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ABSTRACT

Information theory is valuable in multiple-variable analysis for being model-free and
nonparametric, and for the modest sensitivity to undersampling. We previously introduced
a general approach to finding multiple dependencies that provides accurate measures of
levels of dependency for subsets of variables in a data set, which is significantly nonzero only
if the subset of variables is collectively dependent. This is useful, however, only if we can
avoid a combinatorial explosion of calculations for increasing numbers of variables.

The proposed dependence measure for a subset of variables, s, differential interaction in-
formation, D(s), has the property that for subsets of s some of the factors of D(s) are signifi-
cantly nonzero, when the full dependence includes more variables. We use this property to
suppress the combinatorial explosion by following the ‘‘shadows’’ of multivariable dependency
on smaller subsets. Rather than calculating the marginal entropies of all subsets at each degree
level, we need to consider only calculations for subsets of variables with appropriate ‘‘shadows.’’
The number of calculations for n variables at a degree level of d grows therefore, at a much
smaller rate than the binomial coefficient (n, d), but depends on the parameters of the ‘‘shad-
ows’’ calculation. This approach, avoiding a combinatorial explosion, enables the use of our
multivariable measures on very large data sets. We demonstrate this method on simulated data
sets, and characterize the effects of noise and sample numbers. In addition, we analyze a data set
of a few thousand mutant yeast strains interacting with a few thousand chemical compounds.
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1. INTRODUCTION

B iological data, since it is derived from complex systems in which there are many diverse inter-

actions, is characteristically replete with multiple dependencies. Thus, effective analysis of biological

data requires the discovery or detection of multivariable dependencies of diverse kinds. We have recently
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introduced an information theory-based set of dependency measures that has the distinct advantage of

separating the detection of the dependence from defining the nature of the dependence (Galas et al., 2014).

These measures have the advantage of being model-free and having modest sensitivity to undersampling, but

like all multivariable measures, face the prospect of being impractical because of the inherent combinatorial

explosion of variable combinations. This difficulty is particularly problematic in biological data sets with a

large number of variables.

Calculating marginal entropies of multiple variables in large data sets is a central step in calculating

information theory-based measures. These calculations are afflicted with the problem of a combinatorial

explosion as the number of variables and the degrees of dependence grows with the dimensionality of the

problem. Specifically, for our measures the combinatorial explosion results from the need to calculate

marginal entropies for all subsets of variables of the size of the degree of candidate dependences of interest.

For a set of data in n variables looking for dependence among d variables, the number of marginal entropies

to be calculated, N is given by:

N =
Xd

i = 2

n

i

� �
(1)

The general measure of dependence among variables that we have defined has the useful property that it is

nonzero only if the variables considered are collectively dependent (Galas et al., 2014). This measure for a

subset of variables, s, �D(s), which we call ‘‘symmetric delta,’’ while maximal for the full set of variables

that are collectively interdependent, has the property that for variable subsets of s it can have values that are

notably nonzero. We call these lower degree measures ‘‘shadows’’ of D. They enable us to follow the trail

of shadows for larger and larger sets of variables in a hill climbing-like algorithm to find the maximal

dependence set, s.

In general, information theory measures have several advantages as measures of multiple variable

dependence. They are inherently model-free and non-parametric in nature, and they exhibit only modest

sensitivity to undersampling (McGill, 1954; Jakulin and Bratko, 2004; Bell, 2003).

Thus, for the discovery of unknown dependencies among large data sets, including many biological data

sets, this approach can be a powerful one. This attractive feature can be useful, however, only if we can

calculate the necessary quantities in an efficient and reasonable fashion. It has long been recognized that

information theory measures, and many others, are impractical if we must calculate measures for all

possible subsets of dependent variables as the calculations grow exponentially with the number of vari-

ables. This drawback has been decisive in discouraging the general use of information theory measures

when there are unknown forms and degrees of dependency in large data sets. Our hill-climbing, shadow-

following algorithm is able to overcome this barrier.

This article is structured as follows: We begin with a background section in which the symmetric delta

measure is briefly defined and reviewed. A general argument for and description of the delta-shadows

algorithm is presented, and a number of data sets are then considered. The simulated data allows us to

estimate the quantitative effects of the shadowing and to characterize the effects of noise and sample number

on the shadow following. In the next section a large chemi-genomic data set from yeast experiments (Lee

et al., 2014) allows us to deal with real biological data in which we discover hidden dependencies.

2. BACKGROUND

2.1. Measures of dependence—D and its properties

The analysis of any complex system would be severely crippled if we restricted ourselves to con-

sidering only pairs of variables or functions. Therefore, we need measures for arbitrary numbers of

multiple variables considered together. The concept of ‘‘interaction information’’ (McGill, 1954; Jakulin

and Bratko, 2004; Sakhanenko and Galas, 2011), proposed long ago, is essentially a multivariable

generalization of mutual information (Bell, 2003). For two variables the interaction information is equal

to the mutual information and to the Kullback–Leibler divergence of the joint-to-single probability

densities of these two variables. Interaction information (essentially the same as coinformation as defined

by Bell, 2003) expresses a measure of the information shared by all random variables from a given set

(Galas et al., 2010, 2014; Klamt et al., 2009; Sakhanenko and Galas, 2011; Ignac et al., 2012; Ignac et al.,
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2014). For more than two variables it has properties quite distinct from mutual information, however,

including potentially negative values.

We consider interaction information for three-variable dependency, a generalization of mutual infor-

mation. The three-variable interaction information, I(X1, X2, Y), can be thought of as being based on two

predictor variables, X1 and X2, and a target variable, Y (there is nothing special about the choice of the

target variable since I is symmetric under permutation of variables). This symmetry is a powerful property.

The three-variable interaction information can be written as the difference between the two-variable

interaction information, with and without knowledge of the third variable:

I(X1‚ X2‚ Y) = I(X1‚ X2jY) - I(X1‚ X2)‚ (2)

where I(X1, X2) is the mutual information, and I(X1, X2rY) is conditional mutual information given Y. When

expressed entirely in terms of marginal entropies we have

I(X1‚ X2‚ Y) = H(X1) + H(X2) + H(Y)

- H(X1‚ X2) - H(X1‚ Y) - H(X2‚ Y)

+ H(X1‚ X2‚ Y)

(3)

H(Xi) is entropy of a random variable Xi, and H(Xk1
‚ . . . ‚ Xkm

)‚ m � 2, is a joint entropy on a set of m

random variables. The symmetry under the variable permutation we mentioned above is apparent from

Equation 3.

