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Abstract

Alignment-free sequence analysis approaches provide important alternatives
over multiple sequence alignment (MSA) in biological sequence analysis be-
cause alignment-free approaches have low computation complexity and are
not dependent on high level of sequence identity, however, most of the ex-
isting alignment-free methods do not employ true full information content
of sequences and thus can not accurately reveal similarities and differences
among DNA sequences. We present a novel alignment-free computational
method for sequence analysis based on Ramanujan-Fourier transform (RFT),
in which complete information of DNA sequences is retained. We represent
DNA sequences as four binary indicator sequences and apply RFT on the
indicator sequences to convert them into frequency domain. The Euclidean
distance of the complete RFT coefficients of DNA sequences are used as
similarity measure. To address the different lengths in Euclidean space of
RFT coefficients, we pad zeros to short DNA binary sequences so that the
binary sequences equal the longest length in the comparison sequence data.
Thus, the DNA sequences are compared in the same dimensional frequency
space without information loss. We demonstrate the usefulness of the pro-
posed method by presenting experimental results on hierarchical clustering of
genes and genomes. The proposed method opens a new channel to biological
sequence analysis, classification, and structural module identification.
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1. Introduction

Comparative analysis of DNA sequences is a fundamental task in genome
research. Multiple sequence alignment (MSA) has assumed a key role in com-
parative structure and function analysis of biological sequences, but MSA
has high computation complexity and is dependent on high level of sequence
identify. Several alignment-free sequence comparison methods have been
proposed to address the problems limitations of MSA. These alignment-free
methods can be divided into categories that include feature frequency profiles
(FFP) (Sims et al., 2009), information theories (Li et al., 2001), graphic the-
ory (Qi et al., 2011), and analysis in frequency domain (Zhao et al., 2011).
In these methods, feature extraction or transformation of a sequence may
incur loss of information and may not reflect the actual similarities and dif-
ferences among DNA sequences. It has been one of major challenges in DNA
sequence analysis to create accurate and efficient alignment-free methods for
proper measurements of sequence similarity (Vinga and Almeida, 2003). To
this end, we explore a digital signal processing approach that may retain full
information content to compare DNA sequences.

Ramanujan-Fourier transform (RFT), a time series transform method, is
rediscovered in recent years and receives much attention. Ramanujan sums
(RS) are named after Indian mathematician Srinivasa Ramanujan, who in
1918 introduced them and proved Vinogradov’s theorem that every suffi-
ciently large odd number is the sum of three primes (Ramanujan, 1918).
The applications of RS has expanded from initial number theory to time sig-
nal analysis by RFT (Gadiyar and Padma, 1999), including low-frequency
noise processing (Planat et al., 2009; Planat, 2002), processing the shear
component of the wind as Doppler spectrum estimation(Lagha and Bensebti,
2009), T-wave alternans analysis (Mainardi et al., 2008), sparse signal anal-
ysis (Chen et al., 2013b), time frequency analysis (Sugavaneswaran et al.,
2012), and protein structure classification (Mainardi et al., 2007). These
studies provided new insights and understanding special properties in RFT
and opened new door in applying this method in different research domains.

Similar to the Fourier transform (FT), the RFT is orthogonal in nature
and offers excellent energy conservation capacity (Chen et al., 2013a). The
RFT is operated on integers and hence can obtain a reduced quantization
error implementation. Because of these excellent properties, we present a
new similarity measure for DNA sequences using full information content de-
rived from RFT of the DNA sequences. The results of applying the method
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on similarity analysis and hierarchical clustering of DNA sequences demon-
strate that the RFT-based method is accurate and effective in DNA sequence
comparison.

