example of a different

subdivision in blocks of the ex-

pressed gene of Figure 3b if exons

C and D share a common prefix X

(i.e., C : = XC0 and D : = XD0).
Notice that the isoform graph is

isomorphic to that of Figure 3b but

it is different since the strings of the

blocks do not coincide.
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Definition 2. Let R be the set of all the possible l-long reads extracted from an expressed gene CB, FD,

and let GS be a splicing graph. Moreover, let RS be the set of all the possible l-long reads extracted from the

set PS of all the possible paths of GS. Then GS is compatible with R if R = RS.

Problem 1. Splicing graph reconstruction (SGR) problem

Input: a set R of all the possible l-long reads extracted from an (unknown) expressed gene CB, FD.

Output: a splicing graph compatible with R.

Clearly SGR can only be a preliminary version of the problem, as we are actually interested in

finding a splicing graph that is most similar to the isoform graph of CB, FD. Therefore, we need to

introduce some criteria to rank all splicing graphs compatible with R. The parsimonious principle leads

us to a natural objective function (albeit we do not claim it is the only possibility): to minimize the

weight of the graph, where the weight is defined as the sum of the lengths of strings associated with the

vertices (mimicking the search for the shortest possible string exon-coding region). We call this graph a

minimum-weight splicing graph. In the rest of the article the SGR problem will ask for a minimum-

weight splicing graph.

The definition of the SGR problem is quite strict, as it requires that the set R contains all the reads

extracted from the expressed gene. We point out that this fact has no real practical consequences, as our

algorithm can be applied also to instances in which the set of reads is only a part of all possible l-long reads

extracted from an expressed gene. We also notice that a weaker definition of compatibility is not appro-

priate to our purposes. In fact, if, for example, we only require that the set R is contained in the set RS (and

not equal as we did), then a ‘‘degenerate’’ minimum-weight splicing graph (such as the complete directed

graph with jSj vertices labeled with the symbols of the alphabet) would be a universal solution to the SGR

problem.

Albeit not appearing of practical interest, such a strict problem definition is instead useful to

highlight the intrinsic limits of the reconstruction of a splicing graph starting from the reads, even in

ideal conditions. This is, in particular, the aim of Section 3. Moreover, this formulation of the SGR

problem is also useful for devising an efficient algorithm (presented in Section 4) for the reconstruction

of a minimum-weight splicing graph in an ‘‘ideal’’ scenario. Such an algorithm is then extended in

Section 5 in order to effectively deal with the cases in which the ideal conditions do not hold, without

sacrificing much of its efficiency. Clearly, in this case, we implicitly solve a sort of ‘‘relaxed’’ version

of the SGR problem, where the compatibility to the set of reads and the minimality of the splicing

graph weight is not strictly required. The soundness of our model and of our approach is also em-

pirically supported by an experimentation (Section 6) on synthetic datasets generated from real an-

notated genes.

A B X C

A B X C E

A B X D E
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1

b
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b
X
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b
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b
6
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2

b
1

b
3

b
X

b
5

b
4

b
6

Isoforms

Blocks

Splicing
Graph

FIG. 5. A different splicing graph

for Figure 4. Notice that each block

also contains the nucleotide se-

quence of the corresponding geno-

mic region.
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3. WHEN THE SGR PROBLEM CANNOT BE SOLVED

In this section, we show that if some conditions do not hold, then the isoform graph of the given

expressed gene is not isomorphic to a solution of the SGR problem. Even though such conditions seem to

highlight the limits of our model, our definition of compatibility and our formulation of the SGR problem

are intuitive and ensure ideal conditions, hence what is highlighted are actually the intrinsic limits of any

formulation of the reconstruction problem starting only from the information provided by a set of short

reads. Clearly, our study is intended as a first step toward the theoretical understanding of the limits, as well

as the advantages, of using short reads as a way to investigate the contributions of alternative splicing on

the expansion of the complexity of transcriptome. Additional kinds of information—such as paired end,

existing annotations, and digital expression levels—can and should be exploited to further improve the

accuracy of the predictions. Nonetheless, we still believe that such theoretical results support and advocate

the use of graph structures (like the one we propose) to describe and summarize the AS events occurring in

a set of related full-length isoforms. In fact, those theoretical limits show that de novo reconstruction of

full-length transcripts possibly produces unreliable long-range predictions and, if this uncertainty is not

properly taken into account in the downstream analyses, it could introduce biases in the final findings.

Instead, graph structures summarizing AS events (especially according to our notion of compatibility with a

set of reads) only represent local predictions that are potentially more accurate than long-range predictions,

thus the risk of introducing biases in downstream analyses is reduced. Obviously, depending on the data

and on the final needs, a trade-off between local predictions only and long-range predictions must and

should be reached. However, how this trade-off can be reached is, to the best of our knowledge, an

interesting open question.

The main notion we introduce in this section is that of solvable expressed gene, where we say that an

expressed gene CB, FD is solvable if its isoform graph is isomorphic to a minimum-weight splicing graph

compatible with the set R of all the l-long reads extracted from CB, FD.

The basic, yet important, limits on the possibility to correctly reconstruct a splicing graph, representing

the true (and unknown) isoform graph, are formally presented in the following lemma, which states some

conditions that must be verified in order to have a solvable expressed gene CB, FD.

Lemma 3. An expressed gene CB, FD is not solvable if some of the following conditions hold:

1. CB, FD is ambiguous;

2. there exists a string a of length l – 1 that occurs in the label of two distinct blocks bi and bj;

3. there exists a string a of length l – 1 that occurs twice in the label of a block b.

Proof. We show that if any condition holds, then CB, FD is not solvable because there exists a splicing

graph GS that (i) is distinct from the isoform graph GI, (ii) is compatible with the set R of all the l-long reads

extracted from GI, and (iii) whose weight is strictly smaller than that of the isoform graph. -

Case 1. Let us suppose that B = {b, b1, b2} and F = fÆb‚ b1æ‚ Æb‚ b2æg. Moreover, let s(b1) = xs1 and

s(b2) = xs2, that is, the strings of both blocks b1 and b2 begin with the symbol x, followed by the strings

s1 and s2, respectively. Consider now the splicing graph GS = (V, E) where V = fb0‚ b01‚ b02g and

E = f(b0‚ b01)‚ (b0‚ b02)g, and which s(b0) = s(b)x‚ s(b01) = s1, and s(b02) = s2. (Informally, we moved the symbol

x from the beginning of b1 and b2 to the end of b.) The splicing graph is compatible with the set R of

all the reads extracted from CB, FD and, in addition, we have js(b)j + js(b1)j + js(b2)j > js(b0)j +
js(b01)j + js(b02)j. However, the splicing graph is distinct from the isoform graph of CB, FD, thus CB, FD is

not solvable. A similar example shows that an expressed gene CB, FD having a left-ambiguous block is

not solvable.

Case 2. In this case, an (l – 1)-long string a occurs in the labels of two distinct blocks bi and bj. Hence the

two strings can be expressed as: s(bi) = piasi and s(bj) = pjasj. Then, construct a splicing graph GS starting

from GI as follows. First replace the nodes (i.e., the blocks) bi and bj with the nodes b0i‚ b00i ‚ b0j‚ b00j , and a,

where s(b0i) = pi‚ s(b0j) = pj‚ s(b00i ) = si‚ s(b00j ) = sj, and s(a) = a. Then add the arcs (b0i‚ a)‚ (b0j‚ a)‚ (a‚ b00i ), and

(a‚ b00j ). Let RS be the set of all possible reads extracted from the splicing graph GS. To verify that GS is
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compatible with R, we have to show that R = RS. Since GS is built starting from the isoform graph and

replacing some nodes, the only reads that could be different are the ones extracted from such nodes. More

precisely, by splitting s(bi) and s(bj) over three nodes each (of which one is in common), all the reads in

R are clearly also in RS, and the only reads in RS that could not belong to R would be the ones extracted

from the paths Æb0i‚ a‚ b00j æ and Æb0j‚ a‚ b00i æ. In any case, since a has length l – 1, there cannot exist a read

containing both a suffix of s(b0i) and a prefix of s(b00j ) or both a suffix of s(b0j) and a prefix of s(b00i ). It follows

that RS = R. Moreover, the sum of lengths of the labels of the splicing graph is smaller than that of the

isoform graph. Hence, GI is not a minimum-weight graph compatible with R and, thus, CB, FD is not

solvable. Notice that, if the repeated substring a has length less than l – 1, then it would be possible to

extract some reads combining a suffix of s(b0i) with a prefix of s(b00j ) (or a suffix of s(b0j) and a prefix of s(b00i ))
that are not in R.