Consider the interaction information for multiple variables for a set of n variables, mn = fX1‚ X2‚ . . . ‚ Xng.
We can write the interaction information in terms of sums of marginal entropies according to the inclusion-

exclusion formula, which is the sum of the joint entropies of mn. We have,

I(mn) = -
X
s�mn

( - 1)jsjH(s): (4)

Given Equation 4, we define the ‘‘differential interaction information,’’ D, as the difference between values

of successive interaction informations arising from adding variables:

D(Xi‚ mn) = [I(mn) - I(mnnfXig)] = - I(mnnfXigjXi): (5)

The last equality comes from the recursive relation for the interaction information, Equation 2. The

differential interaction information is simply that change in interaction information that occurs when we

add another variable to the set of n - 1 variables. We can then write this differential using the marginal

entropies. If {si} are all the subsets of mn that contain Xi (note: this is not all subsets) then

D(Xi‚ mn) =
X

fsi�mnjXi2sig
( - 1)jsij + 1H(si): (6)

Then D’s for degrees (the number of variables) three and four (denoting the corresponding variables in the

subscripts) are

D(X2‚ m3) = I123 - I13 = H2 - H12 - H23 + H123

D(X1‚ m3) = I123 - I23 = H1 - H12 - H13 + H123

D(X1‚ m4) = I1234 - I234 = H1 - H12 - H13 - H14 + H123 + H124 + H134 - H1234

(7)

The number of terms grows as the power of the number of variables minus one. For the case when the

variables are all independent, all elements of D(Xi, mj) in Equation 5 are zero. These expressions are zero for

all numbers of variables, as the joint marginal entropies become additive single entropies and all terms

cancel.

The differential interaction information in Equation 5 is based on specifying the target variable, the

variable we added to the set of n - 1 variables. The differential is the change that results from this addition

and is therefore asymmetric in that variable designation (and thus not invariant under permutation.) See

Equation 7 for an example of using different target variables. Since our purpose is to detect fully coop-

erative dependence among the variable set, we want any single measure to be symmetric. A more general

measure then can be created by a simple construct that restores symmetry. If we multiply D’s with all
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possible choices of the target variable the resulting measure will be symmetric and will provide a general

measure that is functional and straightforward. To be specific, we define the symmetric measure as

�Dn = �D(mn) � ( - 1)n
Yn

i = 1

h
I(mn) - I(mnnfXig)

i
‚ (8)

where the product is over the choice, i, of a target variable relative to mn, n > 2, a simple permutation. The

difference terms in the bracket in Equation 8 are between the interaction information for the full set mn (first

term) minus the interaction information for the same set minus a single element. For three variables this

expression is (simplifying the notation again)

�D3(X1‚ X2‚ X3) = ( - 1)3 · (H1 - H12 - H13 + H123)

· (H2 - H12 - H23 + H123)

· (H3 - H13 - H23 + H123)

(9)

This measure has the extremely useful property that it is always small or vanishes unless all variables in the

set are interdependent. This can be used to allow us to discover and represent exact variable dependencies

as shown in the following section.

3. MEASURING MULTIVARIABLE DEPENDENCIES

3.1. Use �D to find dependencies of specific size

A measure �DK of degree K (by degree we mean the cardinality of the variable subset) is designed to

capture dependencies of size K and only K (Galas et al., 2014). To illustrate this we compute �D4 on a set of

20 random variables containing one 4-variable dependency.

FIG. 1. Histogram of �D4 values computed on all possible four-variable tuples in Example 1. The rightmost bar

corresponds to the only tuple shown in the label with a large �D4 value. The inset zooms in on the same histogram.
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Example 1: Consider a set of 20 variables, fX0‚ X1‚ . . . ‚ X19g and 5000 samples of these variables. The

domain of each variable is f0‚ . . . ‚ 3g. Each variable is uniformly distributed. Moreover, all the variables

are i.i.d. except variables X11, X12, X17, X19 that form a 4-dimensional dependency.

The �D4 easily captures the dependence in Example 1. Figure 1 shows a histogram of all �D4 values

computed on all possible four-variable tuples. This exhaustive analysis shows that �D4 is more than five

orders of magnitude higher for the tuple CX11, X12, X17, X19D, which is the only functional dependency in the

set, than for any other tuple.

3.2. �D shadows at lower degrees

Given significant values of �D at a specific degree (the cardinality of the variable subset), we wish to

determine what the �D values are for the smaller subsets of these variables. These subsets will represent

lower degrees of dependence—shadows of the dependence with a higher degree. Consider first the specific

case of a three-variable dependence, which is indicated by a significant �D for the corresponding three-

variable subset s, and its effect on �D of degree two. Can we see a ‘‘shadow’’ of the three-variable

dependence in the two-variable regime? We assume that �D(s) is nonzero and ask what we can say about

f�D(c)jc � sg, where all c are the pair subsets.

If we use the very strict definition of collective dependence for three variables defined in table 1 of

(Galas et al., 2014), the pairwise mutual information for all pairs c is zero. Variables Xi, Xj, and Xk form a

collective dependence iff

8i 6¼ j 6¼ k :

Xj & Xk ! Xi

Xi ? Xj

Xi ? Xk

Xj ? Xk

(10)

This definition directly implies that the respective pairwise entropies are the sums of the single

variable entropies, and thus, their values of mutual information are always zero. However, careful

consideration of possible dependences, and calculations from simulated data that has one variable

entirely dependent on others, shows that the mutual information between pairs of variables is often

not zero. Note that the strict definition in Equation 10 applies only to a narrow, and highly restrictive,

set of specific functions, as illustrated in the Supplementary Material (available online at

www.liebertonline.com/cmb) where we consider in detail the implications of uniformly vanishing

shadows. In general, Xi and Xj have some residual dependence, as suggested by the values of pairwise
�D’s with Xk in this example.

We now come back to our earlier Example 1, where the data set contains only one dependency, which

connects four variables. In the section above we showed that by traversing the set of all possible four-

variable tuples using �D4, we are able to identify the dependency. Let us now consider the effect of this four-

variable dependency on MI and �D3, the measures with lower degree. If we use MI and �D3 to scan the sets of

all pairs and triplets correspondingly, we see that they contain considerably less information than
�D4(ÆX11‚ X12‚ X17‚ X19æ) (see Fig. 2). This is expected because �DK is designed to be maximal when there is a

K-dimensional dependency. On the other hand, there are pairs (and triplets) that are significantly above the

average level of information of all pairs (and triplets). For example, there are three pairs, CX11, X19D, CX12,

X19D, and CX17, X19D, that have significantly higher MI than the rest of the pairs (see Fig. 2a). Similarly, there

are three triplets, CX11, X12, X19D, CX11, X17, X19D, and CX12, X17, X19D, that have significantly larger �D3 than

all other triplets (see Fig. 2b).