2. Methods and Algorithms

2.1. Representations of DNA sequences by binary indicators

DNA molecules consist of four linearly linked nucleotides: adenine (A),
thymine (T), cytosine (C), and guanine (G). A DNA sequence can be rep-
resented as a permutation of four characters A, T, C, and G at different
lengths. Before signal processing methods are applied to symbolic DNA se-
quences, the sequences are converted to numerical series or binary indicator
sequences (Voss, 1992). A DNA sequence denoted as, x(1), x(2), . . . , x(N),
can be decomposed into four binary indicator sequences, uA(n), uT (n), uC(n),
and uG(n) which indicate the presence or absence of four nucleotides, A, T, C,
and G at the n−th position, respectively. The indicator mapping of DNA
sequences is defined as follows:

uα(n) =

{

1, s(n) = α

0, otherwise
(1)

Where α ∈ {A, T, C,G} , n = 1, 2, ..., N . The four indicator sequences corre-
spond to the appearance of the four nucleotides at each position of the DNA
sequence. For example, the indicator sequence, uA(n) = 0001010111 . . ., in-
dicates that the nucleotide A presents in the positions of 4, 6, 8, 9, and 10
of the DNA sequence.

2.2. Ramanujan-Fourier transform

In signal processing, transform methods are used to convert signals from
time space into frequency space in order to estimate and analyze the infor-
mational content of the signal from different perspectives. Discrete Fourier
Transform (DFT) is widely applied to periodic or quasi-periodic signals, but
this technique is not appropriate for the analysis of aperiodic random sig-
nals. As a result, numerous methods have been developed to analyze ape-
riodic time series, Ramanujan-Fourier transform is recently rediscovered as
a vital alternative to the Fourier transform (Carmichael, 1932) with advan-
tages of effectively processing time series with spectrums abundant with low
frequencies (Planat, 2002; Planat et al., 2009; Planat, 2001).
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The Ramanujan sums cq(n) are the real sums of the n− th power of the
q − th primitive roots of the unity (Ramanujan, 1918),

cq(n) =

q
∑

p=1,(p,q)=1

exp(2iπ
p

q
n) (2)

where (p, q) = 1 indicates that p and q are relatively co-prime. The sums were
introduced by Ramanujan as base functions over which typical arithmetical
sequence or the original signal x(n) may be projected as:

x(n) =
∞
∑

q=1

xqcq(n) (3)

These base functions satisfy many suitable properties for signal decomposi-
tion such as multiplicative and orthogonality properties. Alternatively, the
Ramanujan sums can be evaluated using the Euler totient function φ(q) and
Moebius function µ(n) as follows (Lagha and Bensebti, 2009)

cq(n) = µ

(

q

(q, n)

)

φ(q)

φ
(

q

(q,n)

) (4)

where the symbol (q, n) denotes the great common factor of q and n. The
equality (q, n) = 1 imposes q and n to be relatively co-prime. The Euler’s
totient function φ(q) is a multiplicative arithmetic function that counts the
number of positive integers in the range 0 < k < n that are co-prime to n.
The Euler’s totient function φ(q) is defined as (Sándor and Crstici, 2004)

φ(q) = q
∏

i

(

1− 1

qi

)

(5)

The Moebius function µ(n) is also a multiplicative function and returns
zero for positive integers and has its values in −1, 0, 1 depending on the
factorization of n into prime factors. The Moebius function µ(n), is defined
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as (Sándor and Crstici, 2004)

µ(n) =











0 if n content squared value βk > 1

1 ifn = 1

(−1)k if n is the product of kprimer number

(6)

By the relationship defined in (3), Carmicheal introduced the Ramanujan-
Fourier transform (RFT) represented as (Carmichael, 1932)

xq =
1

φ(q)
Av(x(n)cq(n)) (7)

where is Av(g) the mean value of the function g(n) = x(n)cq(n) and is defined
as

Av(g) = lim
N→∞

1

N

N
∑

n=1

g(n) (8)

The Ramanujan-Fourier transform (RFT) of a signal x(n) is defined as

xq =
1

φ(q)
lim

N→∞

1

N

N
∑

n=1

x(n)cq(n) (9)

Because it is a very time consuming task to compute RS base functions
cq(n), we retrieved the RS basis functions from pre-computed object instead
of computing them online to reduce computation time of RFT. Recently,
Chen et al introduced the 1D forward and inverse RFT of a signal X of
length N by matrix multiplication (Chen et al., 2013a). Let R be the RS
matrix of size N-by-N and defined as

