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ABSTRACT

Genome-wide association studies (GWAS) have discovered numerous loci involved in ge-
netic traits. Virtually all studies have reported associations between individual single nu-
cleotide polymorphisms (SNPs) and traits. However, it is likely that complex traits are
influenced by interaction of multiple SNPs. One approach to detect interactions of SNPs is
the brute force approach which performs a pairwise association test between a trait and
each pair of SNPs. The brute force approach is often computationally infeasible because of
the large number of SNPs collected in current GWAS studies. We propose a two-stage
model, Threshold-based Efficient Pairwise Association Approach (TEPAA), to reduce the
number of tests needed while maintaining almost identical power to the brute force ap-
proach. In the first stage, our method performs the single marker test on all SNPs and selects
a subset of SNPs that achieve a certain significance threshold. In the second stage, we
perform a pairwise association test between traits and pairs of the SNPs selected from the
first stage. The key insight of our approach is that we derive the joint distribution between
the association statistics of a single SNP and the association statistics of pairs of SNPs. This
joint distribution allows us to provide guarantees that the statistical power of our approach
will closely approximate the brute force approach. We applied our approach to the
Northern Finland Birth Cohort data and achieved 63 times speedup while maintaining 99%
of the power of the brute force approach.
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1. INTRODUCTION

Genome-wide association studies (GWAS) attempt to discover genetic variation associated with

disease traits. To perform GWAS, studies collect genetic variation of individuals and their disease

status or disease related traits. GWAS studies typically collect single nucleotide polymorphisms (SNPs)

because technologies allow for very cost efficient collections of SNPs. Current GWAS studies collect about a
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million SNPs in thousands of individuals. The standard approach for identifying associations between SNPs

and traits is that for each SNP, we compare the average trait value of individuals who have one allele of an

SNP and that of individuals who have the other allele of the SNP. If the difference between the two average

trait values is above a certain threshold, we declare that the SNP is significantly associated with the trait. We

refer to computing the difference in the average trait values for each SNP as the ‘‘single marker test,’’ and it

has successfully identified many individual SNPs associated with several complex diseases (Corder et al.,

1993; Bertina et al., 1994; Altshuler et al., 2000; Saxena et al., 2007; Consortium, 2007). Since SNPs are so

prevalent in the genome, they are likely to be correlated with other genetic variations.

Current studies on certain complex diseases have also suggested that some SNPs influence diseases

through interactions (Williams et al., 2000; Brem et al., 2005; Yanchina et al., 2004). In an extreme

scenario, two SNPs may not have any effect on a disease independently, but they may affect the disease

when both are present. To detect an interaction of SNPs, one needs to consider the association between a

trait and a pair of SNPs. One approach to finding such associations is to divide individuals into two groups:

one group of individuals who have a certain combination of alleles for a pair of SNPs and the other group of

individuals who have different combinations of alleles for the pair of SNPs. We then compute the dif-

ference in the average trait value between the two groups to determine whether the pair of SNPs is

significantly associated with the trait. Finding an association between a trait and a pair of SNPs is called the

‘‘pairwise association test,’’ and recently, several different methods have been proposed for pairwise

association tests (Evans et al., 2006; Zhang et al., 2010; Prabhu and Pe’er, 2012; Yang et al., 2009;

Millstein et al., 2006; Ljungberg et al., 2004).

One major challenge in discovering pairs of SNPs associated with a trait is that it requires enormous

computation. One needs to compute associations between a trait and 4 · M
2

� �
pairs of SNPs, where M is the

number of SNPs available for testing. When M is close to one million as in current GWAS, an exhaustive

pairwise search that goes through all pairs of SNPs considers 2,000 billion pairs of SNPs, which is a

computationally challenging task. As the number of SNPs in GWAS keeps increasing with the improve-

ment of technologies to collect SNPs, the exhaustive search becomes even more computationally infeasible.

In this article, we present a threshold-based efficient pairwise association approach (TEPAA) for de-

tecting associations between traits and pairs of SNPs using a two-stage model. In the first stage, our method

performs the single marker test on all individual SNPs and selects a subset of SNPs that exceed a certain

SNP-specific predetermined significance threshold for further consideration. In the second stage, individual

SNPs that are selected in the first stage are paired with each other, and we perform the pairwise association

test on those pairs. In this method, there exists a trade-off between the probability of detecting a pair of

SNPs associated with a trait and the computational burden. Intuitively, statistical power increases as we

include more SNPs in the second stage, which means a higher computational burden. The first stage

thresholds determine this trade-off. We derive the analytical power of our method, which allows us to

control this trade-off by choosing appropriate thresholds. The key insight of our approach is that we derive

the joint distribution between the association statistics of single SNP and the association statistics of pairs

of SNPs. This joint distribution allows us to provide guarantees that the statistical power of our approach

will closely approximate the brute force approach. We can accurately compute the analytical power of our

two-stage model and compare it to the power of the brute force approach. Hence, we are able to choose as

few SNPs as possible in the first stage while achieving almost the same power as the brute force approach.