The existence of three significant pairs and three significant triplets might suggest that there are several

two-way and three-way dependencies. Notice, however, that they consist only of the variables from the

set {X11, X12, X17, X19} that form the only functional dependency in the data set of Example 1. Note also

that only those pairs and triplets that contain variable X19 are significant. This is consistent with the fact

that the four-variable dependency in this simulated data was generated with X19 as a function of three

arguments, X11, X12, and X17. These significant pairs and triplets that appear in Figure 2 are called

‘‘shadows’’ to emphasize that they correspond to partial information about the four-variable dependency

in the set.
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3.3 Using �D shadows to address the problem of combinatorial explosion

As we have shown, �D is good for measuring a dependency of a specific degree. This measure allows us to

estimate a relative strength of a dependency by comparing its �D value to the distribution of �D values of

randomly selected tuples. As a result we conclude that the �D measure is suitable for searching for

multivariable dependencies in a set of variables. The problem of combinatorial explosion arises, however,

when we attempt to search for higher degrees of dependencies. We illustrate the specific problem using

Example 1.

In Example 1 we have only 20 variables to consider, as a result we have to traverse only through 190

possible pairs to find pairwise dependencies. To look for higher level dependencies, we have to increase the

search space to 1140 triplets (in case of three-variable dependency search), to 4845 quadruplets (in case of

four-variable dependency search), and to 15504 tuples (in case of five-variable dependency search). In

general, as the degree of the dependencies increases, the search space grows as a binomial coefficient N
K

� �
,

where N is a number of variables and K is the degree of the dependency we are after.

With modern computing power, traversing a high-dimensional search space for a relatively small number

of variables (N = 10–100) is feasible. However, in real world examples the number of variables is orders of

magnitude higher (N = 1,000–100,000), making a direct exhaustive traversal of a search space practically

infeasible and completely exhaustive of computing resources. For example, when N = 20,000, which is

typical for gene expression data sets, the two-dimensional search space has about 2 · 108 pairs, and the

three-dimensional search space has about 1.3 · 1012 triplets. Then the four-dimensional and five-

dimensional search spaces increase to about 6.7 · 1015 and 2.7 · 1019 tuples, and methods based on ex-

haustive search will not work: the progression from 104, 108, 1012, and 1015 to 1019 is explosive. We need a

more efficient way of searching for high-dimensional dependencies. And for that reason we use ‘‘shadows’’

to address the combinatorial explosion problem.

Recall that by ‘‘shadows’’ we call the tuples with �D values that are significantly above the background

level on one hand, and that are combined exclusively from variables of a higher degree dependency on the

other hand. Since high-degree dependencies produce some shadows even at the pairwise level (the level of

MI), we can avoid the combinatorial explosion when traversing the high-dimensional search space by

detecting the low degree shadows first and then using them to limit ourselves to a set of informative

variables and thus reduce the search space. In the next section we describe an algorithm employing these

shadows.

4. SHADOW ALGORITHM

We want an algorithm for implicating multivariable dependencies of different degrees using �D. The

naı̈ve approach would be to exhaustively search sets of all possible K-tuples for every degree K starting

from two, which will fail when the number of random variables is large enough, as in the case of typical

biological data sets. We have shown that high-degree dependencies (K = 3 and up) are reflected in lower

a b

FIG. 2. Histogram of (a) MI values and (b) �D3 values computed on all possible pairs and triplets in Example 1.
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degree dependencies called shadows. For example, a four-variable dependence in Example 1 is seen in the

two- and three-dimensional search space as a set of pairwise and ternary shadows. These shadow depen-

dencies are encountered early in the search process, since they have low degree, and can provide hints

about high degree dependencies that caused them.

Using this fact we can devise an algorithm for seeking dependencies without the combinatorial explo-

sion. The flow chart in Figure 3 illustrates an algorithm that employs shadows to search for high-degree

dependencies. In general terms, the algorithm inductively searches for dependencies of degree K by

traversing only through those K-tuples that are constructed from variables involved in shadows of degree

(K - 1). At the start, the algorithm traverses through all possible pairs and constructs a set of two-variable

shadows then limits the variable set based on that information.

Given an input data set, which can be viewed as a table with L rows and N columns representing N random

variables and L samples, the algorithm starts by searching for all two-variable dependencies and shadows.

Although variations are possible here, we compute MI for all possible pairs and then select the significant

pairs (this is reasonable even for 20,000 variables). To select the significant pairs, the algorithm first identifies

a set of obvious outliers O (Box 2 in Fig. 3) and then evaluates the significance of pairs based on statistics of

the set without outliers O (Box 3 in Fig. 3). At this stage the algorithm produces a set U of significant pairs

and a set var(U) of variables involved in these pairs by applying a threshold to the shadows to be included.

The algorithm then moves to searching for three-variable dependencies and shadows. This step is similar

to the search for pairwise dependencies except that the algorithm restricts the search space and computes �D3

only for triplets that are composed from the variables involved in the pairwise shadows [var(U) in Box 4].

To evaluate the significance of �D3 for these pairs, the algorithm selects a set R of 100 random triplets whose

variables are not from var(U) (Box 6) and computes the statistics of the set �D (R) (Box 7). At this iteration

the algorithm produces a set of significant triplets U and updates the set var(U) to only those variables that

FIG. 3. Flow chart depicting the shadow algorithm.

MULTIVARIABLE DEPENDENCY DETECTION AND THE SHADOWS ALGORITHM 1011



are present in U. The algorithm then proceeds to the next iteration by incrementing the size of dependencies

under surveillance and repeating the process above.

Note that the termination of the algorithm is certain, since the total number of variables is finite (N) and

the degree of dependencies being searched for is incremented at each iteration of the algorithm. The

algorithm would definitely stop when the dimension reaches N. Moreover, after each iteration, the set of

variables is restricted, forcing the algorithm to stop much sooner.

4.1. Shadows in Example 1 (simulated data, one four-dim dependency)

Let us now demonstrate this approach by applying the shadow algorithm to Example 1. Recall that there

is one dependency connecting variables X11, X12, X17, and X19. At the first stage (Boxes 1–4 in Fig. 3) the

algorithm computes MI for all 190 pairs. The significance threshold results in four significant pairs (see

Table 1), which contain six variables. At the first iteration of the loop (Boxes 5–8, K = 3) the algorithm

computes �D3 for only 20 triplets (and 100 random triplets to determine significance), which is strikingly

different from a naı̈ve case, exhaustively computing �D3 for all possible 1,140 triplets. Based on the 100

random triplets, the algorithm detects six significant triplets, and as a result the number of variables stays

the same, six. At the second iteration (K = 4), the algorithm computes �D4 for 15 tuples (and 100 random

tuples) as opposed to traversing the entire set of 4845 tuples. There are five significant tuples containing the

same set of six variables. At the third iteration (K = 5), the algorithm computes �D5 for six tuples (and 100

random tuples) as opposed to analyzing the entire set of 15504 tuples. None of these six tuples are

significant and the algorithm stops, resulting in the identification of a four-variable dependence.