R(q, j) =
1

φ(q)N
cq(mod(j − 1, q) + 1), q,j ∈ [1, N ] (10)

where mod() is the modular operation. The forward 1D RFT and the inverse
RFT of the signal X can be realized as follows

Y = RX

X = R−1Y
(11)

For technical reference, the following data are the firt 10 terms of Fi-
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bonacci numbers and their corresponding RFT coefficients, respectively: Fi-
bonacci numbers = [1 1 2 3 5 8 13 21 34 55]; RFT = [14.3000 3.3000 -0.5500
-4.0000 3.9250 -5.8500 -0.8667 1.8000 2.9000 5.4250]. Because the RFT trans-
form gives excellent results that retain the energy and inverse of the input
signals. We investigate the usage of RFT as a measure of DNA sequence or
protein sequence similarity. To this end, we apply RFT to the binary indi-
cator sequence uA, uC, uG, uT of a DNA sequence to obtain RA, RG, RG, RT ,
respectively. The RFT coefficients (amplitudes) of the four binary sequences
of length N are calculated as

Rα(q) =
1

φ(q)N

N
∑

q=1

N
∑

n=1

uα(n)cq(n), α ∈ {A, T, C,G} (12)

Because the RFT coefficients for real value signal are real positive or
negative numbers, the sum of the absolute values of RFT coefficients of the
four binary sequences of a DNA sequence PS is considered a power spectrum
of the RFT of DNA sequences. It is used as a signature metric of DNA
sequence in this study and is defined as

PS(q) =
∑

α∈{A,T,C,G}

|Rα(q)| (13)

To address the different lengths of RFT coefficients in Euclidean dis-
tances, we pad zeros to short DNA binary sequences so that the binary
sequences equal to the longest sequence length in the comparison data so
that the DNA sequences are compared in the same dimensional Euclidean
frequency space. We exclude the 1st term in RFT figure plotting because the
1st term is just the mean of real value signal and impacts scaling of figures,
but the 1st term is included for computing RFT distance because it is needed
for recovering original data from RFT coefficients.

2.3. Discrete Fourier transform

Discrete Fourier Transform (DFT) is the transformation of N observa-
tion data (time domain) to N new values (frequency domain). DFT spectral
analysis of DNA sequences may detect latent and hidden periodical signals
in the original sequences(Strunk and Stoffer, 2010). It may discover approx-
imate repeats that are difficult to detect by direct tandem repeat search. Let
UA, UT , UC , and UG be the DFT of the binary sequences uA, uT , uC , and uG,
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the DFT of the numerical series uα, α ∈ {A, T, C,G} of length N is defined as

Uα(k) =

N
∑

n=1

uα(n)e
−i 2π

N
kn (14)

where i =
√
−1. The DFT power spectrum of the signal uα at the frequency

k is defined as

PS(k) =
∑

α∈{A,T,C,G}

|Uα(k)|2, k = 0, 1, 2, · · · , N − 1 (15)

where U [k] is the k-th DFT coefficient.

Due to the symmetric property of the DFT spectrum of real number
signals, all figures of the DFT spectrum in this paper only show the first half
of the original figures. In addition, we exclude the 1st term in DFT figure
plotting because the 1st term DFT is just the sum of time data and also
impacts scaling of figures.

2.4. Distance metrics

A distance metric d (x, y) is a nonnegative function on the set of pairs
(x, y) of finite sequences over a fixed alphabet. For example, one of its uses
is a measure of the evolutionary change from DNA sequence x to y. The
evolutionary changes are reversible, and the fewest number of evolutionary
changes is from x to y directly. Therefore, a distance metric shall be re-
flective, symmetric and transitive (Waterman, 1976; Kanas and Lecko, 1991;
Otu and Sayood, 2003). A metric space is a set X together with a metric d
on it. For example, the set of real numbers with the function d(x, y) = |x− y|
is a metric space. A distance metric in the metric space satisfies the following
properties.
(1) d(x, y) ≥ 0 for all x, y ∈ X; moreover, d(x, y) = 0, if and only if x = y.
(2) d(x, y) = d(y, x) for all x, y ∈ X.
(3) the triangle inequality, i.e., d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X

