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ABSTRACT

Metagenomics data have been growing rapidly due to the advances in NGS technologies.
One goal of human microbial studies is to detect abundance differences across clinical
conditions. Besides small sample size and high dimension, metagenomics data are usually
represented as compositions (proportions) with a large number of zeros and skewed dis-
tribution. Efficient tools for handling such compositional data need to be developed.

We propose a zero-inflated beta regression approach (ZIBSeq) for identifying differen-
tially abundant features between multiple clinical conditions. The proposed method takes
the sparse nature of metagenomics data into account and handle the compositional data
efficiently. Compared with other available methods, the proposed approach demonstrates
better performance with large AUC values for most simulation studies. When applied to a
human metagenomics data, it also identifies biologically important taxa reported from
previous studies. The software in R is available upon request from the first author.
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1. INTRODUCTION

Large volumes of metagenomic sequencing data have been generated in the last several years, due

to the advances of next-generation sequencing technologies (Gilbert et al., 2011). Those shot-sequence

reads are then clustered into operational taxonomic units (OTUs), or annotated against known taxonomic

databases of reference sequences (Ghodsi et al., 2011; Wang et al., 2007). The resulting metagenomics read

counts are then used for disease association studies (Liu et al., 2011, 2014). Microbiota have been known to

be associated with various diseases including Crohn’s disease, bacterial vaginosis, obesity, diabetes, and

cancer (Morgan et al., 2012; Turnbaugh et al., 2009). It is critical to identify disease-associated pathogenic

bacteria characterized by abundance differences across different clinical conditions.

There have been several methods developed for differential abundance analysis with RNA-seq data

and gene expression analysis. Those analytical tools including edgeR and DESeq (Robinson et al.,

2010; Anders and Huber, 2010; Li et al., 2012; Young et al., 2012; Mortazavi et al., 2008) may be

applicable to metagenomic data analysis, because both data are from sequencing-based technologies.
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However, metagenomics data have specific characteristics that need to be considered. Compared to RNA-

seq data, metagenomic data are more sparse, with many zeros. In addition, metagenomics data need to be

preprocessed into proportion (compositions) for adjusting biases in read-depth across different samples.

Therefore, specific tools for dealing with such compositional data have to be developed. Recently, the

problem of assessing differential expression in sparse high-throughput microbial marker-gene survey data

has been addressed by introducing a cumulative-sum scaling (CSS) and zero-inflated Gaussian (ZIG) model

(Paulson et al., 2013). R package ‘‘metagenomeSeq’’ was developed for the implementation of the pro-

posed approach. It was shown that metagenomeSeq outperforms other tools currently used in this field.

However, metagenomeSeq did not handle the compositional data directly. The data was first normalized

with cumulative sum scaling, and then ZIG model was applied. The normalized data is sometimes hard to

explain.

To overcome the limitations of existing methods for metagenomics analysis, we propose a zero-inflated

beta regression approach to handle the proportion data directly. Beta regression is an extension of the

generalized linear model (GLM) approach with the assumption that proportional dependent variable can be

characterized by the beta distribution. Beta distribution is well known to be flexible for modeling pro-

portional data ( Johnson et al., 1993; Ospina et al., 2012). Zero-inflated beta regression incorporates the

existing beta distribution with a degenerate distribution, allowing for modeling metagenomics com-

positional data efficiently (Stasinopoulos and Rigby, 2007). Under various simulations, we show that

ZIBSeq performs well for all these types of distributions, especially that it significantly outperforms other

methods for features with sparse counts. We also demonstrate the utility of our method on real human

metegenomics data. Biologically significant taxa are identified with ZIBSeq. ZIBSeq can be directly

applied to the comparison of more than two clinical conditions or continuous outcome variables without

difficulty.

2. METHODS

We seek to construct an efficient method that takes the compositional nature of the data into account,

deals with sparsity efficiently, and is flexible enough to perform well in various conditions.

Data Structure: In a metagenomic data analysis, suppose n samples from two or more classes are

collected and each sample measures expression levels of p genes; the data can be written as an n · p matrix

C for which entry cij is the number of reads from sample i that mapped to taxa j. Since each sample may

generate, a different total number of reads, count cij depends not only on the reads of taxa j but also on the

total number of reads of sample i(Ti =
Pp

j = 1 cij). We also denote the outcome measurement associated with

sample i by yi, i = 1‚ . . . ‚ n. The outcome variable could be an indictor variable indicating the class of the

sample. A typical metagenomic data set can be described as follows (Table 1):

Data Preprocessing: (i) Normalization. It is very common to observe different levels of sampling

across multiple individuals. To ensure observed counts are comparable across samples, various normali-

zation approaches had been developed for metagenomics data analysis. In our method, we use a natural

normalization by converting the raw abundance measure to a proportion representing the relative contri-

bution of each feature to each of the samples. For sample i,i = 1,.,n, the normalized feature abundance

x
(j)
i ‚ j = 1‚ . . . ‚ p is the proportion of feature j reads in sample i that can be calculated by x

(j)
i = cij=Ti. We

chose this simple normalization procedure because it provides a natural representation of the count data as a

relative abundance measure. After the normalization, x
(j)
i ranges between 0 and 1.