Note that, although it picked up two noninformative variables (X1 and X4) and several tuples associated

with them, the algorithm selected all four dependent variables and followed the shadows to the four-

variable dependency while keeping the search much smaller than the full set of tuples.

4.2. Shadows in Example 2 (simulated data, two dependencies: four-dim and three-dim)

We now apply the shadow algorithm to a somewhat more complex case, Example 2, with two over-

lapping dependencies of different degree.

Example 2: Consider a set of 20 variables, fX0‚ X1‚ . . . ‚ X19g, and 5000 samples of these variables. The

domain of each variable is {0, 1, 2, 3}. Each variable is uniformly distributed. Moreover, all the variables

are i.i.d. except variables X9, X11, X12, X17, X18, and X19 that form two specified dependencies, CX9, X17, X18D

and CX11, X12, X17, X19D. In contrast to Example 1, Example 2 has two dependencies that have one variable

in common.

The application of the shadow algorithm to Example 2 is not as straightforward as for Example 1. Table

2 shows the informative tuples for each stage of the algorithm up to K = 5.

Since two dependencies overlap (have a common variable), this introduces more peripheral tuples into

the set U. For example, at the pairwise level, the algorithm adds CX9, X19D into the set U, because this pair

has high MI. Since variables X9 and X19 are indirectly connected through variable X17, it is more likely that

they are somewhat correlated, which results in higher MI. We observe the same behavior for other

iterations of the algorithm.

Note that both three-variable and four-variable dependencies are captured by the algorithm—they cor-

respond to the tuples with largest absolute value of �DK . Note also that four-variable tuples from the set U

Table 1. Informative Tuples Selected by the Shadow Algorithm When Applied

to Example 1 (See Box 3 and Box 7 with K = 3 and K = 4)

Pair MI Triplet �D3 Quadruplet �D4

CX17, X19D 0.10945 CX12, X17, X19D - 0.07303 CX11, X12, X17, X19D 0.91699

CX12, X19D 0.07967 CX11, X12, X19D - 0.05766 CX1, X11, X17, X19D 0.283e-6

CX11, X19D 0.03758 CX11, X17, X19D - 0.03558 CX4, X11, X17, X19D 0.257e-6

CX1, X4D 0.00357 CX1, X12, X19D - 0.397e-5 CX4, X11, X12, X19D 0.248e-6

CX1, X17, X19D - 0.362e-5 CX4, X12, X17, X19D 0.239e-6

CX4, X17, X19D - 0.319e-5

In red are tuples that are either informative shadows (components of the dependency) or the dependency itself.
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that contain all three variables from the three-variable dependency have negative �D4 values. While all other

tuples, including the four-variable dependency, have positive �D4 values.

4.3. Factors in the detection of dependencies

In this section we examine the effect of various factors on the detection of variable dependency,

including number of variables, number of samples, and noise levels.

4.3.1. Number of variables. As the degree grows, the number of different entropies required for

computing the differential interaction information measure (D) also grows. From Equation 6, the number of

entropy terms computed on subsets of M variables required for computation of DK is equal to a binomial

coefficient K - 1
M - 1

� �
, M = 1,.,K. The number of entropy terms of the same size (computed on the subsets of

variables of the same size) for measures to each degree are simply binomial coefficients (see Supple-

mentary Material, Table S1).

The search space for the dependencies grows quickly with the increase of their degree. Table 3 shows the

size of the full exhaustive search for each degree up to six variables for Examples 1 and 2. The size of the

search space is given in terms of the number of measures we must compute in order to find the

Table 2. Informative Tuples Selected by the Shadow

Algorithm When Applied to Example 2

Tuple Measure (MI or �DK) Tuple Measure (�DK)

Set U of informative pairs in Box 3 Set U of informative pairs in Box 7, K = 4

CX9, X17D 0.49258 CX11, X12, X17, X19D 0.84814

CX9, X18D 0.26382 CX9, X11, X12, X19D 0.01012

CX17, X19D 0.13630 CX9, X12, X18, X19D 0.00566

CX12, X19D 0.07933 CX9, X11, X18, X19D 0.00277

CX9, X19D 0.04204 CX9, X11, X17, X19D 0.437e-5

CX11, X19D 0.03002 CX9, X12, X17, X19D 0.210e-5

Set U of informative triplets in Box 7, K = 3 CX12, X17, X18, X19D 0.029e-5

CX9, X17, X18D - 3.26088 CX9, X11, X17, X18D - 0.101e-6

CX12, X17, X19D - 0.07257 CX9, X17, X18, X19D - 0.00003

CX11, X12, X19D - 0.06230 Set U of informative tuples in Box 7, K = 5

CX11, X17, X19D - 0.04037 CX9, X11, X12, X18, X19D - 0.04639

CX9, X18, X19D - 0.00309 CX9, X11, X12, X17, X19D - 0.00015

CX9, X11, X19D - 0.00031 CX9, X11, X17, X18, X19D 0.00002

CX9, X12, X19D - 0.00017 CX9, X12, X17, X18, X19D 0.00005

CX9, X17, X19D - 0.00013

CX9, X11, X17D - 1.378e-5

CX9, X11, X18D - 0.804e-5

CX9, X12, X18D - 0.489e-5

In red are tuples that are either informative shadows (components of the dependency) or the

dependency itself.

Table 3. Number of Measures (MI and
�DK ) and the Corresponding Number

of Entropy Terms Computed During the Exhaustive Full Search as Compared

to the Shadow Algorithm, When Applied to Examples 1 and 2

Degree

No. of

measures

No. of

entropy terms

No. of

measures

No. of

entropy terms

Full search (Example 1 and 2) Shadow algorithm (Example 1 and 2)

2 (MI) 190 570 190 570

3 (�D3) 1,140 13,680 20 240

4 (�D4) 4,845 155,040 15 360

5 (�D5) 15,504 1,240,320 6 288

6 (�D6) 38,760 3,720,960 0 0
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dependencies in the data, as well as in terms of the number of entropies computed during the search. We

compared the size of the exhaustive search with the size of the search performed by the shadow algorithm

on Examples 1 and 2. In Examples 1 and 2, the shadow algorithm avoids the combinatorial explosion of the

search space, as shown in Table 3.