We demonstrate the utility of TEPAA applied to the Northern Finland Birth Cohort (Rantakallio, 1969;

Jarvelin et al., 2004).

Several methods have recently been developed to increase the efficiency of detecting gene–gene in-

teractions. Most of these methods are only applicable to case/control data. These methods include TEAM

(Zhang et al., 2010), which uses a dynamic programming approach to identify significant pairs, SIXPAC

(Prabhu and Pe’er, 2012), which utilizes a novel randomization technique, BOOST (Wan et al., 2010),

which utilizes a Boolean representation of data and a screening stage to filter out most nonsignificant SNP

interactions, and RAPID (Brinza et al., 2010), which utilizes geometric properties of the v2 statistic to

identify significant pairs. However, none of these methods are applicable to quantitative traits.

The only existing method that is feasible on a GWAS dataset to detect SNP pairs associated with

quantitative traits is FastEpistasis (Schpbach et al., 2010). FastEpistasis is a brute-force approach that

conducts pairwise associations for all pairs of SNPs, or SNP pairs specified by users. The advantage of

FastEpistasis is that their method utilizes architectures with multiple cores. In essence, FastEpistasis is an

extremely efficient implementation of the brute force approach.
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2. RESULTS

2.1. Overview of the two-stage model TEPAA

We present a two-stage model, TEPAA, for detecting associations between traits and pairs of SNPs. In

the first stage, the association statistics for all SNPs are computed. Any SNP that has a statistic higher than

a predetermined SNP-specific threshold advances to the second stage in which all pairs of these SNPs are

evaluated. The specific first-stage thresholds are important in determining the tradeoff between statistical

power and computational cost; they control the number of SNPs to be selected in the first stage. For a truly

associated pair of SNPs to be identified using our approach, both SNPs must advance to the second round

and thus must have association statistics higher than the thresholds. Clearly, the more stringent the

thresholds are, the smaller the number of SNPs in the second stage and the smaller the number of pairs of

SNPs that must be evaluated. More stringent thresholds speed up this method. On the other hand, more

stringent thresholds increase the chance that at least one of the pair of truly associated SNPs will not be

more significant than its first-stage threshold, and the pair will not be identified by the method. Hence, there

is a trade-off between power and cost, which is determined by the first-stage thresholds. The thresholds

themselves are influenced by the desired statistical power versus computational time tradeoff and also the

minor allele frequency as we show below.

Our method chooses the first-stage thresholds TA and TB such that the two-stage model loses only a

small amount of power but increases computational efficiency dramatically compared to the exhaustive

search. To find such thresholds, we first derive the analytical power and cost of both the brute force

approach and the two-stage model. This analysis allows us to choose the threshold that yields the desired

power and cost, and hence it allows us to control the trade-off between the two. To derive the analytical

power of our two-stage model, we use the framework of multivariate normal distribution (MVN) to

model the association statistics (Han et al., 2009; Kostem and Eskin, 2013; Kostem et al., 2011), where

the statistics follow standard normal distributions under the null hypothesis. We use an MVN to ap-

proximate the joint distribution between the association statistics of single SNP SA and SB, and the

association statistic of pairs of SNPs SAB. The noncentrality parameters (NCPs) of statistics are considered

to be the mean vector in the MVN, and correlations among statistics are considered as the covariance

matrix in the MVN. The NCPs and correlations can be calculated from the data, and thus we obtained all

the parameters of the MVN.

In order to demonstrate the power loss of TEPAA, we consider the scenario in which we have two SNPs,

A and B, and are also considering their interaction resulting in three statistics (SA, SB, SAB). For the

simplicity of the example, we show how to compute the power loss when there are two dimensions (SA,

SAB), under the assumption that SA ‡ 0 and SAB ‡ 0. We project the MVN surface to the (SA, SAB) plane as

shown in Figure 1. The probability density function of the MVN is represented by the contour lines in the

plane. The center of the contour lines corresponds to the mean vector of the MVN. For the brute force

approach, we declare an SNP pair AB to be significant whenever we see the statistic SAB is greater than a

threshold T2. So the area on the right of the vertical line SAB = T2 in Figure 1 is the significant area of the

brute force approach. In our method TEPAA, we first examine the statistic SA. Only when SA ‡ TA will we

further compute SAB to see whether it is greater than T2. T2 is obtained using the desired overall significance

level for discovering gene-by-gene interactions, which in our case is T2 = -F - 1(a/2), where a = 10 - 12

(Prabhu and Pe’er, 2012). So, the Area 1 in Figure 1 corresponds to the power of TEPAA. Compared to

FIG. 1. The power loss region of the threshold-based efficient

pairwise association approach (TEPAA). The contour lines represent

the probability density function of the multivariate normal distribu-

tion (MVN). The area surrounded by the red rectangle corresponds to

the power loss region.
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brute force approach, if a pair of SNP AB has SAB ‡ T2 but SA < TA, our method will not be able to detect it.