Case 3. In this case, an (l – 1)-long string a occurs twice in the string s(b) of a block b 2 B. We must

distinguish two subcases: the two occurrences do not overlap (i.e. s(b) = s1as2as3) or the occurrences

overlap. In the first subcase, as previously done, we derive a splicing graph GS, compatible with R, from GI

by replacing the node b with the nodes {b1, b2, b3, a}, and setting s(b1) = s1, s(b2) = s2, s(b3) = s3, and

s(a) = a. The arcs incident to b are replaced with arcs incident to b1, the arcs starting from b are replaced

with arcs starting from b3, and the new arcs {(b1, a), (a, b2), (b2, a), (a, b3)} are added. As in the previous

case, since GS is built starting from the isoform graph and replacing some nodes, the only reads that could

be different are the ones extracted from such nodes. More precisely, the only reads that could violate the

compatibility would be the ones extracted from the path Cb1, a, b3D. In any case, since a has length l – 1,

there cannot exist a read containing both a suffix of s1 and a prefix of s3. It follows that R is equal to the set

of all the reads extracted from GS and, since the weight of the splicing graph is smaller than that of the

isoform graph, the isoform graph of CB, FD is not a minimum-weight splicing graph compatible with R,

hence CB, FD is not solvable. The subcase where the two occurrences of a overlap is similar to the other

subcase but without the node b2 and with a new arc (a, a). In fact, since any l-long read extracted from the

path Ca, aD is also in R, we have that GS is compatible with R and that its weight is less than that of GI, thus

CB, FD is not solvable. -

Notice that the three cases have different impacts on the differences between the (unknown) isoform

graph and a minimum-weight splicing graph (which is the one computed by any procedure solving the SGR

problem). In fact, if CB, FD is ambiguous, then the isoform graph and the minimum-weight splicing graph

are isomorphic, and the only differences are on the vertices’ labels. This is clearly a minor difference, and

the splicing graph can be considered as (almost) correctly reconstructed. In the other two cases, a long

string that occurs in multiple positions induces quite a substantial difference between the isoform graph and

the splicing graph. This fact clearly shows the intrinsic limits of any approach that only considers the

information provided by a set of reads. However, the constant advances on the sequencing technologies will

soon lessen the strength of these limits, as the reads are quickly becoming both longer and sequenced with

greater accuracy.

4. METHODS

In this section, we propose a fast method for solving the SGR problem based on the efficient use of

hash tables indexing a compact representation of the reads given as input. The basic idea of our method

is that we can find two disjoint subsets U and S of the input set R of reads, where the reads of U, called

unspliced, can be assembled to form the nodes of the splicing graph GS, while the reads of S, called

spliced, are an evidence of a junction between two blocks (hence they form the arcs of GS). Compu-

tationally expensive pairwise comparisons among the reads are avoided by using the hash tables.

Moreover, a compact binary encoding of the reads allows to reduce the memory usage and to exploit the

fast bit-level operations offered by modern hardware architectures. In particular, our method is composed

of three steps: first, reads are preprocessed and classified in three distinct categories, then ‘‘chains’’ of

overlapping reads corresponding to the putative blocks of the expressed gene are computed, and, finally,
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arcs among the putative blocks are added on the basis of the evidence provided by reads not used to form

the putative blocks.

We will show that our algorithm reconstructs the isoform graph of well-expressed genes in polynomial

time, and that such a graph is also a minimum-weight good splicing graph compatible with the set R of all

the possible reads extracted from the expressed gene, where expressed genes that are well-expressed and

good splicing graphs are defined below. In the next section, instead, we discuss how our method can be

extended in order to effectively deal with instances in which the correctness conditions do not hold, and in

Section 6 we give experimental evidence that our algorithm can be successfully applied even on expressed

genes that are not well-expressed, as in most cases it is able to compute a splicing graph highly similar to

the isoform graph.

Definition 4. An expressed gene CB, FD is well-expressed if and only if:

a) CB, FD is not ambiguous;

b) for each edge (bi, bj) of the isoform graph of CB, FD, either outdegree(bi) s 1 or indegree(bj) s 1;

c) the length of each block is at least l;

d) there does not exist an (l/2)-long substring that occurs twice in the set of strings composed by (a) the

strings of the blocks and (b) the strings obtained by concatenating suff(s(bi), l/2 – 1) pref(s(bj), l/2 – 1)

for each arc (bi, bj) of the isoform graph of CB, FD.

Similarly, a splicing graph is good if the string of each vertex has length at least l and if no (l/2)-long string

occurs twice in the set of strings composed of the strings of its vertices and the strings suff(s(vi), l/2 – 1)

pref(s(vj), l/2 – 1) for each of its arcs (vi, vj). Clearly, the isoform graph of a well-expressed gene is a good

splicing graph. We claim that if we require that feasible solutions of the SGR problem are good graphs,

then each instance extracted from an expressed gene that is well-expressed has a unique feasible solution,

which is therefore optimal. In fact, let us call borders all (l/2)-long prefixes and suffixes of each block. Notice

that an (l/2)-long string s is a border iff there exist two reads r1 and r2 such that (i) LH(r1) = LH(r2) = s and

r1[l/2 + 1] s r2[l/2 + 1] or (ii) RH(r1) = RH(r2) = s and r1[l/2] s r2[l/2]. Since the set of borders depends

only on the set of input reads, all feasible solutions (including the isoform graph) share the same set of

borders. A similar argument shows that all feasible solutions share the same set of arcs. Now, let b be any

block of a feasible solution. Let Rb be the sequence of l-long substrings of s(b) and let s1, s2 be two

consecutive substrings in Rb. Notice that s1 and s2 have overlap l – 1. Clearly such common (l – 1)-long

substring appears only in one block of each feasible solution, therefore s1 and s2 appear consecutively in the

same block of each feasible solution. This fact immediately implies that all feasible solutions have the same

set of blocks. As we said, the algorithm is based on a preliminary classification of reads. Formally, reads are

classified as follows.

Definition 5. Let r be a read of R. Then r is spliced if there exists a read r 0 2 R, with r 6¼ r 0, such that

pref(r, k) = pref(r 0, k) or suff(r, k) = suff(r 0, k), for some k ‡ l/2. Moreover, a read r is perfectly spliced if

there exists a read r 0 2 R, with r 6¼ r 0, such that the longest common prefix (or suffix) of r and r 0 is exactly

of length l/2. A read that is not spliced is called unspliced.

Intuitively, for expressed genes that are well-expressed, it should be clear that spliced reads are those

crossing the borders of (the strings of) two consecutive blocks in some isoform, while unspliced reads are

those that occur within (the string of) a single block. (A single small exception to this rule is discussed

while proving the algorithm’s correctness.) In fact, let us suppose, for example, that two isoforms f 0 and f†
of an expressed gene that is well-expressed share a common block b that is then followed by a block b0 in f 0

and by a different block b† in f†. Then, there exists two reads r 0 and r† such that LH(r 0) = LH(r†) = suff

(s(b), l/2) and RH(r 0) = pref (s(b0), l/2) and RH(r†) = pref (s(b†), l/2). The two reads r 0 and r 00 are spliced

(perfectly spliced) and indicate that the vertex of the splicing graph whose string ends with LH(r) should be

connected to the vertices whose strings start with RH(r 0) and RH(r†). Conversely, in an expressed gene that

is well-expressed, the reads extracted from the string of a single block are unspliced, since there exists a

single occurrence of each of their (l/2)-long prefixes, and it is clearly followed by an occurrence of the

corresponding (l/2)-long suffix. As such, we can first distinguish between the reads that will form the

putative blocks (hence the vertices of the splicing graph), and the reads that will form the arcs between the
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vertices of the splicing graph. Our three-step procedure, presented and discussed in the remainder of this

section, formalizes this intuitive idea.

In the following, for convenience, we assume that the reads have length l = 64. This choice, as we

will see, allows us to compactly represent each half of a read with a 64-bit number, which can be then

efficiently managed and processed by modern computer architectures. Nonetheless, our method can be

easily extended to process longer reads in at least two ways. The first way is to extract some (or all) of

the 64-long substrings of each read longer than 64 and to process the resulting set. This strategy

possibly discards some information, but preserves the practical efficiency of operating on 64-bit integer

numbers. The second way, instead, is to use the real length of the reads. In this way, the method does

not actually change and, clearly, becomes less sensitive to the presence of repeated sequences.

However, it would become harder to find short blocks, and the implementation would also suffer some

penalty in terms of efficiency. A strategy that mixes the previous ones is also possible, and different

trade-offs can thus be reached depending on the needs and the characteristics of the dataset to be

analyzed.

4.1. Step 1: read preprocessing and classification

Each 64-long read can be unambiguously encoded by a 128-bit binary number, exploiting the fact that

we can encode each symbol of the nucleotide alphabet S = {a, c, g, t} with 2 bits as follows: enc(a) =
0 = 002, enc(c) = 1 = 012, enc(g) = 2 = 102, enc(t) = 3 = 112. Since such encoding is a one-to-one

mapping between reads and numbers between 0 and 2128 – 1, we will use interchangeably a string and its

binary encoding. Moreover, given a read r, we define left fingerprint and right fingerprint respectively as

the leftmost and the rightmost 64 bits of the encoding of r.