4.3.2. Number of samples. In this section we investigate how the sample size affects the strength of

detected dependencies and shadows. In particular we are interested to see how MI and �DK are affected by

the change in the amount of data. Consider example 1. Figure 2 shows that there are three pairs whose MI is

considerably higher than the MI of all other pairs. Figure 4a tracks MI of these three pairs computed on

subsets of the original data set of 5000 samples, starting from 100 data points (2%) and gradually increasing

it to the full set. Similarly, there are three triplets that have significantly larger �D3 than all other triplets, as

seen in Figure 2. Figure 4b tracks values of �D3 for these three triplets across different sample sizes. Finally,

there is one four-variable tuple that corresponds to the only dependency in the set (see Fig. 1). Figure 4c

shows how the change in the sample size affects the value of �D4 for this dependency.

Each point in Figure 4 depicts an average and standard deviation of a measure, MI, �D3, or �D4, over 100

subsets of a specific size, drawn randomly from the original data set of 5000 samples. For all these

measures, standard deviation is high for small subsets and steadily decreases as the size of subsets in-

creases. This is expected since small subsets do not fully sample the underlying functional dependency of

Example 1, so the amount of information fluctuates considerably between small subsets of data. On the

other hand, the amount of information does not change much between large subsets, since they nearly

completely sample the dependency.

For all the measures, MI, �D3, and �D4, an average value fluctuates at first and then stabilizes as the subset

size increases. For MI (Fig. 4a) the average value decreases for small subsets and stabilizes for subsets that

are 20% of the original set or larger. Note that, in contrast to MI, values of �D3 are negative. As a result, �D3

behavior is opposite of MI—it increases for small subsets and stabilizes for subsets that are 20% or larger.

Contrary to MI and �D3, the average value of �D4 increases throughout the increase of the subset size. The

average �D4 value grows logarithmically—for smaller subsets the increase of �D4 is larger, but it gets smaller

for larger subsets. The behavior of �D4, shown in Figure 4c, is different from MI and �D3 behaviors, shown in

Figure 4a and b, because we compute �D4 for four variables that constitute a four-variable dependency, as

opposed to computing MI and �D3 for two or three variables that constitute only a limited part of this four-

variable dependency.

4.3.3. Effect of noise. In this section we study how noise in the data affects the information measured

by MI, �D3, and �D4. We use data from Example 1 and add variable amounts of noise to it. The 20-by-5000

input data matrix is essentially treated as a 100,000-long vector. Adding the fraction m of noise, then,

a b c

FIG. 4. Effect of data set size on information measured by (a) mutual information, (b) �D3, and (c) �D4. The points of

the curves are computed by applying the corresponding measures to a set of selected tuples (see legend). Instead of

using the entire set of 5000 samples from Example 1, the measurement is computed on a randomly selected subset. The

process of randomly selecting a subset of samples is repeated 100 times for each subset size and the average and

standard deviation are plotted. The x-axis shows the subset size for corresponding values of the measures and ranges

from 100 to 5,000 with an increment of 100 samples. Additionally, each black curve is an average across all tuples that

were not selected (the background), and the error bars are maximal standard deviation across these tuples.
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corresponds to randomly choosing m · 1000 elements of that vector and changing these elements to

different randomly chosen values. This is repeated 100 times, and we compute an average information

measure for a noise level m. Figure 5 shows the effect of different levels of noise on the information content

of the data, as measured by MI, �D3, and �D4. We immediately see a relationship that has the effect that as

more noise is added the amount of information decreases, and then converges to the informational level of

the background.

Note that on average the values of higher-degree information measures (e.g., �D4) degrade faster with

noise than those of lower-degree. Moreover, the error bars (standard deviations) become smaller with more

noise. This decrease is stronger for higher degrees, K, of information measures, from MI to �D3, and to �D4.

This behavior can be attributed to the way the noise is introduced into the data: When a random element

selected for the introduction of noise, the likelihood that it is related to a selected pair of variables (out of 20

variables) is smaller than the likelihood that it will be related to a selected tuple of four variables. As a

result, increasing noise degrades higher-degree measures faster: �D4 values degrade much faster than MI

values.

One of the main questions of interest is whether we are able to detect the shadows, and thus the

dependencies from the background given uncertainty (in this case, noise added to the data). In order to

answer this question we compute the difference between the information content of a selected tuple and the

average information content of the background. This difference is measured in terms of the number of

standard deviations of the information of the tuple computed across 100 random repeats. Performing this

analysis for MI, �D3, and �D4 for every noise level yields the results shown in Supplementary Figure S1.

The selected tuples in these figures are those from Figures 1 and 2 of Example 1, which are either the

dependency or its shadows.

Supplementary Figure S1 illustrates our ability to detect the shadow tuples. The horizontal line, set at the

level of two standard deviations, separates the information values that we can detect from the values that

are statistically indistinguishable from the background. On the one hand, this figure shows that the in-

formation measures with low K (such as MI) rise much further above the background when the noise level

is relatively low than the measures with higher K (such as �D3). This shows that it is relatively easy to detect

pairwise shadows when the level of noise is low. On the other hand, all measures, MI, �D3, and �D4, drop to

the level of two standard deviations when the level of noise is about 35%. In section 4.3.4, we will see that

this is specifically a property of a large sample set (5,000 samples). The threshold of detectability is

different for measures with different K when the sample size is smaller.

Another way of analyzing the detectability of a shadow tuple is to use ANOVA (a one-way analysis of

variance). ANOVA tests whether the population means of data taken from two different groups are equal.

The two groups in this case are the values of an information measure of a shadow tuple and the values of

a b c

FIG. 5. Effect of noise on (a) mutual information, (b) �D3, and (c) �D4. The points of the curves are computed by

applying the measures to a set of selected tuples of Example 1 (see legend). The first point of each curve corresponds to

a measurement value computed on the data without noise. All other points are the values of corresponding measures

computed on data with noise averaged across 100 repeats, and the error bars represent standard deviation. The x-axis

shows the amount of noise for corresponding values of the measures and ranges from 0 to 50% with 2.5% incremental

increases. Additionally, the black curve is an average across all tuples that were not selected (the background) and the

error bars are maximal standard deviation across these tuples.
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the information measure of the background tuples for a specific degree K of the measure and a specific

level of noise. Supplementary Figure S2 shows the results of the ANOVA test applied to values of MI, �D3,

and �D4.

Using ANOVA testing we can distinguish MI values of the shadow pairs from the values of the

background pairs for all noise levels up to 50% (see Supplementary Fig. S2a). We see a similar result for �D3

values: The P-value starts to increase when the noise level rises above 40% (see Supplementary Fig. S2b).