The most common distance measure for time series is the Euclidean dis-
tance, which is the optimal distance measure for estimation if signals cor-
rupted by additive Gaussian noise(Agrawal et al., 1993; Yu et al., 2011). The
Euclidean metric distance of two time series x1, . . . , xn and y1, . . . , yn is de-
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fined as

d ((x1, . . . , xn) , (y1, . . . , yn)) =

√

√

√

√

n
∑

k=1

(xk − yk)2

The Euclidean distances of power spectral of RFT of different DNA sequences
are measured and used as a measure of similarity for these DNA sequences.
The pairwise Euclidean distances of power spectral of RFT of DNA sequences
are used to generate a similarity matrix, which can be used to construct a
phylogenetic tree of these sequences. The phylogenetic trees constructed
from a similarity matrix reflect classes information, hierarchical similarity
and evolutionary relationships of the DNA sequences.

2.5. Algorithm to compute pairwise distance of DNA sequences by RFT

From above definitions and theories, we propose the following algorithm
to calculate pairwise Euclidean distances as distance measures of DNA se-
quences by RFT, which is used to construct similarity matrices for phyloge-
netic trees.

Data: DNA SEQ1(length N1), SEQ2(length N2), SEQ3(length M),
with M > N1 and M > N2

Result: Pairwise distance of SEQ1, SEQ2 and SEQ3
Steps

1. Convert each SEQ1, SEQ2, SEQ3 to fours binary indicator sequences
BS1, BS2, and BS3.

2. Pad zeros to BS1 and BS2 to extend their lengths to M and become
BS1M, BS2M, respectively.

3. Compute the RFT coefficients of BS1M, BS2M, and BS3.
4. Add the absolute values of RFT coefficients of four indicator

sequences of each sequence, the resulted sum are RS1, RS2 and RS3.
5. Compute the Euclidean distance d(RS1,RS2), d(RS2,RS3), and

d(RS1,RS3) in M dimensional space.

Algorithm 1: Algorithm for calculating pairwise Euclidean distances of
DNA sequences by RFT

3. Results and Discussion

3.1. Ramanujan-Fourier transform on DNA sequences

To illustrate the usage of RFT for the identification of hidden periodicities
in signals, we applied RFT to the following periodic signal made up of sine
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and cosine signal with periodicties 10 and 20, and corrupted by white random
noise:

s[t] = sin(2π
t

10
+

π

4
) + cos(2π

t

20
+

π

4
) + noise

t = 1 : 100

Figure 1(a) is the plot of the original periodic sine and cosine signal and
shows that two periodicities 10 and 20 in the original sine and cosine functions
are hidden by random noise. After RFT transforms, the two periodicities can
be clearly identified as shown in Figure 1(b). Two pronounced peaks of RFT
spectrum in Figure 1(b) at positions of q = 10 and q = 20 represent the two
periodicities periodicities 10 and 20, respectively. For comparison, Figure
1(c) is the DFT spectrum plot of the signal. The two pronounced peaks
of DFT spectrum in Figure 1(c) are at frequency f = N/10, N = 100 and
f = N/20 for N = 100, respectively. From the illustrative example, we can
see both DFT and RFT can reveal hidden periodicities. Furthermore, it is
worth to mention here is that a special property of RFT, which DFT does
not hold, is that RFT may recover hidden periodicities in a phase modulated
period signal (Planat et al., 2009).

To compare RFT with DFT in DNA sequence analysis, we applied RFT
to spectrum analysis of exon and intron sequences. It is widely known that
the 3-base periodicity, measured as the Fourier power spectrum of a DNA
sequence at the frequency N/3, is present in most of exon sequences but not
in the majority of intron sequences. This property has been used in gene
finding algorithms (Tiwari et al., 1997; Jiang et al., 2008). Previously we
identified the origin of applied 3-base periodicity in DFT and applied it in
protein coding predication in DNA sequences (Yin and Yau, 2005; Yin et al.,
2006; Yin and Yau, 2007, 2008) Figure 2(a) and 2(b) are the RFT and DFT
spectra of the exon sequence of the Homo sapiens (human) mitochondrial
cytochrome oxidase subunit I (COI) gene (Genbank ID = KC750830, N =
386 bp), respectively. As shown on the figure Figure 2(a) and (b), the exon
sequence shows 3-base periodicity in DFT spectrum. The peak position in the
DFT spectrum is at frequency of N/3. The exon demonstrates a pronounced
peak on q = 3 position in the RFT spectrum. These results show that RFT
can identify special 3-base periodicity in exons just as DFT can.