So Area 2 in Figure 1 corresponds to the power loss of TEPAA compared to the brute force approach. The

details of the analysis are discussed in sections 3.3 and 3.4.

From our analysis, we observe that the thresholds that control the power loss of the two-stage approach

depend on the minor allele frequency (MAF) of the SNPs. In particular, more common SNPs can be filtered

out with less significant thresholds than rare SNPs. In order to efficiently implement TEPAA using MAF-

dependent thresholds for each pair, we group the SNPs into bins based on their MAFs to apply the correct

thresholds to each possible pair. After disregarding rare variants with MAF < 0.05, we categorize all

common SNPs into nine bins according to their MAF, with step size 0.05. Each pair of SNPs would have

two thresholds, one for each SNP in the first stage. In total, we have 9
2

� �
+ 9 categories of SNP pairs. We

precompute the first-stage thresholds for each combination of two MAFs in order to achieve 1% power loss,

while achieving high cost savings. We sort the SNPs within each bin by their association statistics and use

binary search to rapidly obtain the set of SNPs above a single threshold to efficiently implement the first

stage of our method.

2.2. Application of TEPAA to the NFBC data

We applied TEPAA to the Northern Finland Birth Cohort (NFBC) data to demonstrate the utility of our

two-stage model and the cost savings on real data. The Northern Finland Birth Cohort data contains 5,326

individuals, and 331,476 SNPs are genotyped. The histogram of all SNPs’ MAFs is shown in Figure 2. As

described in detail in section 3.5, we categorize all common SNPs into nine bins according to their MAFs.

The number of SNP pairs in each category is shown in Table 1. The first-stage thresholds of TEPAA are

precomputed for each category in order to have the power loss at 1% using the methods described in section

3.5. The cost saving for each category is summarized in Tables 2. Based on Tables 1 and 2, the estimated

overall cost savings is 63.2 times, which is the ratio between total number of pairwise association tests in

brute force approach and that of TEPAA.

FIG. 2. The distribution of all single nucleotide polymorphisms (SNPs’), minor allele frequencies (MAFs).
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For all SNPs in each bin, we calculate the association statistics and sort the SNPs in descending order of

their statistics. We perform our analysis using the dominant model, which is standard for analysis of

epistatic interactions. We note that the basic approach of TEPAA can be extended to other models, such as

the recessive model or additive model as well.

We compare the performance of the brute force approach and TEPAA when detecting the SNP pairs

associated with the phenotype ‘‘CRP’’ (C-reactive protein) on a machine with 2.3 GHz AMD Opteron

Processor. Since it is impractical to run the brute force approach on the whole chromosome, the CPU time

of the brute force approach is estimated from one single chromosome by scaling, which is estimated to be

1,542 hours for phenotype ‘‘CRP.’’ The CPU time of TEPAA is 24.5 hours for the same phenotype. We

achieved 62.9 times of cost saving, which verifies our analysis of the cost savings of TEPAA when

achieving 1% of power loss. However, both the brute-force approach and two-stage model report no

significant SNP interactions under the significance threshold 10 - 12. This is understandable since this data

set contains only 5,326 individuals. In the next section, we show that the brute force approach and TEPAA

have similar power when there exist significant SNP interactions.

2.3. TEPAA controls power loss in simulated data

To demonstrate that TEPAA has only 1% power loss using the precomputed first stage thresholds, we

perform simulations where we implant a significant SNP–SNP interaction to the NFBC data and then detect

the SNP pair using TEPAA.

Table 1. The Number of SNP Pairs in Each Category

MAF of SNP B

M
A

F
o

f
S

N
P

A
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.05 1.13 5.2 5.86 5.70 5.54 5.30 5.13 5.00 4.97 4.94

0.1 — 5.97 13.45 13.07 12.72 12.16 11.78 11.48 11.40 11.34

0.15 — — 7.57 14.71 14.32 13.69 13.26 12.93 12.84 12.77

0.2 — — — 7.15 13.91 13.31 12.89 12.56 12.48 12.41

0.25 — — — — 6.77 12.95 12.54 12.22 12.14 12.07

0.3 — — — — — 6.19 11.99 11.69 11.61 11.55

0.35 — — — — — — 5.81 11.32 11.25 11.18

0.4 — — — — — — — 5.52 10.96 10.90

0.45 — — — — — — — — 5.44 10.83

0.5 — — — — — — — — — 5.38

Numbers are shown in factor of 100 million. MAF, minor allele frequency; SNP, single nucleotide polymorphism.