The detectability of the four-variable dependency measured with �D4 continuously decreases when the noise

level rises and, when the level of noise reaches 50%, it becomes impossible to distinguish the dependency

from the background using the ANOVA test (Supplementary Fig. S2c). Although surprising at first, the fact

that noise, especially at lower levels, does not have a very significant effect on our ability to detect the

shadow tuples in Example 1 can be explained by the large size of our sample set (5,000). This is further

confirmed in section 4.3.4, showing the analysis of noise effects on the detectability of shadows calculated

from small sample subsets.

4.3.4. Effects of sample size vs. noise levels. We now study how the information measured by MI,
�D3, and �D4 is affected by the size of the data set and the amount of noise simultaneously, which allows us to

evaluate the relative importance of these parameters.

a b

c d

FIG. 6. The effect of noise and the input data size on mutual information between two variables. Plots (a–c) illustrate

the analysis of mutual information (MI) for three selected pairs, CX17, X19D, CX12, X19D, and CX11, X19D. The first point of

each plot shows an MI value computed on the entire set of 5,000 samples with no noise. Every other point shows MI

computed on small randomly selected subsets with noise. For each size and noise level, a subset was selected 10 times,

and for each subset we added noise and computed MI 100 times. The plots show the average and standard deviation of

MI for subset sizes and 19 noise levels (from 5% to 50%). Plot (d) illustrates the same analysis for all other pairs. Each

point in (d) is computed similarly to (a–c) and averaged across all pairs, and each error bar is a maximum standard

deviation across all pairs.
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Figure 6 shows that the overall value of MI decreases as the amount of noise increases. Note also that for

the three selected pairs the error bars become slightly smaller with the increase of noise. This is consistent

with the idea that the amount of information decreases, becoming increasingly similar to the amount of

information of random, noninformative pairs, and therefore becomes less sensitive to permutation. At the

same time the error bars are larger for smaller subsets, since even a small amount of noise can distort more

information in a smaller set than in a larger set. Note that MI computed on small sets is sensitive to noise

(seen as a fluctuating curve), but it becomes more robust as the data size increases (the curve becomes

smoother). Note also that although the MI values for selected pairs are larger for smaller sets, the MI values

for background pairs (pairs chosen randomly) are also larger.

Figure 7 and Supplementary Figure S3 illustrate our ability to distinguish the informative pairs from the

background. We see that the power to distinguish the informative pairs decreases with more noise. This

power is lower for smaller subsets, and it takes a smaller amount of noise to make it difficult to distinguish

the informative pairs from the rest. We can tolerate a lot more noise when distinguishing the informative

pairs on larger subsets. For example, for pair CX17, X19D, if we have 200 samples, then we can tolerate less

than 8% of noise before losing power to distinguish this pair from the background. With 400 samples,

however, we can tolerate up to 17.5% noise. And for 600 samples, this threshold goes up to 22.5%, and for

800 to 27.5% of noise.

We now look at the three-dimensional dependencies and analyze the effect of noise and sample size on

the information measured using �D3. The behavior of �D3, which is illustrated in Figure 8, is similar to that of

mutual information. The ability to distinguish a three-variable dependency from the background is illus-

trated in Figure 9 and Supplementary Figure S4.

We also looked at the information measured by �D4 and how it changes with different levels of noise and

sizes of data (see Fig. 10). The detectability of the four variable dependency is illustrated in Figure 11 and

Supplementary Figure S5.

Comparing the information gain over background as a function of data set size and amount of noise for

several tuples across various information measures (MI, �D3, �D4) reveals that the information gain is

smoother for measures of a higher degree as can be seen in Figures 7, 9, and 11, as well as Supplementary

Figures S3, S4, and S5 of the Supplementary Material. As expected, a weaker dependency requires more

data in order for the information gain to be substantial enough for the dependency to be detectable from the

background. Moreover, weaker dependencies allow a smaller amount of noise to be present in the data, as

compared to stronger dependencies, before becoming undetectable.

FIG. 7. Information gain over background as a function of data size and amount of noise. Given a set of 5,000

samples and a subset size X, we randomly choose 10 subsets with size X. Then for each subset, we randomly seed noise

up to a specified level and compute MI for all the pairs. We then repeat random noise assignment 100 times and do that

for each subset. Finally we take an average for every pair. We also average MI for all noninformative pairs (other than

CX17, X19D, CX12, X19D, and CX11, X19D) into one value we call background MI. Three plots of the figure show heat maps

for the three informative pairs, (a) CX17, X19D, (b) CX12, X19D, and (c) CX11, X19D. Each point of the heat map corresponds

to a difference between the average MI of the pair and the background MI for a given subset size and noise level. The

difference is scaled by the size of the standard deviation of the MI of the pair, so the color bar corresponds to the

number of standard deviations the average MI of the pair is from the average background MI. Two contours are shown

for the difference equal to two and four standard deviations.
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Dependencies with higher degree, scored by the higher degree measures, are more robust to the decrease of

the size of data; with no noise, higher degree dependencies require less data to be detectable than depen-

dencies with a lower degree. This is somewhat paradoxical. On the other hand, higher degree dependencies

are more sensitive to the increase of noise: for a given amount of data, increasing the amount of noise makes

dependencies with a higher degree become undetectable sooner than dependencies with a lower degree.

FIG. 9. Information gain over background as a function of data size and amount of noise. Three plots of the figure

show heat maps for the three informative tuples, (a) CX12, X17, X19D, (b) CX11, X17, X19D, (c) CX11, X12, X19D. These heat

maps are computed similarly to those in Figure 7.

a b

c d

FIG. 8. The effect of noise and amount of data on �D3. Plots (a–c) illustrate the analysis of �D3 for three selected tuples,

CX12, X17, X19D, CX11, X17, X19D, and CX11, X12, X19D. Plot (d) illustrates the same analysis for all other tuples. All the

points of these plots are calculated similarly to those in Figure 6.
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Overall this means that there are different regimes exhibited by data sets of various size and quality. The

balance between data set size and noise levels ultimately dictates what can be detected and points to the

importance of our being able to estimate the noise content of data sets before we can determine what can be

detected with what size data set.

5. APPLICATION TO YEAST HIPHOP DATA

We chose a large biological data set to test the application of the shadow algorithm. These yeast data

were generated using a large set of strains with genetic loss-of-function mutations for which the cellular

growth response to small-molecule, chemical compounds were measured. The data were generated on both

heterozygous strains and homozygous, diploid strains. These are called haploinsufficiency profiling (HIP),

and homozygous profiling (HOP) in this chemo-genomic platform (Lee et al., 2014). The HIP data set

covers 1,095 strains that are heterozygous for deletions of the essential genes in the yeast genome, and the

HOP data set covers 4810 strains that are homozygous for deletions of nonessential genes in the yeast

genome. The growth or fitness defects of each of these strains were scored for 3,356 chemicals. Thus, the

entire data set consists of 5,905 strains (representing essential and nonessential genes) measured across

3,356 chemical screens. We examined dependencies among genes, and all the strains are considered as

variables, and all the chemical screens are considered as instances of a response of these variables.