Figure 3(a) and 3(b) are the RFT and DFT spectra of the intron sequence
of the Heteractis crispa isolate Hc86-02 cytochrome oxidase subunit I (COI)
gene (GenBank ID: JQ918751, N=654 bp), respectively. For the purpose of
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Figure 1: Periodic signal collapsed with noise and its RFT and DFT trans-
forms
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Figure 2: RFT and DFT spectrum of exon sequence of Homo sapiens mito-
chondrial cytochrome oxidase subunit I (COI) gene (Genbank ID: KC750830,
N = 386bp).

11



comparison, the RFT plot of intron in Figure 3(a) was drawn in the same
scale as the DFT exon plot in Figure 2(a). As shown in Figure 3(a) and
3(b), the intron does not shows 3-base periodicity in both DFT and RFT
spectrum (q=3). The results indicates that RFT spectrum analysis is in
agreement with DFT analysis of both exon and intron sequences.

3.2. Similarity metric of DNA sequences by RFT

A common similarity measure between two DNA sequences is edit dis-
tance, which is defined as the minimum number of substitutions (point mu-
tations), insertions, deletions or genomic rearrangement needed to transform
one sequence into the other during evolutionary process. The edit distance
can be obtained by an optimal alignment of DNA sequences. Because we use
all the RFT coefficients in frequency domain and the RFT coefficients have
full information contents of the time domain from equation 11. Thus the
similarity measure by RFT in frequency domain is expected to correlate well
with the edit distance rendered by point mutations and deletion mutations
in DNA sequences.

To assess this correlation between the RFT distance measure and edit
distance, we studied the relationship between original DNA sequences and
a series of point mutations of the sequences using the RFT similarity met-
ric. An intron sequence was introduced different numbers of point mutations
at random positions in the sequence. The RFT distances between the mu-
tants and the original sequence were measured. We tested the correlation
of the RFT distances and number of point mutations. Figure 4 is the cor-
relation between the amount of point mutations and the distance between
the corresponding mutations and original sequence. The result shows a lin-
ear relationship of RFT distances and the amount of point mutations. This
result demonstrates the accuracy of the RFT distance metric on the differ-
ence of nucleotide mutations on the same length DNA sequences. For an
effective mathematical descriptors for similarity analysis, various mutation
phenomena including deletions and insertions shall be considered simultane-
ously. Sequence alignment becomes unreliable or impossible for these diverse
mutations. We assessed the accuracy of the proposed similarity distance
metric using a series deletion mutations of a DNA sequence and measure the
correlation of the similarity distance and deletion sizes in these mutants. An
intron sequence is partially deleted from 3’ end to generate different artifi-
cial mutants. The deletion size is from 1 bp to 100 bp. Then we measured
the sequence distance between the mutants and the original sequence by the
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Figure 3: RFT and DFT spectrum of intron sequence of Heteractis crispa
isolate Hc86-02 cytochrome oxidase subunit I (COI) gene (GenBank ID =
JQ918751, N = 654bp)
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Figure 4: Correlation between Ramanujan-Fourier transform distance and
the number of point mutations of DNA sequences.
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Figure 5: Correlation of the RFT distance and the lengths of deletion mutants
of DNA sequences.

proposed RFT method. Figure 5 presents the correlation of the deletion
lengths and the RFT distances between the corresponding deletion mutants
and original sequence. The results show a sound linear relationship between
the RFT distances and the deletion lengths of the mutants, thus indicating
a robust and reliable behavior of the RFT distance metric in measuring sim-
ilarities of sequences of different lengths. In this way, RFT can be used to
compare rearrangements of sequences during evolutionary history.