The main purpose of this step is to partition the reads of an input set R into three classes: U, composed of

the unspliced reads, PS, composed of the perfectly spliced reads, and S, composed of the (nonperfectly)

spliced reads. To avoid pairwise comparison, we first construct two hash tables Ll and Lr, both of which are

indexed by 64-bit fingerprints. More precisely, Ll has an entry indexed by each left fingerprint, while Lr

has an entry indexed by each right fingerprint. The entry of Ll, associated with the left fingerprint fl,

consists of a list of all the right fingerprints fr such that the concatenation fl fr is a read in the input set R. The

role of Lr is symmetrical.

The classification of each read is then performed querying the two hash tables. In fact, a read r is

unspliced iff both the entry of Ll indexed by its left fingerprint and the entry of Lr indexed by its right

fingerprint are lists with only one element. Moreover, let fl be the left fingerprint of some reads, let f 0r and f 00r
be two fingerprints in the list of Ll indexed by fl, such that the first character of f 0r is different from that of

f 00r . Then the two reads fl f 0r and fl f 00r are perfectly spliced. The remaining reads, instead, are nonperfectly

spliced.

The time required by this step, including the creation of the two hash tables and the classification of the

reads, is proportional to the number of input reads.

4.2. Step 2: block creation

The procedure BuildBlocks described in Algorithm 1 takes as input the sets U and PS coming from the

partition (computed in the previous step) of the set R of RNA-Seq reads and produces a set BS of (labeled)

putative blocks (corresponding to the vertices of the sought splicing graph) that can be obtained from R.

The putative blocks are built by first looking for a set of maximal chains [part (A) of Alg. 1], and then

merging those which ‘‘significantly’’ overlap [part (B)]. Finally, block labels are refined in order to

correctly manage a special case [part (C)]. We define a chain as a sequence c = Ær1‚ r2‚ . . . ‚ rnæ of unspliced

reads such that RH(ri) = LH(ri + 1) for 1 £ i < n. Moreover, we say that a chain c is maximal if no super-

sequence of c is also a chain. The first part of the procedure composes the unspliced reads in order to form

maximal chains. The algorithm selects (and extracts) a read r of U and tries to find a right extension of r,

that is, another unspliced read r 0 2 U such that RH(r) = LH(r 0). Afterward the algorithm recursively looks

for a right extension of r 0, until such a right extension no longer exists. Then the algorithm recursively

looks for a left extension of r, while it is possible. Finally, the new chain c is labeled with the fusion of its

reads and is added to the set BS.
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Algorithm 1: BuildBlocks(U, PS)

Input: sets U and PS of RNA-Seq reads

Output: set BS of (labeled) putative blocks (representing nodes of a splicing graph GS)

1 BS ) B;

// (A) Compose maximal chains
2 while U s B do

3 Extract (and remove) a read r from U;

4 c ) CrD;

// Extend the chain to the right
5 r 0) r;

6 while there exists a right extension r 00 2 U of r 0 do

7 Append r 0 0 to c and remove it from U;

8 r 0) r 00;
// Extend the chain to the left

9 r 0) r;

10 while there exists a left extension r 00 2 U of r 0 do

11 Prepend r 0 0 to c and remove it from U;

12 r 0) r 00;
13 s(c) ) u(c) ; // Set the label of the chain as the fusion of the reads

14 BS ) BS W {c};

// (B) Merge overlapping chains to form the putative blocks
15 foreach c 2 BS do

16 for i ) 2 to l/2 do

17 f ) s(c)[i : i + l/2];

18 if there exists c 0 2 BS such that s(c0) starts with f then

19 s(c) ) u(s(c), s(c0));
20 BS ) BS y {c0};

// (C)Refine the block labels
21 foreach c 2 BS do

22 if there exists r 2 PS such that s(c)[l/2 – 1 : l – 1] = RH(r) then

23 s(c) ) s(c)[l/2 – 1 :];

24 if there exists r 2 PS such that s(c)[js(c)j – (l – 1) : js(c)j – (l/2 – 1)] = LH(r) then

25 s(c) ) s(c)[: js(c)j – (l/2 – 1)];

26 return BS;

The time required by part (A) is O(jUjl), hence, is linear in the input size. In fact, each unspliced read is

considered only once, and finding the left or right extension of a read r can be performed in amortized

constant time using the left/right fingerprints and the hash tables Ll and Lr. The fusion of the reads is

clearly linear in the total length of the reads, giving the total bound O(jUjl).
Moreover, notice that jBSj £ jUj £ jRj.
In the second part, we merge all pairs of chains that, under the conditions of Definition 4, correspond to

the same block of the expressed gene. This step is necessary because by assembling unspliced reads that

have a l/2 overlap, it may happen that there exists more than one chain representing the same block. In

particular, assuming that the expressed gene is well-expressed, such chains are all the possible l/2 – 1 shifts

of the reads in the block. In this part, for each chain c we extract the substring f = s(c)[i : i + l/2] for

increasing values of i ranging from 2 to l/2, and we determine if there exists a chain c0 whose string starts

with f, exploiting the Ll table. If such a chain c0 is found, then c0 is removed from BS and the string of c is

updated with the fusion of the two strings s(c) and s(c0). The time required by this part is O(jBSjl), since for

each chain we perform O(l) queries to the hash tables.

At the end of the part (B), under the hypothesis that the expressed gene CB, FD from which the reads are

extracted is well-expressed, it is possible to prove that there exists a one-to-one mapping between the set BS

and the set of blocks B. However, the strings associated to the chains (now putative blocks) do not always

correspond to those associated with the (real) blocks. In fact, if a vertex of the isoform graph has indegree

or outdegree equal to 1, then the chain composed in part (A) for that block ‘‘overflows’’ on the left side (if

indegree is 1), on the right side (if outdegree is 1), or on both (if indegree and outdegree are 1). Suppose, for

example, that there exists a vertex bi of the isoform graph such that outdegree(bi) = 1, and that bj is the only
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other vertex such that (bi, bj) is an edge. Then, the reads suff(s(bi), k) pref(s(bj), l - k) with k > l/2 are all

unspliced, even if they cross the blocks’ borders. Intuitively, in that direction, there is no alternative

splicing, as bi is always followed by bj, and the splicing event is only recognized in the opposite direction,

as bj is preceded by bi and (at least) another block bh [recall that in an isoform graph of a well-expressed

gene, for each edge (u, v), we have outdegree(u) s 1 or indegree(v) s 1]. In a well-expressed gene,

evidence of alternative splicing is provided by the reads suff(s(bi), l/2) pref(s(bj), l/2) and suff(s(bh), l/2)

pref(s(bj), l/2), which are perfectly spliced. As a consequence, the chains corresponding to block bi include

some unspliced reads crossing the real block’s borders and, after we merged them to form a putative block,

we needed to trim their string of (exactly) l/2 – 1 characters. This is the aim of part (C) of our procedure,

where the putative blocks are analyzed and, if the right fingerprint (or left fingerprint, respectively) of a

perfectly spliced read matches with an internal part of the associated string, then an (l/2 – 1)-long prefix

(suffix, resp.) is trimmed from the string. In particular, since we know that putative blocks may overflow by

exactly l/2 – 1 characters, each iteration of part (C) requires two queries to the hash tables, hence the

running time is O(jBSj).
We claim that if the gene CB, FD, from which the set R of reads is extracted, is well expressed, then

procedure BuildBlocks (Alg. 1) computes a set BS of blocks equal to set B.

Lemma 6. Let CB, FD be a well-expressed gene. Then Algorithm 1 with input the (preprocessed) set R of

all the reads extracted from CB, FD computes a set BS equal to set B.

Proof. Since R contains all the reads extracted from CB, FD, conditions 4 (d) and 4 (c) imply that, for

each block bi 2 B, there exists at least one read ri 2 U such that ri is a substring of s(bi) and that uniquely

identifies the block itself. By construction, each read ri, which uniquely identifies a block of CB, FD, will also

uniquely identify a block bs of BS. As a consequence, it is easy to see that such unspliced reads induce a

one-to-one mapping between B and BS (in fact, by construction, blocks of BS are composed by ‘‘chaining’’

reads that overlap with l/2 characters, and substrings of length l/2 uniquely identify a single block of B).