In order to apply our information theory-based method, we bin the real valued fitness defect scores of

each strain s into four integer values using the following intervals:

( -1‚ ls - 0:7rs]‚ (ls - 0:7rs‚ ls]‚ (ls‚ ls + 0:7rs]‚ (ls + 0:7rs‚1)‚

a b

FIG. 10. The effect of noise and amount of data on �D4. Plot (a) illustrates the analysis of �D4 for the tuple CX11, X12,

X17, X19D. Plot (b) illustrates the same analysis for all other tuples. All the points of these plots are calculated similarly

to those in Figures 6 and 8.

FIG. 11. Information gain over background as a function of data size and amount

of noise. The figure shows a heat map for the informative tuple CX11, X12, X17, X19D.

This heat map is computed similarly to those in Figures 7 and 9.
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where ls and rs are the mean and standard deviation of fitness defect scores for strain s. These intervals

were selected to have a relatively even balance of binned scores.

The shadow algorithm is applied as shown in Figure 12 and Table 4. At the first step of the algorithm we

compute mutual information (MI) for every pair of 5,905 strains (see Fig. 12a). The algorithm then selects a

small number of outlier pairs that are (i) significant and (ii) contain a reasonable number of variables (a

a b

c d

FIG. 12. Histograms of dependency measures computed for various sets of tuples. Panel (a) shows distribution of mutual

information values computed on all possible pairs of the entire set of genes (5,905 genes). Similarly, panel (b) shows �D3

values computed on all possible triplets of the set of genes involved in pairs with high MI (1051 genes involved in pairs that

are above 20 standard deviations threshold). Selecting 279 variables from high �D3 triplets (above 1,000 st. dev.) and

computing �D4 on all possible quads results in a distribution shown in panel (c). Finally, computing �D5 on all possible 5-

variable tuples of 118 variables involved in high �D4 quads (above 55 st. dev.) results in a distribution shown in panel (d).

Each panel is composed of three subpanels showing the original distribution, its magnified tail, and the distribution in the log-

scale (from top down). The red vertical lines show the minimal and maximal values of each distribution, the green lines show

three st. dev. from the mean, and the pink lines show the thresholds used for selecting the informative tuples at each step.

Table 4. Parameters of the Shadow Algorithm Applied to HIPHOP Data

Step

no.

No. of input

variables

Degree of

measure

No. of corresponding

tuples Cut-off

No. of tuples

passed cut-off

Num. of variables

passed cut-off

1 5905 2 (MI) 17,431,560 20 std 11771 1051

2 1051 3 (�D3) 192,937,325 1000 std 383 279

3 279 4 (�D4) 247,073,751 55 std 987 118

4 118 5 (�D5) 174,963,438 10.3 std 53 74

Columns 2 and 7 show the number of input and output variables at each step, column 4 shows the number of tuples traversed during

each step, and columns 5 and 6 show the cut-off values and the corresponding outlier tuples.
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small enough number of variables for the set of all possible triplets of these variables to be computable).

Using 20 standard deviations above the mean as a cut-off identifies a set of 11,771 outlier pairs that satisfies

both of the above conditions: They are significant and contain only 1,051 variables, resulting in a com-

putationally manageable set of triplets (‘‘only’’ 193M triplets). If we chose a less stringent cut-off of 10

standard deviations above the mean, we would have selected 125,384 outlier pairs containing 2,647

variables, which would have resulted in a computationally infeasible set of 3 billion triplets.

At the second step of the algorithm we compute �D3 for every possible triplet of 1,051 variables selected

at the first step (see Fig. 12b and Table 4, row 2). This time we use a cut-off of 1,000 standard deviations in

order to reduce a set of outlier triplets to a reasonable number: 383 triplets containing 279 variables. Note

the unusually large cut-off value—an indicator of high significance of the selected outlier triplets and a sign

that lots more of candidate three-variable dependencies are left out by the algorithm, which is inevitable

when we are trying to tackle the problem of combinatorial explosion. The shadow algorithm proceeds to the

following steps in a similar fashion, selecting outlier tuples with increasing degree (987 and 53 tuples based

on computation of �D4 and �D5 correspondingly) and gradually decreasing the number of variables to 118 and

then to 74 (see Table 4 and Fig. 12c and d). Note that these outlier tuples selected at each step of the

a b

c

FIG. 13. Dependency networks constructed using tuples with the highest information content. Panel (a) shows the

dependency networks of specific homozygous and heterozygous strains where each edge represents the existence of

high MI between two genes and the color shows the magnitude of MI. Similarly, panels (b) and (c) show the networks

where hyper edges connect three and four genes (respectively) representing the existence of high �D3 and �D4 among

these genes. A three-way hyper edge is shown with a triangle and four-way hyper edge with a square. Bold nodes

indicate genes that appeared in networks based on dependencies with lower dimension.
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algorithm are candidate multivariable dependencies. Note also that with each step of the algorithm the

significance of the corresponding set of dependencies is dropping, which can be seen by the cut-off values

(1,000 to 55 to 10.3, see Table 4) and by the shape of the distribution of measures (the distribution of
�D5values in Fig. 12d looks lognormal, suggesting that there are not many five-variable dependencies in the

set). For these reasons we stopped the shadow algorithm at the forth step and focused our attention on two,

three, and four-variable dependencies.

To illustrate the kind of biological information captured by our method, we considered the top 20 two-,

three-, and four-way dependencies. First we looked closer at the top 20 pairs of genes with the highest

mutual information. Figure 13a shows a dependency network comprised of these 20 pairs. There are four

clusters of genes. The largest cluster is composed of five genes, four of which (TRP1-4) are from the same

pathway (phenylalanine, tyrosine, and tryptophan biosynthesis), and the fifth one (YDR008C) overlaps with

TRP1. The second cluster connects three genes (COG6-8) from Golgi transport complex (Whyte and

Munro, 2001). The third cluster connects three genes (RSC8, RSC9, RSC58) from the RSC chromatin

remodeling complex (Cairns et al., 1996).

These three clusters are constructed based only on their mutual information without making any model

assumptions. In this example, high MI in two genes indicates that these genes respond to a significantly

large number of chemicals with a consistent behavior (similar to correlation). Therefore, it is expected that

genes within clusters of high MI will share something in common: similar function, same pathway, same

cellular component, etc. This is precisely the case for the three clusters above. The fourth cluster, however,

is more interesting as it spans four genes—UTP7, TTI1, PPN1, and SOG2—that do not have an apparently

common function. The investigation of the biological meaning of this dependence will be considered

elsewhere.