Table 2. The Threshold for SNP A/SNP B and Cost Savings in Various Combinations

of MAFs to Achieve Power Loss of 1%

MAF of SNP B

M
A

F
o

f
S

N
P

A

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 34/34/8 8/50/25 7/58/25 5/62/32 2/76/66 0.82/84/145 0.26/79/487 0.10/84/1190 0.02/90/5555

0.15 — 14/14/51 3/24/139 3/31/107 2/46/108 1/58/172 0.35/54/529 0.13/62/1241 0.03/69/4830

0.2 — — 5/5/400 2/9/556 2/16/312 1/21/476 0.47/31/686 0.19/58/907 0.05/69/2899

0.25 — — — 3/3/1100 2/5/1000 1/7/1429 1/16/625 0.26/21/1831 0.10/42/2380

0.3 — — — — 1/1/1e5 1/3/3333 1/4/2500 0.62/12/1344 0.13/16/4807

0.35 — — — — — 0.6/0.6/2.7e4 0.5/1/2e4 0.1/2/5e4 0.03/8/4e4

0.4 — — — — — — 0.3/0.3/1.1e5 0.1/0.6/1.6e5 0.1/1/1e5

0.45 — — — — — — — 0.2/0.2/2.5e5 0.1/0.5/2e5

0.5 — — — — — — — — 0.1/0.1/1e6

Here we assume that the MAF of SNP A is smaller than that of SNP B in each pair. The first and second number in each cell is the

threshold for SNP A (aA) and SNP B (aB), respectively. These two thresholds are scaled by 10 - 2. The third number in each cell is the

cost saving, which is the ratio between cost of brute-force method and that of the two-stage model.
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We created phenotype data using the phenotype ‘‘CRP’’ (C-reactive protein) in the NFBC data as a

starting point. To simulate the significant SNP pairs, we randomly sample the MAF of each SNP from

[0.05, 0.5). The alleles of each of the individuals at these two simulated SNPs are then sampled from the

MAF. The phenotypes of the individuals with causal alleles at the SNP pairs are increased by a selected

effect size so that the pairs have 50% power in the brute-force approach. Then we apply both the brute-

force approach and the two-stage approach to the simulated dataset. The first stage significance thresholds

in the two-stage approach are selected in order to obtain 1% power loss.

We generated 10,000 simulated SNP pairs and applied both approaches. The power for each approach

is calculated as the proportion of experiments that the approach detected the implanted SNP pairs among

all 10,000 experiments. The power of the brute-force approach is 51% while the power of TEPPA is

50.8%. The practical power loss is 0.4%. We note that the power loss is lower than we expected

because the thresholds are chosen for MAF frequency bins to be conservative and valid for all members

of that bin.

3. METHODS

3.1. Association test between traits and one SNP

We first illustrate the method to detect associations between traits and one SNP. A traditional approach

to identify the association is that for each SNP, we compare the average trait value of individuals who

carry the causal allele at the SNP and that of the individuals who do not have the causal allele at the SNP

of interest. If the difference between those two values is above a certain threshold, we declare that the

investigated SNP has a significant correlation with the trait. This approach is referred to as ‘‘single marker

test’’ and has been successful in many association studies. We analyze the power of the ‘‘single marker

test’’ as follows.

Assume we are investigating SNP A, with minor allele frequency to be pA and the causal allele is the

minor allele (for the case where the causal allele is the major allele, we have a similar analysis). Let N be

the number of individuals and yi be the trait value of individual i. Then the number of individuals with the

minor allele at SNP A can be denoted as NA = N $ pA, and the number of individuals without the minor

allele at SNP A can be denoted as N:A = N $ p:A = N $ (1 - pA). We use xA
i to denote the allele of individual

i at SNP A; yi is any real number and xA
i 2 f0‚ 1g. We set x A

i = 1 when the allele of individual i at SNP A is

the minor allele and xA
i = 0 otherwise.

We assume that a trait value of individual i follows the normal distribution with a certain mean l and a

variance r2. If the minor allele affects the trait, the mean trait value (l) of individuals with the minor allele

will increase by an effect size bA. Now, we can obtain the distribution of yi as

yi ~ N(l + xA
i bA‚ r2) (1)

Let �YA be the average trait value of individuals who have the causal allele at SNP A and �Y:A be the

average trait value of individuals who do not carry the causal allele at SNP A. Then we can derive the

distributions of �YA and �Y:A as follows:

�YA =

P
i:xA

i
= 1 yi

NA

~ N l + bA‚
r2

N � pA

� �
‚ �Y:A =

P
i:xA

i
= 0 yi

N:A

~ N l‚
r2

N � p:A

� �
(2)

We normalize the difference between �YA and �Y:A to obtain the following statistic SA, which is normally

distributed with mean kA

ffiffiffiffi
N
p

(the noncentrality parameter) and unit variance.