We now have to show that the strings of each block in Bs are equal to those of the corresponding blocks

in B. First, notice that, for each b0 2 B such that the outdegree of b0 in the isoform graph is greater than 1,

the reads whose prefix is equal to suff(s(b0), k) for some k > l/2 are not unspliced. (By condition 4 (a), and

since outdegree(b0) > 1, there exists at least two reads with the same left fingerprint and different right

fingerprints.) The same holds for the symmetrical case where indegree(b0) > 1 and, obviously, if the

indegree or the outdegree is equal to 0. As a consequence, the fusion of reads belonging to chains computed

in part (A) of the algorithm, and corresponding to blocks whose indegree and outdegree is different from 1,

is entirely contained in the string of the block. Moreover, since part (A) computes all the maximal chains

contained in b0, after these chains are merged in part (B), the string of the putative block and that of the

corresponding ‘‘real’’ block coincide. The only remaining case is that of blocks b0 2 B where in-

degree(b0) = 1 or outdegree(b0) = 1. Let us consider the case outdegree(b0) = 1 and let b00 be the only other

block of B such that (b0, b00) is an edge of the isoform graph. All the reads rk = suff(s(b0), k) pref(s(b00), l –

k), with l/2 < k £ l are unspliced, since there does not exist other reads with the same left fingerprint [by

condition 4 (d)]. As such, the string of these putative blocks after part (B) ‘‘overflows’’ the real block’s

border by (exactly) l/2 – 1 characters (in fact, k > l/2, thus the longest prefix of s(b00), which is included in

an unspliced read has length l/2 – 1). Since R contains all the reads extracted from CB, FD, and since b0b00 is a

strip, there exists the read r = suff(s(b0), l/2) pref(s(b00), l/2), and such a read is perfectly spliced (by

definition of block, there must exist, in fact, a block b 2 B such that bb00 is a strip, hence the read

suff(s(b)‚ l=2)pref(s(b00)‚ l=2) 2 R). Since the left fingerprint of r occurs in the string of a putative block b0s
at position js(b0s)j - (l - 1), we know that a suffix of s(b0s) (of length l/2 – 1) must be discarded in order to

have that s(b0s) coincides with the string s(b0) of the corresponding block. The case where indegree(b0) = 1 is

symmetrical. -

4.3. Step 3: edge creation

Algorithm 2 computes the arcs of the output graph using the set PS of perfectly spliced reads and the set

BS of putative blocks computed in the previous step. As intuitively explained above, perfectly spliced reads

provide evidence that two putative blocks are linked together in some isoform of the expressed gene. As
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such, a perfectly spliced read r is called a link for the pair of putative blocks (bi, bj), if LH(r) = suff(s(bi),

l/2) and RH(r) = pref(s(bj), l/2). In this case, we also say that bi and bj are respectively left-linked and right-

linked by r.

Given a perfectly spliced read r, we assign to LeftEnd(r) and RightEnd(r) the putative blocks that are,

respectively, left-linked and right-linked by r. In other words, r is a link for the pair of chains (LeftEnd(r),

RightEnd(r)). Moreover, each such pair will be an arc of the graph. Both LeftEnd(r) and RightEnd(r) are

computed in the main cycle. At the end, for each perfectly spliced read r in PS, the arcs of GS are computed

by adding the pair (LeftEnd(r), RightEnd(r)) to the set of arcs ES.

Algorithm 2: LinkBlocks(BS, PS)

Input: set BS (computed by Algorithm 1) and set PS of perfectly spliced reads

Output: set ES of links between blocks of BS

1 ES ) B;

2 Let LeftEnd(r) and RightEnd(r) equal to t for each r 2 PS;
3 foreach c 2 BS do
4 if there exists r 2 PS such that RH(r) = pref(s(c), l/2) then
5 RightEnd(r) ) c;

6 if there exists r 2 PS such that LH(r) = suff(s(c), l/2) then
7 LeftEnd(r) ) c;

8 foreach r 2 PS do
9 ES ) ES W {(LeftEnd(r), RightEnd(r))};

10 return ES

Finally, Algorithm 2 has the ability to handle reads that can link multiple putative blocks by transforming

LeftEnd(r) and RightEnd(r) into sets (due to the fact that the gene might not be well expressed).

We claim that if the gene CB, FD, from which the set R of reads is extracted, is well expressed, then

procedure LinkBlocks (Alg. 2) computes the isoform graph of CB, FD.

Lemma 7. Let CB, FD be a well-expressed gene. Then, Algorithm 2, with input the set BS of blocks

computed by BuildBlocks and the set PS of perfectly spliced reads, computes the isoform graph of CB, FD.

Proof. By Lemma 6, the blocks of BS and their strings coincide with the blocks of the expressed gene

(and their strings). Since R contains all the reads extracted from CB, FD, and since the string of each block

has length at least l, for each arc (b0, b00) of the isoform graph there exists at least a perfectly spliced read r

(in particular, one of them is composed of the concatenation of suff(s(b0), l/2) and pref(s(b00), l/2)) linking

the two blocks. Moreover, by condition 4 (d), such a read is also unique. Since the preprocessing step

correctly identifies all the perfectly spliced reads, and since the procedure iterates on all the putative blocks,

the procedure LinkBlocks computes all (and only) the edges of the isoform graph. -

5. LOW COVERAGE, ERRORS, AND SINGLE-NUCLEOTIDE
POLYMORPHISM DETECTION

In this section, we discuss what happens when the characteristics of the set of reads or of the expressed

genes do not comply with the theoretical requirements discussed in the previous sections. More precisely,

the most critical situation that we have to tackle is suboptimal coverage (i.e., the set of reads does not

contain all the reads that can be extracted from the expressed gene). Other possible issues are errors, single-

nucleotide polymorphisms (SNPs), and repeated sequences. We present some practical solutions to those

problems.

5.1. Low coverage

The initial assumption of our model was the presence, in the input set R, of all the possible l-mers of the

gene isoforms (full coverage). Still, we usually have suboptimal coverage, which affects the construction of

both chains and links. In other words, we now face the problem of having a set R, where some reads are
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missing (low coverage). Notice that the typical effect of suboptimal coverage is that a chain is shortened or

split. Anyway, it is possible to overcome this problem with a simple variant of the chain-merging step of

Algorithm 1 that considers all the possible shifts of a chain (and not only the first l/2 – 1 shifts). The chain-

merging step needs only to find two reads, one for each chain, with overlap at least l/2.

The situation is a bit more complex when there are not enough perfectly spliced reads (which are used to

create arcs). We infer a set of additional reads to be added to the input set, obtaining an enriched set, so that

the actual junction can be determined. To this aim we have designed a procedure to reconstruct from R the

nucleotide sequences around block junctions, from which we extract the additional reads. Basically, the

algorithm clusters the reads spanning a block junction in order to compose sequences that describe the

junction.

Let us consider a set P = fp1‚ . . . ‚ png of n strips of the isoform graph, sharing the first m blocks

b1‚ . . . ‚ bm, such that 1pm < min (jp1j‚ . . . ‚ jpnj). That is, the sequences s(pi) have a common (proper)

prefix pc = s(b1) . . . s(bm). By denoting s(pi) = pcsc
i , then we call left junction-description a set

D = fps1‚ . . . ‚ psng of n sequences, where p is some suffix of pc, and si is some prefix of sc
i (Fig. 6). The

definition of a right junction-description is symmetrical and describes a set of n strips sharing the last m

blocks. More precisely, a right junction-description is a set fp1s‚ . . . ‚ pnsg of sequences having a proper

common suffix s. In the following, we will denote description prefix (resp. description suffix) as p (resp. s).

We want to reconstruct putative left and right junction-descriptions from the set R of the input RNA-Seq

reads. We will use the term junction-description to denote any set of sequences sharing a common prefix

(or suffix).

Given two reads r and r 0, we say that r 0 is a left half-overlap (or simply lh-overlap) of r, if LH(r 0) occurs

in r at some position k. Let us consider a set Hr = fr1‚ . . . ‚ rqg of lh-overlaps of r occurring at positions

k1‚ . . . ‚ kq (not necessarily distinct). Let p be the longest prefix of r such that pref(ri, jpj – ki + 1) is equal to

suff( p, jpj – ki + 1), for 1 £ i £ q. In other words, p is the longest prefix of r overlapping to each ri in Hr. If

jpj < l, then we say that position jpj + 1 is a putative junction on r, and we call Hr a left junction-set related

to r (Fig. 7). Hence jpj ‡ l/2. It is also easy to derive, starting from Hr, a junction-description referred to as

Dr. Let us consider the set S0 = fs01‚ . . . ‚ s0qg of the suffixes s0i such that ri = pis
0
i ( pi is the prefix of ri

overlapping with p), and let S = fs1‚ . . . ‚ sng be the largest subset of S0 such that si is not a prefix of sj for

i s j. Then, the set Dr = fps1‚ . . . ‚ psng is obtained by concatenating p to each one of the sequences in S. It

is easy to extend the notion of junction set, related to a read, to any set of sequences (of at least l

nucleotides) that are lh-overlaps of that read. The definitions of rh-overlap, right junction-set and right

junction-description are symmetrical. In our framework, junction-sets and junction-descriptions represent

putative block junctions.