To verify if the distance metric satisfies the triangle property, we randomly
selected 200 exons from the Exon-Intron Database (EID) (Shepelev and Fedorov,
2006) and measured pairwise distance of exons. For randomly chosen three
exons as a test case, let d1, d2 and d3 be the three distance measures in RFT
frequency domain and d3 be the largest distance. We compared the value
of d3 and d1 + d2 to validate the triangle property. Figure 6 is plot of the
value d3 − (d1 + d2) for triangle property test cases. The results shows all
the positive values, showing that the RFT-based distance measure satisfies
the triangle property and is thus a valid distance measure.
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Figure 6: Triangle property test of the RFT distances of DNA sequences.

3.3. Application of the RFT distance metric in construction of phylogenetic

trees

To verify whether the similarity distance can be used for hierarchical clus-
tering DNA sequences, we first generated mutations in DNA sequences and
constructed phylogenetic trees from the pairwise RFT distances of these mu-
tants. We used an intron sequence as base and generated two new sequences
A and B from the intron sequence using point mutations. 10% of mutations
were introduced into A and B.We then similarly evolved A into A1 and A2
and B into B1 and B2, using point mutations of 10% of the sequences. We
used the sequences A, A1, A2, B, B1 and B2 to build phylogenetic trees from
similaritt matrix from the proposed RFT distance. The results in Figure 7
demonstrate that the proposed distance measure can be effectively used in
construction of phylogenetic trees.

The effectiveness of the RFT measure in similarity analysis was assessed
on the individual gene. Influenza A viruses can be divided into subtypes
based on two proteins on the surface of the virus: hemagglutinin (HA) and
neuraminidase (NA). The neuraminidase (NA) gene is associated with pan-
demic influenza and a wide range of natural hosts, including human, bird,
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Figure 7: Phylogenetic UPGMA tree of simulated DNA sequences using the
RFT distances.

and other animals. The neuraminidase (NA) genes from different Influenza
A virus subtypes were used in the test. Figure 8 and Figure 9 are the phylo-
genetic trees of influzenza A virus constructed by the proposed RFT method
and Jukes-Cantor method, respectively. Although both phylogenetic trees
show correct grouping of different virus subtypes H7N9, H11N9, H3N2, and
H1N1, the phylogenetic tree from RFT distance shows clearer branch differ-
ences than the tree from pairwise sequence alignment using the Jukes-Cartor
distance. For example, the virus of highly homologous sequences such as
A/Illinois H1N1 virus,06/2012,08/2012, and 01/2012,07/2012 cannot be sep-
arated by pairwise alignment using Jukes-Cartor distance, but they can be
clearly separated with correct hierarchical relationship in the tree of RFT
method. The other example in the figure is that the H7N9 virus mutants in
China 2013 can only be clearly separated in the tree of RFT method. The
hierarchical relationship among the H7N9 virus mutants in China is in agree-
ment with the geographic distribution of the virus and the epidemiological
investigation from previous findings (Xiong et al., 2013). Thus, the RFT
distance tree can display clear levels of hierarchy and relationship among
different virus, but alignment-based method cannot have clear spatial sepa-
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ration of similar species in the tree. We can depend on RFT tree analysis on
the virus of one specie over different regions to see how the virus is evolved.
These results demonstrate the superiority of the proposed RFT method on
existing sequence alignment methods due to the fact the RFT distance is
from calculation of all the sequence information and does not lose sequence
information after transform. The resulted phylogenetic trees with RFT dis-
tance have the same topology, and are generally consistent with the reported
results sequence alignment, and demonstrates a strong correlation with viral
biology.

To compare the computational complexity of RFT measure on DNA anal-
ysis with DFT, we conducted a stress test by running 500 rounds DFT and
500 round RFT for a DNA sequence of 654 bp on a personal computer with
4 GB memory and a 2.4 GHz CPU. The total elapsed time of RFT test
was 199.2686 seconds, while the corresponding elapse time for DFT was
20.4494 seconds. The result indicates RFT needs more computation time
than DFT, but the performance was practicable for current computer power.
From equation (9), RT shows O(N2) arithmetical operations, while FFT has
O(N l ogN) computational complexity. Another drawback of the RFT and
DFT comparative analysis of DNA sequences is the limitation of the length
of DNA sequences such as whole genomes. For very long DNA sequences or
genomes, both RFT and DFT methods cannot handle the very long length
due to limit of software memory. More studies are needed to address the
problem for very long DNA sequences when using RFT as similarity mesaure.
method.