SA =
�YA - �Y:Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2

N�pA�(1 - pA)

q ~ N(kA

ffiffiffiffi
N
p

‚ 1)‚ where kA =
bA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA(1 - pA)

p
r

(3)

Given the significance level a and the observed value of the test statistic SA, the SNP is deemed as

significant, or statistically associated with the trait, if jSAj ‡ F - 1(1 - a/2), where F - 1 is the quantile

function of the standard normal distribution. For simplicity, we use the notation T = F - 1(1 - a/2) as the

per-SNP threshold.
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We declare all those SNPs with statistic jSAj > T to be associated with the trait. So the per-causal-SNP

power of a putative causal SNP A, which is the probability of jSAj > T, can be calculated as

P1(A) = P(jSAj > T) =F( - T + kA

ffiffiffiffi
N
p

) + 1 -F(T + kA

ffiffiffiffi
N
p

) (4)

The average power P1 is obtained by averaging per-causal-SNP powers over all putative causal SNPs.

3.2. The brute-force approach for pairwise association test

Current studies on complex diseases have also suggested that some SNPs influence traits in pairs. Only

when both causal alleles appear on a pair of SNPs is the trait value increased. To detect the interaction of

SNPs that influence the trait, we need to consider the association between a trait and a pair of SNPs

(pairwise association test). We analyze the power of the brute force approach, which calculates the as-

sociation between a trait and all pairs of SNPs as follows.

We assume that there exists an SNP pair AB, composed of SNP A and SNP B, that influences a trait.

Assume the causal alleles are minor alleles at both SNPs. Our statistic is the difference between the

average trait value of individuals who have minor alleles on both SNPs and that of individuals who do

not have minor allele on at least one of the two SNPs A and B. Here we assume the two SNPs have

the same (positive) direction of effect. We use the same notation as in section 3.1. The expected number

of individuals who have minor alleles at both SNPs can be computed as NAB = N $ pA $ pB, and the

expected number of individuals who do not have minor alleles at both SNPs can be computed as

N:AB = N $ (1 - pA $ pB). If an individual carries the causal alleles at both SNPs A and B, the mean of trait

value is increased or decreased by the effect size of the SNP pairs, which is denoted as bAB. Then we can

write the distribution of yi as

yi ~ N(l + xA
i xB

i bAB‚ r2) (5)

Let �YAB be the average trait value of individuals with causal alleles at both SNPs and, let �Y:AB be the average

trait value of individuals without causal alleles at both SNPs. For simplicity, let
P

11 denote
P

i:xA
i

= 1^xB
i

= 1, and

similarly for
P

10,
P

01,
P

00 for different alleles of SNPs A and B. We can calculate �YAB and �Y:AB as

�YAB =
1

NAB

X
11

yi ~ N l + bAB‚
r2

NpApB

� �
‚

�Y:AB =
1

N:AB

X
00‚ 01‚ 10

yi ~ N l‚
r2

N(1 - pApB)

� �
(6)

We normalize the difference between �YAB and �Y:AB to obtain the following statistic SAB, which is normally

distributed with mean kAB

ffiffiffiffi
N
p

(the noncentrality parameter) and unit variance.

SAB =
�YAB - �Y:ABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2

NpApB(1 - pApB)

q ~ N(kAB

ffiffiffiffi
N
p

‚ 1)‚ where kAB =
bAB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pApB(1 - pApB)

p
r

(7)

According to Prabhu and Pe’er (2012), we set the per-SNP-pair significance level a = 10 - 12. The per-

SNP-pair statistic threshold is then T2 = -F - 1(a/2) = 7.13. The per-causal-SNP-pair power of a putative

causal SNP pair AB can be estimated as

PBF(AB) =F( - T2 + kAB

ffiffiffiffi
N
p

) + 1 -F(T2 + kAB

ffiffiffiffi
N
p

) (8)

The average power PBF is obtained by averaging per-causal-SNP-pair powers over all putative causal SNP pairs.

Assuming the total number of SNPs is M, we define the cost of brute-force method to be the total number

of SNP pairs needed for association analysis, that is, CBF(M) = M
2

� �
.

3.3. Two-stage model

In the brute force approach, the total number of SNP pairs to be considered is M
2

� �
, and we need to

compute the statistic SAB for all these pairs. Considering the number of SNPs involved in current GWAS,

the computational burden makes this strategy infeasible.
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We propose a two-stage model to reduce the number of tests needed while maintaining similar power

with the brute force approach. In the first stage, we propose two thresholds TA and TB and perform the

single marker test on all SNPs. In the second stage, we pair all SNPs that are significant under threshold TA

with those significant SNPs under threshold TB. Then we perform a pairwise association test between traits

and all those pairs. The SNP pairs that pass the per-SNP-pair statistic threshold T2 are considered to be

statistically associated with the trait.