Isoforms
A B C

A C

Blocks b1 b2 b3

...ggacatgatagtgatgcgg... gcatccccaa...

Strips

Left junct.-descr. D={ ggacatgatagtgatgcgg, ggacatgataggcatccccaa }

FIG. 6. Example of left junction-

description D composed of two se-

quences; p1 and p2 are two strips

sharing the block b1. The descrip-

tion prefix is represented by letters

in black.

FIG. 7. Example of left junction-

set Hr = {r1, r2, r3} and junction-

description Dr related to read r. The

longest prefix p and the putative

junction on r are underlined and in

bold, respectively.
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For simplicity, we will deal only with the left side, since the right side is symmetrical. Notice also that

searching a read in R, by its left or right half, can be performed in constant time, as described in Section 4.

Initially, each input read r is labeled as free and is associated with an empty junction-description Dr. The

first step consists of iterating over R. For each free read r, let Hr = fr1‚ . . . ‚ rqg be the subset of R composed

of the lh-overlaps of r. The time for computing Hr is linear in l plus the size of Hr. In fact, we scan r from

left to right and, for each position k, retrieve all the reads having the left half occurring at k. Each lh-overlap

ri is then replaced in Hr by its set Dri
, if this set is not empty (i.e., ri has been previously processed, and a

putative junction has already been detected on it). In fact, it is easy to show that the sequences in Dri
are lh-

overlaps of r. Finally, if Hr is a junction-set for r, a left junction-description Dr is derived. In this case, each

ri is tagged as included into a junction-set, and r is tagged as the origin of a junction-set.

At the end of the first step, every Dr of an origin read gives a left junction-description. By construction,

the sequences in Dr have a length of at most (3l/2 – 1) and share a common prefix p, such that l/2 £ jpj £
(l – 1). Since the procedure iterates on R and, for each read, the set Hr is retrieved in linear time l, the

computational time of this step (in the worst case scenario) is proportional to the size of R and the overall

size of the sets Hr. Anyway, since in normal datasets the number of origin reads r, for which the set Hr is

not empty, is very small with respect to the entire set R, the overall time required by this step is mainly

dependent on the size of R.

Afterward, since not all the reads describing a putative junction are included in the junction-description

(in fact, for example the rightmost ones are not lh-overlapping the origin read), the procedure tries to extend

the junction-descriptions by looking for free reads that overlap with the description prefix and including all

of them. Moreover, in order to guarantee that there are no junction-descriptions that represent the same

putative junction, we merge all the junction-sets having an overlapping description prefix.

Finally, the produced nonmergeable junction-descriptions fD1‚ . . . ‚ Dng must be validated. Without

entering into detail, the procedure tries to discard all the fake description sequences originated by situations

violating the conditions of well-expressed genes (see Definition 4) in order to enrich the input set R without

introducing new artifacts in the reconstructed splicing graph. As anticipated before, all the l-long substrings

of the computed description sequences are added to the input set R.

5.2. Errors and SNPs

Another issue that could cause some problems in the computation of the splicing graph is the presence of

errors and SNPs in the input reads. As for the lack of reads analyzed in the previous section, errors affect

the sets of unspliced and spliced reads, since reads may be misclassified, thus inducing our method to

shorten or split gene blocks.

Luckily, the same variant of chain-merging step of Algorithm 1 mentioned in Section 5.1, which

considers all the possible shifts of a chain, is only partially affected by errors. In fact, as long as there are

only a few errors, there exist some overlapping error-free unspliced reads that span the same block as the

erroneous read. Those unspliced reads allow for the correct reconstruction of the chain spanning the block,

while the ones containing the errors will lead to chains that will remain isolated (and can be discarded).

Moreover, the fact that the definition of perfectly spliced reads asks for two reads with the same left (or

right) fingerprint makes our approach more resistant to errors. In fact, a single error is not sufficient to

generate a new perfectly spliced read and so a new arc in the splicing graph. On the other hand, if an error

occurs in a perfectly spliced read, this one (and possibly the perfectly spliced read sharing a half sequence

with it) can be misclassified, and the corresponding arc(s) will be missing. In any case, this problem can be

solved by using the same procedure that was used for the low coverage case (see Section 5.1).

Finally, we point out that our approach could help in SNP detection. The main problem is being able to

distinguish between errors and SNPs. Let us consider an example that illustrates a strategy for overcoming

this problem. Let e be a block containing an SNP; that is, s(e) can be yaz or ybz, where y and z are two

strings and a, b are two characters. Moreover, since this situation is an SNP, roughly the same number of

reads support yaz as ybz, most of which are classified as spliced (although they are not supporting an AS

event). Therefore, there are two reads r1 and r2 such that r1 supports yaz while r2 supports ybz, and

LH(r1) = LH(r2) or RH(r1) = RH(r2). As anticipated, r1 and r2 are two spliced reads supporting the SNP.

This case can be easily and quickly detected by examining the list of reads sharing the left (or right)

fingerprints and then looking for a set of reads supporting the SNP (again exploiting the fact that the

fingerprint of half of the reads in the set is known).
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Moreover, as for the error scenario, the presence of SNPs in a node of the isoform graph may produce the

splitting of the corresponding node of the splicing graph into several (sub)nodes. These latter nodes are

usually isolated except for the first (which corresponds to a prefix of the isoform block) and the last (which

corresponds to a suffix of the isoform block) ones. To overcome this issue we have designed a post-

processing method that tries to link these nodes of the splicing graph into a single one.

This procedure starts by looking for pairs of perfectly spliced reads, having a Hamming distance

(denoted as dH) of 1 (caused by the presence of an SNP). Then, it tries to fuse both the elements of a pair

with the elements of another one having an overlap of l – 1 each in order to create two strings of length

l + 1 each (with Hamming distance of 1). More precisely, given two pairs of perfectly spliced reads

fr1‚ r2g‚ fr01‚ r02g having a Hamming distance of 1 (i.e., dH(r1‚ r2) = dH(r01‚ r02) = 1), the post-processing

checks whether ov(r1‚ r01) = l - 1 and ov(r2‚ r02) = l - 1 or vice versa (i.e., ov(r1‚ r02) = l - 1 and ov(r2‚ r01) = l - 1)

and, if so, it fuses those pairs of reads. The result is a pair of strings of length l + 1 each, having a Hamming

distance of 1, in which the differing characters are exactly at the middle of the strings. This also means that

these two strings have the same (l/2)-long prefix and the same (l/2)-long suffix. In fact, the method verifies

if there are two nodes of the splicing graph that can be linked by those prefixes and suffixes, and if so, it

creates the corresponding arc (keeping track of the SNP). Finally, the newly created linear paths are

contracted to a single node, in which the sequence label contains both of the different characters. In this

way, the nodes of the splicing graph that are split into more (sub)nodes due to the presence of SNPs can

have a correct correspondence to nodes of the isoform graph.

5.3. Repeated sequences

It is well known that repeated sequences present challenging computational issues in the analysis of both

the genome and the transcriptome using NGS technologies, which are still characterized by short read lengths

(Treangen and Salzberg, 2011). We previously showed that our method is not sensitive to repetitions shorter

than l/2, as the chain construction step is based on finding (l/2)-long identical substrings in the input reads. If

there is a repeated sequence longer than l/2, this step could produce a putative block that merges (parts of) two

‘‘real’’ blocks. However, if the coverage is not full (i.e., the input set does not contain all the reads that could

be extracted from the expressed gene), maybe no pair of reads that cover the two occurrences of the repetition

also share the same fingerprint, hence, the two blocks containing a common substring are not merged into a

new (wrong) vertex of the splicing graph. This fact is highly dependent on the distribution of reads along the

sequenced transcript and, as such at this point, provide strong theoretical guarantees about the behavior of our

method when the gene is not well expressed and the read coverage is low. Nonetheless, the following

experimental section will provide some empirical evidence that our method is not heavily affected by the

presence of repetitions longer than l/2 (which are present in a dataset of real genes). In particular, the absence

of some repeated fingerprints in the low coverage scenario explains (at least partially) the slightly better

overall accuracy that we obtain in the low-coverage scenario as compared with the full coverage one.

Moreover, notice that the increasing read length of newer (and future) sequencing technologies will lessen the

impact of repetitions on the accuracy of our reconstruction since the greater the read length, the longer the

fingerprints, and, thus, the number of repetitions that we are not able to disambiguate decreases.

We remark that de novo transcript assembly methods based on de Bruijn graphs are highly sensitive to

repetitions longer than the chosen k-mer length, as they must merge k-long repetitions into a single vertex.