(ii) Transformation. When the distributions of the proportion are extremely left skewed, that is, most of

the nonzero proportions are very small, the assumption of beta distribution may not be satisfied. In such

Table 1. Megagenomics Data Structure

Feature 1 Feature 2 � � � Feature p Total Outcome

Sample 1 c11 c12 � � � c1p T1 y1

Sample 2 c21 c22 � � � c2p T2 y2

� � � � � � � � � � � � � � � � � � � � �
Sample n cn1 cn2 � � � cnp Tn yn
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cases, some appropriate transformations such as square root transformation
ffiffiffi
x
p

or cube root transformationffiffiffi
x3
p

are suggested. After the transformation, the proportions still range between 0 and 1 but with a dis-

tribution better fitting a beta distribution.

2.1. Differential abundance analysis via zero-inflated beta regression

Since beta distribution has a wide range of different shapes depending on the values of two parameters,

beta regression models (Ferrari and Cribari-Neto, 2004) are very useful when the response variables are

continuous and restricted to the interval (0,1). Assume that x follows a beta distribution denoted as

x*beta(l,/), where l(0 < l < 1) is the mean and / (/ > 0) is a precision parameter. The beta density then

can be described as a function of l and / (Ferrari and Cribari-Neto, 2004):

f (n; l‚ /) =
G(/)

G(l/)G((1 - l)/)
nl/ - 1(1 - t)(1 - l)/ - 1‚ 0 < n < 1 (1)

where G($) is the gamma function. Under this parameterization,

E(x) = l
Var(x) = l(1 - l)=(/ + 1)

�

To deal with the case when interested variable contains zero or one, a more general class of zero-or-one

inflated beta regression models for continuous proportions was recently proposed by Ospina and Ferrari

(2012). Since zero instead of one is very frequently observed in metagenomics data, in this article, we only

consider the zero-inflated beta regression, which assumes the response variable has a mixed continuous-

discrete distribution with probability mass at zero. For zero-inflated beta distribution, a new parameter a is

added to account for the probability of observations at zero. The subsequent mixture density is:

Bi(x; a‚ l‚ /) = a if x = 0

(1 - a)f (x; l‚ /) if 0 < x < 1

�
(2)

where f (x; l,/) is the beta density (1) and a is the probability of observing zero.

Let x
(j)
i denote the normalized feature abundance, that is, the proportion of feature j reads in sample i,

which is calculated by x
(j)
i = cij=Ti. Then x

(j)
1 ‚ x

(j)
2 ‚ . . . ‚ x(j)

n are proportions of feature j‚ j = 1‚ . . . ‚ p on n

samples. By assuming that each x
(j)
i has a probability density function (2) with parameters

a = a(j)
i ‚ l = l(j)

i ‚ and / = /(j)
i , we define the following zero-inflated beta regression model (ZIBSeq) to fit the

parameters in mixture distribution (2) for feature j:

logit(a(j)
i ) = q(j)

0 ‚ logit(l(j)
i ) = b(j)

0 + b(j)
1 yi‚ /(j)

i = Ti - 1‚ (3)

where q(j)
0 , b(j)

0 , and b(j)
1 are unknown regression parameters to be estimated, yi is an outcome measurement

indicating the class of sample i, while Ti is the ith sample depth. If feature j is not associated with the output

class (for example, there is no significant difference in relative abundance of taxa i between two conditions)

then b(j)
1 is zero. For large samples, a chi-squared distribution can be used as an approximation to the true

null distributions in testing the significance of b(j)
1 . Numerically finding the maximum likelihood estimates

of the parameters in model (3) is implemented by R package GAMLSS (Stasinopoulos and Rigby, 2007).

For testing the significance of b(j)
1 , t statistic and corresponding p-value are calculated with GAMLSS.

When there are more than two classes, we recode y into multiple binary vectors with the popular one-vs.-

rest or one-vs.-one scheme, and then apply zero-inflated beta regression to the recoded y’s.

Approximation of Dispersion Parameter /: Let c denote the number of reads on a particular

feature; assume c follows a binomial distribution, that is, c *Bin(T,l), where T is the sample depth and

l is the probability that the sample reads in this feature. Let x = c
T

~N(l‚ l(1 - l)
T

). Then the variance of

proportion x is

Var(x) =
l(1 - l)

T
: (4)

On the other hand, if the proportion x follows a beta distribution under parameterization in (1), then we

have
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Var(x) =
l(1 - l)

/ + 1
: (5)

From (4) and (5) it is easy to obtain an approximation of the dispersion parameter /:

/ � T - 1: (6)

We implemented this result in Equation (3).