The analysis of single marker tests in the first stage is quite similar to that of the single SNP association

test in Section 3.1. We derive the similar equations with (1), (2) and (3) except that the effect size of SNP A

becomes pBbAB, when the pair of SNP A and SNP B is the causal SNP pair. So the statistic SA of SNP A is

approximately distributed as

SA =
�YA - �Y:Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2

N�pA�(1 - pA)

q ~ N(kA

ffiffiffiffi
N
p

‚ 1)‚ where kA =
pBbAB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA(1 - pA)

p
r

(9)

The analysis of SNP B is the same except that we switch pA and pB in the equations. We note that this is

an approximation, because for the individuals that have SNP A, the distribution of the phenotypic mean is

actually a mixture of two normal distributions where one component is of the individuals who have SNP A

and also have SNP B and the other component is of the individuals who have SNP A but do not have SNP

B. We approximate this mixture as a single normal distribution, which in principal may underestimate the

variance for phenotypic mean. However, for the plausible range of effect sizes, samples sizes, and minor

allele frequencies in gene–gene interaction studies, the effect of this approximation is negligible. We

describe the empirical verification of this observation in our experiments in the Appendix.

Assume a pair of SNPs A and B are putatively associated with a trait. The underlying effect size bAB

could either be positive or negative. Here we first analyze the case where the true effect size is positive. To

find such positive pairwise association in our model, SA must be no less than TA, SB must be no less than TB

(or vice versa, but here we only analyze one case since we will show in section 3.5 that the other case is not

necessary), and SAB must be at least T2. Hence, we need to consider three statistics and three thresholds to

compute the analytical power of the two-stage model. Under the assumption that we are aware the effect

size is positive, the per-causal-SNP-pair power of a putative causal SNP pair AB can be denoted as

P2+ (AB) = P(SA � TA‚ SB � TB and SAB � T2) (10)

However, considering the fact that whether the effect of the SNP pair is positive or negative is unknown,

we also need to calculate the probability where SAB is less than - T2, that is,

P2- (AB) = P(SA � - TA‚ SB � - TB and SAB � - T2) (11)

So, the per-causal-SNP-pair power of a putative causal SNP pair AB is

P2(AB) = P2+ (AB) + P2- (AB) (12)

The analysis for the case where the true effect size is negative is exactly the same except that the

noncentrality parameters for SA, SB, and SAB are negative.

To calculate the value of P2(AB), we need to take into account correlations between statistics. The two

statistics SA and SAB are correlated because both involve SNP A. Similarly, we have a correlation between

SB and SAB. We assume SNPs are independent, and hence there is no correlation between SA and SB. The

average power P2 is obtained by averaging per-causal-SNP-pair powers over all putative causal SNP pairs.

Computing the analytical power of the two-stage model is complicated because of the correlations between

statistics. We estimate the power using a multivariate normal distribution framework as in section 3.4.

Denote the per-SNP significance level corresponding to the statistic thresholds TA and TB in the first stage

to be aA and aB, respectively. Then we have aA = 2F( - Ta) and aB = 2F( - Tb). The cost of the two-stage

model can be computed as CTS(M, aA, aB) & M2aAaB / 2.

We measure the cost saving by the ratio between cost of brute-force method (CBF) and that of the two-

stage model (CTS):

CBF(M)

CTS(M‚ aA‚ aB)
=

M
2

� �
M2aAaB=2

� 1

aAaB

(13)
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And we define the power loss to be

1 -
P2

PBF

(14)

For a given dataset, there exists a trade-off between the power loss and cost saving. The trade-off

is controlled by the two thresholds TA and TB. We carefully design the thresholds to achieve high

cost saving while maintaining low power loss. The details of the algorithm are summarized in

section 3.5.

3.4. Estimating the two-stage power using the MVN

In this section, we provide an approach to compute the power of the two-stage model in Equation (12).

The distribution of association statistics SA, SB, and SAB has been derived in sections 3.2 and 3.3. We aim to

compute the power in Equation (12) for any given thresholds TA, TB, and T2.