Moreover, memory constraints often limit the largest k-mer length that can be processed and, thus, the ability to

disambiguate longer repetitions. Procedures aimed at ‘‘resolving’’ cycles of the de Bruijn graphs due to repeated

sequences are able to correctly handle some cases, but they also increase the computational burden. Finally, we

note that default k-mer lengths are usually much smaller than l/2, hence, these methods are sensitive to repetitions

that our method correctly processes. For example, Trinity (Grabherr et al., 2011), one of the most used (and highly

regarded) de novo transcriptome assembly tools, fixes the k-mer length to 25 and cannot be changed by the user.

6. EXPERIMENTAL RESULTS

The implementation of our method ‘‘RNA-seq-Graph’’ is available on the authors’ website under the

AGPLv3. A primary goal of the method and of the implementation was to use only a limited amount of

memory, thus the program can be executed on standard workstations, even for quite large input sets.
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The experimental validation of our method has been performed on simulated RNA-Seq data obtained

from a set of 112 genes extracted from the 13 ENCODE regions used as a training set in the EGASP

competition. [We refer the interested reader to (Guigó et al., 2006) for the complete list of regions and

genes.] Two arguments support our decision to adopt EGASP data for our experimental validation. First, as

the EGASP project was aimed at assessing the accuracy of computational methods to predict protein-

coding genes, the genomic regions they chose should represent the characteristics of the whole human

genome. Hence the results we obtain in this experimental evaluation should be representative of a large

portion of the human genes. Second, these regions contain both highly similar genes and long-repeated

sequences shared by different genes, making it difficult to analyze by computational methods that rely only

on short reads. Hence, this set of genes should be able to highlight both the strengths and the limits of our

approach. Furthermore, our decision of focusing on a relatively small number of (representative and hard to

analyze) genes allows us to manually inspect the results in order to determine the causes of incorrect

predictions.

These genes have high-quality manual annotations produced by the GENCODE project (including full-

length transcripts). We used the most up-to-date version (v3.1), downloaded from online. Isoform graphs

have been derived from such annotations. The associated genomic sequences have been retrieved from

online corresponding to the NCBI human genome build 35. Our definition of similarity between a re-

constructed splicing graph (denoted as GS) and an isoform graph (denoted as GI) should consider the

topology of the graphs and the labels of their vertices, but should not penalize small differences in the

labels (such as some missing nucleotides at the block borders) as they do not compromise the correct

detection of AS events. Therefore, we designed a new procedure for the comparison of graphs GS and GI,

which works as follows. For clarity’s sake, we identify each vertex (block) with its label (string). Let s, t be

two strings. Then s and t are said to be p-trim equivalent if it is possible to obtain the same string by

removing from s and t a prefix and/or a suffix no longer than p. Notice that the removed prefixes and

suffixes might be empty and can differ, in length and symbols, between s and t. Let v and w be respectively

a vertex of GS and of GI. Then v maps to w, if v and w are five-trim equivalent. Moreover, we say that v

predicts w if v maps to w and no other vertex of GS maps to w. We can generalize these notions to arcs and

graphs, where an arc (v1, v2) of GS maps to (predicts, resp.) an arc (w1, w2) of GI if v1 maps to (predicts,

resp.) w1 and v2 maps to (predicts, resp.) w2. Finally, GS perfectly predicts GI, if those two graphs have the

same number of vertices and the same number of arcs, and each vertex/arc of GS predicts a vertex/arc of GI.

Prediction accuracy is evaluated with two standard measures, sensitivity (Sn) and positive predictive

value (PPV), considered at vertex and arc level. Sensitivity is defined as the proportion of vertices (or arcs)

of the isoform graph GI that have been correctly predicted by a vertex (or arc) of the computed splicing

graph GS, while PPV is the proportion of the vertices (or arcs) of the splicing graph that correctly predicts a

vertex (or an arc) of the isoform graph.

The experimental evaluation is structured in five parts. The aim of the first experimental part (Section

6.1) is the evaluation of the prediction accuracy in the best possible (ideal) scenario. Thus, we simulated a

dataset composed of all the error-free RNA-Seq reads of length 64 that can be extracted from the sequences

of all the full-length transcripts annotated for the chosen genes. The coverage of this dataset (i.e., the

number of reads overlapping each position of the transcript sequences) is 64x, and it is the maximum that

can be achieved without the presence of duplicated reads. We refer to this dataset as the full coverage

dataset. Moreover, in this experiment the prediction has been performed separately on each gene using only

the reads extracted from that gene. The aim of the second experimental part (Section 6.2) is the evaluation

of the prediction accuracy when the RNA-Seq data has a coverage considerably lower than the one

simulated before (namely, 16x). As in the previous part, the prediction has been performed separately on

each gene. This low coverage dataset has been simulated by randomly sampling reads from the full

coverage dataset. In the third experimental part (Section 6.3), we aim to evaluate how much accuracy is

affected if the prediction is performed on the whole set of genes. The dataset used in this part is the full

coverage dataset, but only a single (global) prediction is performed using all the reads composing the

dataset. The aim of the fourth part (Section 6.4) is to evaluate prediction accuracy if SNPs are present. To

this aim, the dataset contains reads sequenced from the transcripts of a diploid genome with SNPs simu-

lated according to dbSNP data. Similarly to the first part, all the possible 64-long reads are extracted from

these transcripts, and the prediction is performed separately on each gene. Finally, the fifth part (Section

6.5) is aimed at comparing the accuracy of our approach to that of another widely used state-of-the-art

approach, called Trinity (Grabherr et al., 2011). Since the output of Trinity is not a splicing graph but a set
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of predicted full-length transcripts, we devised a procedure to infer a splicing graph from Trinity’s output.

This procedure is based on the alignment of the transcripts to the genomic sequence. As we wanted to

evaluate the accuracy of Trinity in the best scenario, we performed the prediction with Trinity separately on

each gene using the full coverage dataset. The rest of the section describes each experimental part in details.

6.1. Full coverage dataset

In the first experimental part we analyzed the behavior on the full coverage dataset where data origi-

nating from each gene have been elaborated separately and independently. The goal of this experiment is to

show the soundness of our approach, since obtaining satisfying results under full coverage is a requisite

even for a prototype. Notice that these genes are usually not well expressed (as defined in Def. 4), mostly

due to the presence of short blocks or relatively long repeated regions. Therefore, there are no theoretical

guarantees of being able to reconstruct the isoform graph. Nonetheless, accuracy of the method (at both

vertex and arc level) is generally high. More precisely, our method has perfectly reconstructed the isoform

graph of 45 genes (out of 112), that is, Sn and PPV are both 1 at vertex and arc level. Moreover, we have

obtained average Sn and PPV values that are 0.88 and 0.93 at vertex level, respectively, and 0.77 and 0.86

at arc level, respectively. Also, the median values of Sn and PPV are 0.91 and 1 at vertex level and 0.83 and

0.93 at arc level, respectively.

The plots in Figure 8 give a detailed overview of the quality of the predictions in the first experiment, in

which each point corresponds to a gene. More specifically, for each gene in the considered dataset, the Sn

versus PPV values are plotted (Sn on the x-axis and PPV on the y-axis) for both nodes (left plot) and arcs

(right plot). The plots demonstrate that the predictions are good. In fact, the points at node level are

concentrated in the upper-right corner, which corresponds to values of Sn and PPV close to 1. On the other

hand, points at arc level are more scattered than those at node level, which reflects lower accuracy at arc

level. This fact is due to our definitions of Sn and PPV, as if a node is mispredicted then all the arcs incident

to it are considered as mispredicted (decreasing both the Sn and the PPV values of the gene).

6.2. Low coverage dataset

The second experimental part is similar to the first, but it was performed on a low coverage dataset. The

dataset has been generated by randomly sampling, for every full-length transcript of every gene, one quarter

of the reads of the full coverage dataset, which corresponds to an average 16x coverage. The aim of this

experimental part, which has been performed separately on each gene, is the assessment of the accuracy

under a more realistic coverage. Notice that, in this experimental part, reads have been preprocessed (and

‘‘enriched’’) according to the procedure described in Section 5.1.

In this experimental part, we have perfectly reconstructed the isoform graph of 34 genes (out of 112), and

we have obtained average Sn and PPV values that are respectively 0.84 and 0.87 at vertex level, while 0.74

and 0.81 at arc level. The median values of Sn and PPV are 0.86 and 0.91 at vertex level, while 0.80 and

0.83 at arc level, respectively.

FIG. 8. Sensitivity (Sn) and Posi-

tive Predictive Value (PPV) at vertex

and arc level in the first experiment.

Each point represents a gene while

the triangles represent the mean val-

ues. Point sizes are proportional to

the number of genes that overlap at

those coordinates. The colored rect-

angles (on both axes) represent the

areas from the first to the third

quartile. Solid-colored lines represent

the median values of Sn and PPV.