Multiple Hypothesis Testing Correction: In metagenomics studies, it is very common to have

thousands of features tested against the null hypothesis. The purpose of these tests is to identify many truly

alternative features without including too many false positives. However, the direct application of the

unadjusted chi-squared statistic can lead to large numbers of false positives; therefore, multiple hypothesis

testing correction must be considered.

Aims to control the false discovery rate (FDR), q-value has been widely accepted as an alternative

approach for multiple hypothesis testing correction in recent years (Benjamini, 2010). In this article, the

significance of a differential test is measured by a q-value calculated using the algorithm developed by

Storey and Tibshirani (2003). Under the assumption that p-values are uniformly distributed, this method

will yield conservative q-value estimates. Our method can be summarized as below:

Step 1 Feature screening. Remove the features with total counts less than 2 · n, where n is the sample size.

Step 2 Data normalization. Convert the raw abundance cij to a proportion cij /Ti, where Ti is the total counts

of sample i.

Step 3 Zero-inflated beta regression. Perform zero-inflated beta regression between each normalized

feature (response variable) and outcome (explanatory variable); obtain the p-value of the regression

coefficient in each regression.

Step 4 Multiple hypothesis testing correction. Calculate q-values based on p-values obtained in step 3;

features with q-values less than or equal to significant levels are chosen.

3. RESULTS

We first present the results of four simulation studies to evaluate and compare ZIBSeq (zib), ZIBSeq

with square root transformed response variable (zib_sqrt), and metagenomeSeq (zig) discussed in section 2.

Then, one case study on real data will show how ZIBSeq is employed to find meaningful features in

genomic studies.

3.1. Simulation

In order to compare the abilities of zib, zib_sqrt, and zig in detecting differentially expressed features,

simulations were designed to generate data from four common types of distributions: zero-inflated Poisson

distribution (ZIP), zero-inflated negative binomial distribution (ZINBI), multinomial distribution (MN),

and binomial distribution (BI). All methods use standard approaches of false discovery rate (FDR) and q-

value (Benjamini and Hochberg, 1995) for multiple hypothesis correction. Differentially abundant features

were determined at FDR <0.05. To evaluate the ability of ZIBSeq and metagenomeSeq in identifying

differential features, R package ROCR (Sing et. al, 2005) is employed to perform the ROC analysis. In

each simulation, ROC curves and area under the curve (AUC) values were averaged by 100 random

experiments.

In simulations on zero-inflated Poisson distribution ZIP(a,l) and zero-inflated negative binomial dis-

tribution ZINBI(a,l,r) ( Johnson et al., 1993), 5 out of 100 features were set to be differentially expressed,

with means l = {5, 5, 50, 300, 500} and {6, 8, 60, 350, 600}, respectively. The remaining 95 genes were

generated from the same distribution with l varied from 5 to 750. The probability of zero a is chosen to be

0.05 in both simulations, while the dispersion parameter is r = 0.1 in zero-inflated negative binomial

distribution.

To get reasonable values in simulations on multinomial distribution MN(s‚ p1‚ p2‚ . . . ‚ p50) and binomial

distribution BI(s‚ p1)‚ . . . ‚ BI(s‚ p50), the sampling depth s of each sample was determined by random

sampling from 2000 and 20000. Eight out of 50 features were differentially expressed in two sample classes
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with probabilities p1 to p8 set to be {.000268, .000868, .00388, .00288, .0156, .0756, .134, .066904} and

{.000368, .000268, .00288, .00888, .0256, .0156, .184, .062404}, respectively. Same fp9‚ . . . ‚ p50g were

used to generate the remaining 42 features values in two sample classes; these probabilities varied from

0.0005 to 0.17.

ROC curves were shown in Figures 1 and 2 to illustrate the performance of the two methods in detecting

significant features for sample size n = 200 and n = 50, respectively. Corresponding AUC values were

calculated and listed in Table 2 to compare the performance of ZIBSeq and metagenomeSeq on data from

these four distributions.

As shown from Figure 1 and 2 and Table 2, all methods (zib, zib_sqrt, and zig) performed similarly on

ZIP and ZINBI data. With the sample size 200, the average AUCs of zib and zib_sqrt methods for ZIP data

were 0.983, and for ZINBI data were 0.944 and 0.945, respectively, while the average AUCs of zig model

for ZIP and ZINBI data were 0.991 and 0.959, respectively. Similar results were achieved with the sample

size 50, indicating that zig performed slightly better than zib and zib_sqrt with larger AUC values at

different sample sizes. However, it is clear that zib and zib_sqrt were more effective than zig on MN and BI

data. With the sample size 200, both zib and zib_sqrt achieved the AUC of 0.999 for MN data and achieved

the AUC of 0.998 for MN data respectively, while zig only had the average AUCs of 0.897 and 0.873,

respectively. The advantages of zib and zib_sqrt are more significant with a smaller sample size of n = 50.