One of the key tasks of the post-genome era is to determine the func-
tional implications of gene or protein sequences. From similarity compari-
son and hierarchical clusterings, we may classify new sequences or genomes
and infer their functions from classification. This requires accurate and effi-
cient similarity measure for DNA sequences. The RFT based distance metric
leads to accurate and reliable results in hierarchical clustering with accuracy.
It shows a clear and better hierarchical tree than sequence alignments and
sequence similarity scores for comparing amino acid and DNA sequences.
Most alignment-free methods such as k-mer method and feature based meth-
ods may loss of information after extracting sequence or feature information.
When using DFT power spectrum, the phase information in DFT is lost, but
RFT coefficient real numbers and do not contain phase information, thus the
RFT makes a reversible comprehensive map and characterization of a DNA
sequence and thus retains all the sequence information for comparison.
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Figure 8: Phylogenetic UPGMA tree of influenza A viruses using the RFT
distances.
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Figure 9: Phylogenetic UPGMA tree of influenza A viruses using the se-
quence alignment Jukes-Cantor distance.
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4. Conclusion

In this work, we have established an effective similarity measure of DNA
sequences based on RFT. We first performed RFT on DNA sequence after
converting symbolic sequences to four binary indicator sequences. Euclidean
distance is used to calculate the similarity of RFT coefficients. We con-
ducted different DNA sequence mutants and assess the accuracy of the new
RFT metric on the mutants. The similarity metrics have been evaluated by
constructing phylogenetic trees of virus at gene levels. Our work provides
encouraging steps for applying the rediscovered RFT approach for effective
comparative studies on biological sequences.
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Table 1: Genbank accession numbers of influenza virus A used in the paper

Genbank ID Name

KC891137 A/Illinois/05/2012(H1N1)
KC891134 A/Illinois/06/2012(H1N1)
KC891128 A/Illinois/08/2012(H1N1)
KC891564 A/Illinois/01/2012(H1N1)
KC891131 A/Illinois/07/2012(H1N1)
KC893127 A/Illinois/13/2012(H3N2)
KC893131 A/Illinois/12/2012(H3N2)
DQ017515 A/mallard/Alberta/24/01(H7N3)
CY060664 A/Ontario/315015/2009(H1N1)
JF789604 A/mallard/Czech Republic/13438-29K/2010(H11N9)
GQ184333 A/Baikal teal/Hongze/14/2005(H11N9)
KF021599 A/Shanghai/02/2013(H7N9)
KC885958 A/Zhejiang/DTID-ZJU01/2013(H7N9)
KC994454 A/Fujian/1/2013(H7N9)
KC853765 A/Hangzhou/1/2013(H7N9)
KF001514 A/Hangzhou/2/2013(H7N9)
KF001517 A/Hangzhou/3/2013(H7N9)
KC896776 A/Nanjing/1/2013(H7N9)
KC853231 A/Shanghai/4664T/2013(H7N9)
KF018055 A/Taiwan/T02081/2013(H7N9)
KF018047 A/Taiwan/S02076/2013(H7N9)
CY147062 A/duck/Anhui/SC702/2013(H7N9)
CY147070 A/duck/Zhejiang/SC410/2013(H7N9)
CY146910 A/chicken/Guangdong/SD641/2013(H7N9)
JN244222 A/wild bird/Korea/A14/2011(H7N9)
CY029883 A/sharp-tailed sandpiper/Australia/10/2004(H11N9)
AB298284 A/duck/Hokkaido/W245/2004(H11N9)
AB472035 A/duck/Tsukuba/239/2005(H11N9)
CY025199 A/sharp-tailed sandpiper/Australia/6/2004(H11N9)
AB472034 A/duck/Tsukuba/164/2005(H11N9)
AB472033 A/duck/Tsukuba/441/2005(H11N9)
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