Notice that the third quartile in both

the plots is equal to 1, hence at least

25% of genes have Sn and/or PPV

equal to 1.
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The plots in Figure 9 give a detailed overview of the quality of the predictions in the second experimental

part. It is possible to notice that points at both node level (left plot) and arc level (right plot) follow the same

distribution of the first experimental part. Also in this experimental part accuracy at arc level is lower than

that at node level, for the same reason as in the previous experimental part.

Finally, in order to have a better statistical evaluation of the results, we have performed a one-tailed test

of hypothesis on Sn and PPV at both node and arc levels. More precisely, the goal of these binomial tests is

to assess if the prediction accuracy obtained in the full coverage experiment is (less or) equal to the one

obtained in this experiment (null hypothesis), or if the prediction accuracy in the former experiment is

greater than that of this experiment (alternative hypothesis). Results show that the null hypothesis on Sn

and PPV is rejected in favor of the alternative hypothesis with p-values less than 10 - 5 at both node and arc

levels.

Although the statistical analysis we performed shows that there has been a statistically significant

reduction of the prediction accuracy of this experiment (with respect to the one of the full coverage

experiment), we want to point out that the accuracy values obtained in the low coverage experiment are still

good (and so are the predicted splicing graphs). This means that a reduction in the coverage does not have a

big impact on the predicted splicing graphs and that our method, thanks to the preprocessing procedure of

Section 5.1, is able to overcome the lack of reads.

6.3. Mixed genes dataset

The main goal of the third experimental part is to study the scalability of our approach, determining how

much repetitions occurring in different genes negatively affect the accuracy of the predictions. Moreover, a

secondary goal is to check if the method is robust to the negative influence of analyzing data that originated

from several different genes. In other words, we want to check if the computed splicing graph is similar to

the union of the splicing graphs obtained in the first experimental part. The dataset used in this part is the full

coverage dataset, but a single prediction has been performed on the reads that originated from all the genes.

The expected output of this part is a large isoform graph GI with 1521 vertices and 1966 arcs (obtained

by the union of the 112 isoform graphs retrieved from the annotation) whose connected components are, in

most cases, in a 1–1 mapping with the input genes. The isoform graph of some genes is disconnected,

hence, those genes are represented by more than one connected component of the complete isoform graph.

We used a strategy based on BLAST (Altschul et al., 1990) to map each connected component of the

predicted splicing graph to an input gene (thus, to its connected components of the complete isoform

graph). Precisely, we aligned the predicted node labels to the annotated full-length transcripts, keeping only

the best matches reported by BLAST. A connected component of the predicted splicing graph has been

mapped to the gene to which the majority of the node labels aligned. At this point, the predicted splicing

graph GS is partitioned into the subgraphs GGi

S , where Gi is the corresponding gene, and the comparison

between each GGi

S and the corresponding isoforms graph Gi is performed as described before.

The predicted splicing graph was composed of 140 connected components that have been assigned to

109 genes. According to our mapping procedure, three genes have no correspondence in the predicted

splicing graph (namely, CTAG1B, RBM12, and RFPL2). In general, these three genes are highly similar to

FIG. 9. Sn and PPV values at

vertex and arc level in the second

experiment. Each point represents a

gene, while the triangles represent

the mean values. Point sizes are

proportional to the number of genes

that overlap at those coordinates.

The colored rectangles (on both the

axes) represent the areas from the

first to third quartile. Solid-colored

lines represent the median values of

Sn and PPV.
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other genes of the set; while one of them, CTAG1B, is perfectly identical to CTAG1A (as they are located

in a duplicated region of human chromosome X). It is unlikely that this case, in particular, can be correctly

handled by a computational method acting without a reference genome, as the presence of such a long

duplicated region cannot be reliably detected.

Overall results are similar to those of the first experimental part. In fact, the number of correctly

identified vertices goes from 1306 (first experimental part) to 1271 (the current part). Similarly, the number

of correctly identified arcs goes from 1425 to 1391. At node level, the overall sensitivity is 0.836 and the

PPV is 0.883 (0.859 and 0.926, respectively, in the first experimental part), while at arc level the sensitivity

is 0.708 and the PPV is 0.780 (0.725 and 0.824, respectively, in the first experimental part). Thus, we can

conclude that the accuracy of the predictions is only barely influenced by the fact that the program is run on

the data coming from 112 different genes. Figure 10 shows the isoform graph and the predicted graph for

the gene POGZ.

FIG. 10. The gene POGZ: The

isoform graph is shown on the left,

and the splicing graph predicted in

the third experiment is on the right.

The number inside each node rep-

resents the length of the the related

block. The only difference between

the two graphs is the gray vertex

that is missing in the predicted

splicing graph.
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Finally, since one of the goals of our method is that of being efficient in terms of both running time and

memory usage, we evaluated the computational requirements of the prediction of this experimental part.

We chose only this scenario because it is the most computationally demanding (as all the reads have been

analyzed at the same time) and, moreover, because it is one of the most realistic scenarios, as reads coming

from different genes are processed all together. In fact, in the other datasets, each gene is processed

separately, thus the time and space requirements are very low. Construction of the splicing graph on the

whole dataset (composed of about 1.4 million reads of length 64) took about 25 seconds and less than

130MB of memory on a standard workstation with a single IntelTM Xeon 2.8GHz processor and 12GB of

RAM running Ubuntu Linux 10.04 (64bit). This result supports the efficiency of our method, which should

be able to process up to 50M reads on a workstation with 4GB of RAM (the actual amount of memory also

depends on the amount of redundancy in the dataset).

6.4. Full coverage SNP dataset

The goal of this experiment is to analyze the behavior of our method in the presence of SNPs. To this

aim, all the 64-long RNA-Seq reads have been extracted from two copies of each transcript, where each

copy is transcribed from one haploid sequence of a simulated diploid genome. One haploid sequence

corresponds to the original genomic sequence (NCBI build 35), while the other sequence has been obtained

by simulating SNPs according to dbSNP data (retrieved from table snp125 of the UCSC database hg17).

We randomly replaced the nucleotide in each SNP locus with probability p according to average hetero-

zygosity ĥ (assuming that ĥ = 2p(1 - p)) when available in dbSNP, or 0.5 otherwise. Predictions were then

performed on the reads extracted from the transcripts of each gene separately.

In this experiment, each output splicing graph (denoted as GS) has been post-processed, by using the

method explained in Section 5.2, before comparing it to the related isoform graph (denoted as GI). In fact,

as explained before, SNPs may produce in GS several nodes that map to different substrings of the same

block of GI. More precisely, it may happen that a block of GI is covered by different isolated nodes of GS;

usually there are at most two isolated blocks for each gene. To overcome this issue we have performed the

post-processing of GS, trying to link these nodes into a single node mapping to a unique node of the isoform

graph.

After the post-processing, we have obtained average Sn and PPV values that are 0.79 and 0.78 at vertex

level, respectively, and 0.63 and 0.67 at arc level, respectively. Also, the median values of Sn and PPV are

0.83 and 0.87 at vertex level and 0.64 and 0.71 at arc level, respectively. These results show that the

predictions are significantly less accurate than the ones obtained in the full coverage experiment (without

SNPs).

This difference is also confirmed by a one-tailed test of hypothesis on Sn and PPV, at both node and arc

levels, between the full coverage experiment and this one. More precisely, in the performed binomial tests,

the null hypothesis is that the prediction accuracy in the first experiment (full coverage) is (less or) equal to

that of this experiment (with SNPs), while the alternative hypothesis is that the accuracy of the former

experiment is greater than that of this one. Results on Sn and PPV show that the null hypothesis is rejected

in favor of the alternative hypothesis, with p-values less than 10 - 12 at both node and arc level.

One of the main causes of the reduction of accuracy is that SNPs may induce the splitting of nodes into

‘‘nonlinear’’ paths (that are not resolved by the developed post-processing step). For example, in gene

BPIL2, a node X of the isoform graph is split into nodes A, B (of 12 bp), and C. Moreover, there is a node B0

that is an ‘‘alternative’’ version of B (caused by two very close—10 bp—SNPs), which differs from B by

the first and last nucleotide (i.e., the SNPs’ positions). Node A is connected to both B and B0, and these two

latter nodes are connected to C. This fact creates two paths from A to C that cannot be collapsed into a

single node in the post-processing step. This graph structure is very similar to the bubbles that SNPs may

generate in a De Bruijn graph constructed from RNA-Seq reads (Sacomoto et al., 2012). Therefore, a

similar technique for identifying bubbles in a De Bruijn graph may be used also in our framework for

detecting SNPs.

In addition to the previous problem, and like the other experiments, the mapping of arcs is also highly

influenced by mapping the corresponding nodes. As a consequence, an arc connecting two nodes of the

splicing graph is mapped only if the two nodes are mapped and the nodes they are mapped to are also

connected by an arc. This means that if one of these conditions is not satisfied, the arc is not considered as

mapped.
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Finally, there are some other situations in the resulting splicing graphs, caused by the presence of SNPs,

that (adversely) affect the prediction results. In fact, if an isoform block containing an SNP is sufficiently

short, all the simulated reads covering this block might be spliced. Thus, the corresponding chain cannot be

reconstructed, also causing false negative arcs. This fact can produce isolated nodes or split the splicing

graph into connected components.