Both zib and zib_sqrt had the average AUCs of 0.980 for ZIP data, and 0.955 for ZINBI data, while zig

FIG. 1. Comparison of ZIBSeq (zib), ZIBSeq with square root transformation (zib_sqrt), and metagenomeSeq (zip)

based on simulated data from zero-inflated Poisson distribution (ZIP), zero-inflated negative binomial distribution

(ZINBI), multinomial distribution (MN), binomial distribution (BI), and n = 200.
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only achieved the average AUCs of 0.761 and 0.740 for MN and BI data, respectively. In all simulations,

zib and zib_sqrt performed almost the same.

3.2. Real metagenomic data

The metagenomic dataset was downloaded from dbGaP under study ID phs000258. The data and

analytical results were first reported by Zupancic et al. (2012). There were a total of 310 Amish adult

samples with 112 males and 198 females. After aligning the 16S rRNA sequences of gut microbiota to

reference sequences and taxonomy databases, there were a total of 240 taxa at the genus level. The clinical

FIG. 2. Comparison of ZIBSeq (zib), ZIBSeq with square root transformation (zib_sqrt), and metagenomeSeq (zip)

based on simulated data from zero-inflated Poisson distribution (ZIP), zero-inflated negative binomial distribution

(ZINBI), multinomial distribution (MN), binomial distribution (BI), and n = 50.

Table 2. AUC Values with ZIP, ZINBI, MN, and BI Simulated Data and Different Sample Sizes

Sample Size
n = 200 n = 50

Models ZIP ZINBI MN BI ZIP ZINBI MN BI

zib 0.983 0.944 0.999 0.998 0.938 0.734 0.980 0.955

zib_sqrt 0.983 0.945 0.999 0.998 0.938 0.736 0.980 0.955

zig 0.991 0.959 0.897 0.873 0.943 0.765 0.761 0.740
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phenotype we study is the body mass indices (BMI). The average BMIs are 27.2 and 30.3 for male and

female, respectively. We try to identify BMI-associated genera with the proposed approach. We first drop

the taxa with average reads below 2, because taxa with a small number of reads are not reliable and subject

to noises and measurement errors. There are 62 out of 240 features that average more than 2 reads left for

further studies. BMI can be treated as either an ordinal or categorical variable with normal (N: BMI < 25),

overweight (OW: 25 £ BMI < 30), obese (OB: 30 £ BMI £ 40), and morbidly obee (OM: BMI > 40). We

first treated BMI as a categorical variable and applied zib and zib_sqrt to N + OW + OB vs OM. Two taxa

including Faecalibacterium and Ruminococcus were identified with both zib and zib_sqrt with FDR < 0.05.

The same two taxa were selected with zib, but three taxa including an additional, Collinsella (besides

Faecalibacterium and Ruminococcus), are chosen when considering the BMI group as ordinal variables as

shown in Figure 3.

Also shown in Figure 3, both Faecalibacterium and Ruminococcus have lower relative abundance in the

morbid obesity group, while Collinsella has higher relative abundance in both obese and morbidly obee

groups. It is well known that intestinal microbiota composition varies between healthy and diseased

individuals for numerous diseases including obesity. It has been shown in the literature that Faecali-

bacterium was significantly increased in response to dietary factors and weight loss (Remely et al., 2015)

and was suggested as a target for intervention (Thomas et al., 2014). Both Ruminococcus and Collinsella

are less studied, but there was evidence indicating that the relative abundance of Ruminococcus varies

between obese and nonobese individuals (Kasaiet al., 2015). The biological importance of Collinsella

needs to be further explored.

4. DISCUSSION

We proposed ZIBSeq tools to handle the metagenomics compositional data with many zeros efficiently.

When compared with the popular zig model, our approach performed well with various kinds of data,

especially with data simulated from multinomial and binomial distributions. In addition, even though

FIG. 3. Boxplots of Collinsella, Faecalibacterium, and Ruminococcus as square root transformations (first row) and

proportion (second row) for four BMI groups.
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negative q-values were sometimes observed in simulations based on MN and BI data for all methods, zig

approach is more likely to obtain negative q-values since it tends to produce more small p-values, which

violates the assumption of uniform distribution in the q-value calculation algorithm proposed by Storey and

Tibshirani (2003). Benefitting from the flexibility of beta distribution, our method is more stable. It can also

identify biologically important taxa in a real application.
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