Looking at the triplets of genes with the highest values of �D3 reveals that all 20 top triplets (and 85 out of

the top 100) contain the same two genes, MEP2 and YNL143C. Figure 13b shows the top 20 triplets

spanning 22 genes, 6 of which are from the top 20 pairs. It is important to note that these top 20 three-way

dependencies cannot be identified at the pairwise level of the analysis. One might expect to see two or three

strong pairwise dependencies between genes of a high-�D3 triplet. However (MEP2, YNL143C) is the only

detectable pair within each triplet from the set of top 20 three-way dependencies. All other pairs within

each of these triplets have low MI and cannot be detected at the pairwise level.

Figure 13c shows 20 four-variable dependencies that have the highest value of �D4. Similar to the three-

variable case, MEP2 and YNL142C are three main hubs participating in all but two dependencies. UTP7 is

another prominent hub that is involved in nine dependencies (eight of which also involve MEP2 and

YNL142C). Note that several of these four-way dependencies, and in particular the dependency with the

highest �D4, cannot be detected using only two-way and three-way dependency analysis. A tuple with high
�D3 (�D4) value indicates that the growth values of corresponding genes consistently follow some function

across a subset of chemical screens. The number of these chemical screens must be big enough for the value

of measure �D3 (�D4) to be detectable (statistically distinguishable from the background). The larger the

subset of chemical screens consistent with the underlying function, the greater the value of the measure.

Consequently, the gene triplets and quads with the highest �D3 and �D4 values are good candidates for further

in-depth analysis and experimental validation.

There are a couple of important questions that still have to be answered. One is a question of signifi-

cance. What is the best way to estimate our confidence that a gene tuple is functionally dependent? And can

we find an optimal confidence cut-off? The question of significance is closely related to the second

Table 5. The Size of the Search Space and Running Time of the Shadow Algorithm

Step no. Degree No. of all possible tuples No. of tuples Time (hours) Rate (sec per 10K)

1 2 (MI) 1.743e + 07 17,431,560 0.5 0.9634

2 3 (�D3) 3.430e + 10 192,937,325 5 0.9330

3 4 (�D4) 5.061e + 13 247,073,751 11 1.6028

4 5 (�D5) 5.973e + 16 174,963,438 18 3.7036

Column 3 shows the size of the entire search space at each step of the algorithm, whereas column 4 shows the size of the actual

search space. Column 5 shows the time it took to complete the actual search space, and column 6 shows the rate of computing per

10,000 measures.
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question: finding the underlying function that is the source of the dependence. Since the method calculates a

measure of dependence and does not predict or make any assumptions about the underlying nature of the

dependence, it can only provide information about whether or not a dependency exists. The next step would

be to model the underlying function and to identify which chemical screens are consistent with the function

shedding more light on the biological process behind the function.

The question of finding the optimal confidence cut-off for detection of significant multivariate depen-

dencies is also related to challenges with computational complexity of the dependency detection. Table 5

shows how the cut-off at each step of the shadow algorithm reduces the size of the search space. For

example, when looking for the three-variable dependencies, the search space is reduced from 34 billion

triplets that would have taken us 953 hours on our computer to 193 million that took only 5 hours. Table 5

also shows the rate of computation for each measure per 10,000 tuples. The rate is increasing for measures

with higher degree and almost four-fold higher for �D5 compared to MI, which is expected since the number

of entropy terms grows quickly with increasing degree (see section 4.3.1 for more details).

6. DISCUSSION AND CONCLUSIONS

The approach we have previously introduced has been developed further in this article, and an algorithm

is described that resolves the combinatorial explosion problem inherent to these kinds of analyses. This

resolution is essential to the practical use of the method on large biological data sets. The general approach

to multiple dependency measures provides an accurate measure of the level of dependency for a given

subset of variables in a data set, and the value of these measures is significantly nonzero only if the subset

of variables has an essential, collective dependency. This attractive feature is useful, of course, only if we

can calculate all the necessary quantities and find a way around the combinatorial explosion as the variables

and the potential degrees of dependence increase. The computational complexity increases as a multiple of

the binomial coefficient of the number of variables. We have found that the ‘‘symmetric deltas,’’ �D (s), for

a given subset of variables, s, have the property that for variable subsets of s the symmetric delta can have

values that are significantly nonzero, even though the highest degree dependence includes the full subset, s.

We use this property to reduce the dimensionally driven combinatorial explosion by following the

‘‘shadows’’ that the multivariable dependency casts onto smaller subsets and calculating only with those,

thereby reducing the number of variables considered at each level. Think of the shadow concept by

considering the relationship between, for example, a hypergraph edge among three variables and the set of

three pairwise edges between these. Not all of these pairwise edges can be zero.

Instead of having to calculate the marginal entropies of all subsets at each degree level, we need to

consider only subsets of the variables that exhibit an appropriate ‘‘shadow.’’ Thus, the number of calcu-

lations for n variables at a degree level of d grows, not as the binomial coefficient n
d

� �
, but at a much smaller

rate that depends on the significance threshold and other chosen parameters of the ‘‘shadow’’ calculation as

illustrated in our example (Table 5). This approach enables the widespread use of our multivariable

measures on large data sets. The effects of noise and sample numbers on the method are also examined

systematically and enable us to define the practical limits of statistical power and conclude overall that the

method is both general and highly effective on complex data sets.

We demonstrated this method on simulated data sets, and also analyzed the yeast HIPHOP data set. This

biological data involves a large number of mutant strains (a few thousand) interacting with a large number

of chemical compounds (a few thousand). The number of variables dictates that the problem of multi-

variable dependence cannot be approached to find higher degree dependencies without encountering a

significant combinatorial explosion. Our method successfully avoids the explosion and uncovers a complex

set of dependencies up to the degree of four variables. Note that for this data set there are more than 1014

possible dependencies at that degree. The question of significance here is an important one. What is the best

way to estimate our confidence that a gene tuple is functionally dependent? The permutation test was used

to address the complex of factors affecting significance.

The method calculates a measure of dependence and does not predict or make any assumptions about the

underlying nature of the dependence, so it provides information only about whether or not a dependency

exists. Modeling the underlying functional dependence using the specific data, or additional information

from outside this data set are required to identify the nature of the variable dependencies and the biological

process behind the function. The introduction of this algorithm, based on the shadows of lower degree
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dependencies, should provide a powerful method for using the proposed information theory measures for

high variable number data sets and enable the detection of high degree dependencies.
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