For many widely used statistical tests, the statistics over multiple markers asymptotically follow an

MVN (Seaman and Muller-Myhsok, 2005; Lin, 2005). To derive the analytical power of our two-stage

model, we use the framework of MVN proposed by Han et al. (2009). The statistics (SA,SB,SAB) follow an

MVN. The mean of each statistic of the MVN is the noncentrality parameters (NCPs) of the statistics. The

NCPs of SA, SB, and SAB are already derived in Equations (7) and (9), so the mean vector of the joint

random vector (SA, SB, SAB) is (kA

ffiffiffiffi
N
p

‚ kB

ffiffiffiffi
N
p

‚ kAB

ffiffiffiffi
N
p

). The covariance and the correlation between any

pair of statistics are equivalent in this case because variances of the statistics are 1. So, the covariance

matrix in the MVN will be the correlations among statistics. We assume the SNPs are independent of each

other, so the correlation between SA and SA is 1, and the correlation between SA and SB is 0. The covariance

matrix is as follows:

1 0 Cor(SA‚ SAB)
0 1 Cor(SB‚ SAB)

Cor(SA‚ SAB) Cor(SB‚ SAB) 1

0
@

1
A

We only need to compute the correlation between SA (or SB) and SAB, which is denoted as Cor(SA, SAB),

to derive the complete MVN. We provide a simple but accurate way to compute the correlation. First we

create a virtual SNP C, where the allele of SNP C is exactly the same with the value of the SNP pair AB.

The minor allele frequency of SNP C is denoted as pC = pAB = pApB. The statistic SC will be equivalent to

statistic SAB. Instead of computing Cor(SA, SAB), now we can compute Cor(SA, SC). Since we adopt the

dominant model, the genotypes of SNP A and SNP B are binary values {0, 1}. The genotype of SNP C is

obtained by multiplying the genotypes of SNP A and SNP B, so it is also a binary value. The Pearson

correlation rAC between the genotypes of SNP A and SNP C is then

rAC =
pC(1 - pA)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pC(1 - pC)pA(1 - pA)
p =

pApB(1 - pA)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pApB(1 - pApB)pA(1 - pA)

p (15)

It is well known that the correlation Cor(SA, SC) between the test statistic SA and SC is equal to rAC (Han

et al., 2009). Similarly, we can compute the correlation Cor(SB, SAB).

Up to now we obtained all parameters for the MVN framework. Then, we can compute the power as

the volume outside of the significance threshold under the MVN we created. Figure 3 helps to illustrate the

idea. We can see that in the three-dimension space of the MVN framework for statistics SA, SB, and SAB, the

two cubes on the corners correspond to the significance region. Using the MVN, we can compute the power

of our two-stage model for any given thresholds TA, TB, and T2 by summing up the volume of these two

cubes under the MVN. This method yields a very accurate estimate of power when there exist correlations

among statistics, and hence it provides an appropriate framework to compute the analytical power of our

model.

3.5. Efficient pairwise association test using TEPAA

In previous sections, we have illustrated how to calculate the power and cost savings of our

two-stage model for any given threshold. In this section, we provide a framework, TEPAA, to
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determine the first thresholds, which generate a relatively small number of SNP pairs for pairwise

association test in the second stage while losing a small amount of power compared to the brute

force approach.

From Equation (12) and section 3.4, we can see that the joint distribution between the association

statistics of single SNPs and the association statistic of a pair of SNPs depends on the MAFs of the

pair of SNPs. MAFs are observable values, so we can categorize all SNP pairs based on the combi-

nation of their MAFs. Since MAFs are continuous values, we can discretize the MAFs into bins to

have a small number of combinations. After removing rare variants, we can categorize all SNPs into

nine bins, with step size 0.05. In order to detect the pairwise association for all SNP pairs, we break all

combinations of SNP pairs into two cases. First we pair SNPs within different bins and this results

in 9
2

� �
categories. The second case is to combine SNPs within one bin. So totally we have 9

2

� �
+ 9

categories of SNP pairs.

Assuming the power of brute force approach is 50%, we can calculate the effect size bAB from Equation

(8). Then for each category of SNP pairs, we can compute the power loss and cost savings from Equations

(13) and (14) with the MVN, given two first-stage significance levels aA and aB. We do an exhaustive

search over the space [0, 1) with a small step size to find the optimal values of aA and aB to achieve best

cost savings while maintaining power loss of 1%. The values of aA and aB are shown in Table 2 when there

are 5,326 samples in the dataset.

For SNPs in each bin, we carry out the single marker test and sort the association statistics of the SNPs.

Then for each category of SNP pairs, we do a binary search in each involved bin to find all significant

SNPs under the precomputed significance level. The selected SNPs are then paired for the second-stage

pairwise association test. Based on the precomputed values of aA and aB, we can estimate the cost savings

for each category of SNP pairs as in Table 2. We propose a threshold for each bin in each category of

SNP pairs, and the bins are disjoint. So, in the calculation of Equation (10), we only need to consider the

case where SA > TA and SB > TB, and it is not necessary to consider the case SA > TB and SB > TA. We

have the same conclusion in the calculation of Equation (11). We summarize the framework of TEPAA in

Algorithm 1.