In any case, we would like to underline that the overall quality of the results obtained is not highly

affected by the presence of SNPs. The plots in Figure 11 give a detailed overview of the quality of the

predictions in this experiment.

6.5. Comparison with Trinity

In this experiment, we have compared the accuracy of our approach with that of another state-of-the-art

tool. To the best of our knowledge, no other tools are specifically aimed at reconstructing splicing events

without a reference genome. The most common aim (and the one most similar to our’s) of tools operating

on RNA-Seq data without a reference genome is the reconstruction of the putative full-length transcripts

(i.e., de novo transcript assembly). Among them, we have decided to use Trinity (Grabherr et al., 2011)

since it has been reported that it performs well across various conditions (Zhao et al., 2011).

In order to lessen the impact of possible confounding factors, the comparison has been performed under

the ideal (perfect) conditions, that is, using the same full-coverage, error-free dataset of Section 6.1

separately on each gene. Trinity (version r2013-02-25) has been executed using all the default suggested

parameters and specifying that the input RNA-Seq reads are strand-specific (in forward orientation). We

remark that such scenario is the most favorable for Trinity.

In order to compare the accuracy of our method to that of Trinity, which only reconstructs the full-length

transcripts and does not directly provide a graph representation of the alternative splicing events, we have

devised a method to build the splicing graph from the transcripts assembled by Trinity. This method first

aligns the assembled transcripts to the genomic sequence, then it determines the blocks and the arcs

connecting them according to the given alignments. Transcript prefixes or suffixes that do not correctly

align back to the genomic sequence are considered as new blocks (connected with the blocks of the parts

which successfully align).

Accuracy of the reconstructed splicing graphs has been evaluated according to the metrics introduced in

the previous sections. Different aligners could introduce systematic errors that, eventually, induce errors in

the derived splicing graphs, hence underestimating Trinity’s accuracy. As a consequence, we have decided

to perform the alignments with three different state-of-the-art spliced alignment tools: GMap (Wu and

Watanabe, 2005), PIntron (Pirola et al., 2012), and Spidey (Wheelan et al., 2001). The first one, in

particular, is the tool suggested by the official Trinity documentation for aligning the assembled transcripts

to the genomic sequence. All these tools have been able to align the reconstructed transcripts (at least

partially) to the genomic sequence of the ENCODE region to which the gene belongs. For each gene,

we have selected the alignments that allowed us to reconstruct the splicing graph achieving highest Sn

and PPV in the comparison with the isoform graph. This strategy should reduce the potential bias of

FIG. 11. Sn and PPV values at

vertex and arc level in the experiment

with single nucleotide polymor-

phisms (SNPs). Each point represents

a gene, while the triangles represent

the mean values. Point sizes are pro-

portional to the number of genes that

overlap at those coordinates. The

colored rectangles (on both axes)

represent the areas from the first to

third quartile. Solid-colored lines

represent the median values of Sn

and PPV.
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employing a single alignment tool and should provide a fair ground for the comparison among our approach

and Trinity.

As for the other experiments, we have assessed the accuracy of the predictions of Trinity by measuring

sensitivity and positive predictive value of the reconstructed splicing graphs. In particular, average Sn and

PPV values of Trinity are 0.84 and 0.89 at vertex level, respectively, and 0.77 and 0.84 at arc level,

respectively. Also, the median values of Sn and PPV are 0.92 and 0.95 at vertex level and 0.86 and 0.91 at

arc level, respectively. Plots in Figure 12 give a detailed overview of the prediction accuracy on the genes.

These results are very close to the ones obtained by our method in the full coverage experimental part

(Section 6.1), with our approach being slightly more accurate. In fact, in terms of average values, our

approach has better Sn and PPV at node level (0.88 vs. 0.84 and 0.93 vs. 0.89, respectively) and better PPV

at arc level (0.86 vs. 0.84), while Sn at arc level is essentially the same for the two tools (0.770 vs. 0.774).

In terms of median values, our approach has better PPV than Trinity at both node level (1 vs. 0.95) and arc

level (0.93 vs. 0.91), and it has essentially the same Sn as Trinity at node level (0.914 vs. 0.917), while

Trinity has better Sn than our approach at arc level (0.83 vs. 0.86). We tested the statistical significance of

such differences with a series of binomial (one-sided) hypothesis tests on Sn and PPV, at both node and arc

levels, on the accuracy obtained by our approach and Trinity. The null hypothesis is that the prediction

accuracy of the first tool is (less or) equal to that of the second one, while the alternative hypothesis is

that the accuracy of our approach is greater than that of Trinity. Table 1 reports the resulting p-values. As

it is possible to observe, although the accuracy of our method is often better than that of Trinity, the

only statistically significant difference ( p-value £ 0.05) regards the PPV at node level (in favor of our

approach).

Finally, we would like to remark that, although the prediction results obtained by Trinity have good

accuracy overall, the process for constructing the splicing graphs (hence the putative splicing events and/or

the gene structures) from the assembled transcripts is not straightforward and requires the alignment of the

transcripts to the genomic sequence, whereas our approach completely works in absence of the reference

genome.

FIG. 12. Sn and PPV values at

vertex and arc level in the Trinity

experiment. Each point represents a

gene while the triangles represent

the mean values. Point sizes are

proportional to the number of genes

that overlap at those coordinates.

The colored rectangles (on both

axes) represent the areas from the

first to third quartile. Solid-colored

lines represent the median values of

Sn and PPV.

Table 1. P-values of the One-Sided Binomial Hypothesis Tests on Sn and PPV,

at Both Node and Arc Levels, Achieved by our Approach and by Trinity

Node p-values Arc p-values

Alternative hypothesis Sn PPV Sn PPV

Our approach > Trinity 0.228 0.020 0.452 0.191

Trinity > our approach 0.839 0.990 0.640 0.870

The null hypothesis is that the prediction accuracy of the first approach is (less or) equal to that of the second one, while the

alternative hypothesis is that the accuracy of one of the approaches is better than that of the other. Values below the significance level

(a = 0.05), and for which the null hypothesis is rejected in favor of the alternative one, are highlighted in bold.
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7. CONCLUSIONS

In this article we started to study the problem of reconstructing and representing alternative splicing

events occurring in a gene starting from a set of RNA-Seq reads extracted from that gene and without

relying on a reference genome. We have formalized the problem as the Splicing Graph Reconstruction

(SGR) problem. The outcome of the SGR problem is a graph representation of AS variants, that is, local

predictions that are likely to be more accurate than the long-range predictions that can be deduced from

full-length transcript computed by available tools.

We first show the intrinsic limits of any approach based only on the evidence provided by a set of reads

(which are typically short). We also present a novel efficient algorithm that is able, under some assump-

tions, to correctly reconstruct the graph structure of the gene. Moreover, we discuss some strategies to deal

with instances in which the assumptions do not hold. In addition to the theoretical investigation, we provide

empirical evidence of the good accuracy, obtained by the proposed method, on a set of representative

genes. This experimental evaluation further confirms the soundness of our theoretical model and algo-

rithmic approach.

This work is intended as the first step of a theoretical investigation aimed at understanding the potential

and the limits of reference-free transcriptome analysis using RNA-Seq data. Additional sources of infor-

mation, such as paired-end reads or expression levels, can be used to overcome some of the problems we

highlighted in this work. For example, paired-end reads can help solve some issues related to the presence

of repetitions. Future work will be devoted to the integration of these kinds of information into our formal

model. Moreover, future work will also be devoted to combining our novel algorithm with traditional tools

such as PIntron (Pirola et al., 2012) and ESTGenes (Eyras et al., 2004), which predict alternative splicing

events and full-length isoforms from ESTs and transcript data. In fact, combining predictions of AS events

from expressed sequences obtained with traditional sequencing technologies with ones from NGS data

would greatly improve our knowledge of the alternative splicing phenomena on several evolved species.

Finally, we would like to note the importance of having a compact and accurate representation of all the

alternative splicing variants of a gene. This graph structure, provided by the splicing graph, avoids all the

problems related to the reconstruction of full-length isoforms and can be incorporated into a pipeline of

transcript analysis to support and confirm some steps from a different point of view. In fact, de novo

transcriptome assembly tools only compute a set of putative full-length isoforms without providing a

concise representation of the relationships among the predicted sequences. In order to reliably obtain such a

representation, which helps to highlight the potential alternative splicing events that have occurred, it is

necessary to resort to the alignment of the predicted sequences to the genomic sequence, while our tool

operates in absence of such information.
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