Although the calculation is based on the assumption that the brute force approach has a power of

50%, our approach is robust to the effect size. We did simulations for different effect sizes, which generate

different power for the brute force approach. The cost saving of TEPAA is stable when achieving 1%

power loss under various effect sizes.

FIG. 3. The volume of the two cubes under the MVN on the two corners is the power of our two-stage model.
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Algorithm 1: Framework of TEPAA

Input: A GWAS data set with genotype and phenotype for each individual.

Output: SNP pairs associated with the phenotype.

1 Remove rare variants, categorize rest SNPs into 9 bins according to MAFs, with step size 0.05.

2 Precompute the thresholds for each combination of bins as in Table 2, which only depend on the number of samples

in the dataset and second-stage threshold.

3 For SNPs in each bin, we carry out the single marker test and sort the association statistics of each SNP in the bin.

4 For each pair of bins, we perform binary searches within the corresponding bin to determine which SNPs have

association statistics more significant than the predetermined thresholds.

5 For each of these identified pairs of SNPs, we perform the pairwise association test and report any significant pairs.

4. CONCLUSIONS

In this article, we proposed a two-stage model to detect SNP pairs associated with traits. The key idea

behind our method is that we model the joint distribution between association statistics at single SNPs and

association statistics at pairs of SNPs to allow us to apply a two-stage model that provides guarantees that

we detect associations of pairs of SNPs with small numbers of tests while losing very little power. We

rapidly eliminate from consideration pairs of SNPs in which high probability is not associated with the trait.

Using extensive simulations, we show that our approach can reduce the computational time by a factor of

63 while only losing approximately 1% of the power compared to the brute-force approach.

We note that in this article, we are only considering pairs of SNPs that are far apart from each other.

There is another class of methods that consider multiple SNPs close to each other (Wu et al., 2010, 2011;

Listgarten et al., 2013). These problems are completely different and characterized by very different

challenges. For example, the computational burden that is the focus of our article is different because the

number of pairs of SNPs near each other is significantly smaller than the total number of pairs of SNPs. In

addition, neighboring SNPs are typically correlated with each other, referred to as in linkage disequilibrium

(LD). Pairs of SNPs far from each other are typically independent or unlinked, which is an observation that

we leverage in our approach.

In our case, we assume that the effect of the interaction is in the same direction as the independent effects

of the SNPs. Under this assumption, the worst case scenario in terms of statistical power of our two-stage

approach is when the marginal effects are zero, which is how we determine our thresholds. If the inde-

pendent effects are nonzero, the statistical power will be higher. If the independent effects are in a direction

inconsistent with the interaction effect, then our model is not appropriate and may not discover the

interactions.

5. APPENDIX

In order to justify the assumption that we can approximate the phenotypic variance in Equation (9) with a

single uniform variance, we did extensive simulations to demonstrate the negligible effect of gene–gene

interaction on the phenotypic variance of different subgroups determined by the genotype. We first use the

phenotype CRP(C-reactive protein) of the NFBC data as a starting point, which has mean value - 0.0256.

The phenotype is collected from 5,326 individuals and the variance of phenotype (r2) is 2.65.

We simulate the genotype of one causal SNP pair in each iteration. The MAF of the SNPs are randomly

chosen from the [0.05, 0.5). In order to simulate the phenotype, the effect of gene–gene interaction b is

computed to guarantee that the brute force approach have power 50% at the 1012 significance level. Thus

b depends on the MAFs of the causal SNP pairs. After the genotype of the causal SNP is simulated, the

phenotype is simulated according to Equation (5). The phenotype of individuals with causal haplotype is

elevated with the effect size b. We then check the variance of phenotype within each group determined by

the genotype to see whether there is significant difference. The process is repeated 10,000 iterations. The

average value of phenotypic mean and variance within each group throughout the 10,000 iterations is

summarized in Table 3.

GENE–GENE INTERACTION DETECTION 573



We can see that the average variance in each group does not differ much, the largest difference is within

2%. We also compared the variance of two subgroups within group A, where one subgroup has causal SNP

pair AB and the other subgroup only has SNP A but not SNP B. We found that the variance of these two

subgroups are also close and within 2% difference of the variance of group A. So, although the distribution

of group A is a mixture of two normal distributions, these two normal distributions share similar variance

with the distribution of group A and the effect of mixture is negligible.

We also did simulations on the other 9 phenotypes of the NFBC data, which have various phenotypic

mean and variance, to see the effect of different phenotypic mean and variance on the approximation in

Equation (9). The phenotypic mean and variance is summarized in Table 4. Similar with the phenotype

CRP, our simulation shows that the average variance of different groups differ at most 2% for all nine

phenotypes. So we conclude that under various phenotypic mean and variance, we can approximate the

mixture of two normal distributions as a single normal distribution in Equation (9).
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