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END-TO-END OPTIMIZATION OF HIGH THROUGHPUT
DNA SEQUENCING

E. O'REILLY, F. BACCELLI, G. DE VECIANA, AND H. VIKALO

ABSTRACT. At the core of high throughput DNA sequencing platforms
lies a bio-physical surface process that results in a random geometry of
clusters of homogenous short DNA fragments typically hundreds of base
pairs long. — bridge amplification. The statistical properties of this ran-
dom process and length of the fragments are critical as they affect the
information that can be subsequently extracted, i.e., density of success-
fully inferred DNA fragment reads. The ensemble of overlapping DNA
fragment reads are then used to computationally reconstruct the much
longer target genome sequence, e.g, ranging from hundreds of thousands
to billions of base pairs. The success of the reconstruction in turn de-
pends on having a sufficiently large ensemble of DNA fragments that
are sufficiently long. In this paper using stochastic geometry we model
and optimize the end-to-end process linking and partially controlling the
statistics of the physical processes to the success of the computational
step. This provides, for the first time, a framework capturing salient
features of such sequencing platforms that can be used to study cost,
performance or sensitivity of the sequencing process.

1. INTRODUCTION

Rapid and affordable detection of the order of nucleotides in DNA mo-
lecules has become an indispensable research tool in molecular biology. In
this paper, we consider the most prevalent sequencing technology that relies
on reversible terminator chemistry [4] and the “shot gun sequencing” strat-
egy [24) 30, 29] to determine long DNA strands. Our goal is to develop a
model and an associated mathematical framework that enable optimization
of the end-to-end cost of DNA sequencing. For this, we draw upon sto-
chastic geometry and queueing-theoretic tools to model and analyze salient
characteristics of growing DNA clusters on the surface of a sequencing chip
and optimize the process of sequence assembly from the short reads provided
by the sequencing device. These developments provide a systematic basis
to study the tradeoffs and maximize the cost efficiency of the sequencing
procedure.

1.1. High-level Description of the Problem. A target DNA strand to
be sequenced can be viewed as a possibly long, e.g. 10%, sequence of L
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letters. In shot gun sequencing a large number of copies of the target are
first randomly cut into fragments; the fragments are then sequenced, each
providing a read of length [, where [ is much smaller than L [30, 29]. The
approach involves two key steps. In Step 1, one reads as many fragments as
possible — as we elaborate later in this section, that can be parallelized and
therefore performed very efficiently. In Step 2 one attempts to reconstruct
the target sequence by leveraging the library of overlapping reads obtained
in Step 1 — this step is referred to as assembly. For clarity let us consider
the two steps independently, although one should keep in mind that they
are intimately linked and will, in the sequel, be jointly optimized.

To functionalize the surface of a DNA chip (referred to as a flow cell),
DNA fragments are first scattered across its surface whereupon they at-
tach at random locations [4]. A single fragment is insufficient to generate
a signal that is detectable; to remedy this, each of the initially positioned
fragments which we refer to as germs are replicated in parallel a number of
times through the process called bridge amplification. The resulting ensem-
bles of fragments, each comprising hundreds of identical copies of a germ,
enable signal amplification and accurate DNA sequence detection. The germ
replication can be viewed as a spatial branching process happening on the
surface of the flow cell. The result of each such process, in the simplest case,
is roughly a disc of the fragment’s copies centered at the location where the
original strand (germ) happened to attach to the flow cell. The radius of
the disc can be controlled by the number of steps of the bridge amplification
process. As we shall see, due to possible interaction amongst such growth
patterns, the resulting shapes might be more complex than discs, so in the
sequel we will more generally refer to them as clusters.

As mentioned above, each fragment is replicated to generate a cluster
of identical molecules which enables signal amplification and thus facilitates
sequence detection, i.e., the underlying letter reading mechanism. Reads are
obtained in parallel, i.e., all clusters are read simultaneously one letter at a
time. This is accomplished by relying on reversible terminator chemistry [4]
where the first unread letter of each fragment is identified by detecting the
color of the fluorescent label attached to the nucleotide bound to it[] Since
clusters contain multiple copies of the fragments, with proper illumination
each cluster will light up the color indicative of the latest letter/base being
examined. This process, referred to as sequencing-by-synthesis, is applied
sequentially for say [ steps and thus in principle one can determine the first
[ letters of all fragments on the flow cell — this is the aim of Step 1.

More precisely, a mixture of free nucleotides each labeled with one out of four possible
fluorescent tags is added to the flow cell; a complementary nucleotide attaches to the
topmost unpaired base (unread letter) in each DNA fragment of the flow cell. The free
nucleotides are modified in such a way that once incorporated they terminate the sequence
extension, i.e., a modified nucleotide incorporated into a strand prevents further strand
extension. Once the fluorescent tag is identified, the nucleotide’s modification (i.e., its
terminating property) is “reversed” and incorporation may proceed further.
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There are two caveats however. First, the successive reading of nucleotides
can fail for some fragments in each cluster. Specifically, on a given step, say
k, the chemical processes associated with reading the kth nucleotide base
may fail or jump ahead to the (k+1)st one. Thus at each step only a fraction
of the fragments in a cluster have their kth nucleotide properly marked with
the correct fluorescent marker. As this proceeds, an increasing number of
markers get out of phase, i.e., the disc/cluster will eventually appear to
have a mix of colors, making correct detection of the fragment’s next letter
increasingly difficult. To deal with this phenomenon, typically referred to
as phasing, a number of base calling methods have been proposed in recent
years [9, [I5], 14, (I3} ©, [7]. Indeed, amplifying the signal is the reason for
synthesizing the cluster of duplicates of each fragment in the first place, i.e.,
clusters are meant to enable in-phase addition of light emanating from a
number of identical fluorescent tags.

The second caveat is that randomly placed germs may be grown into
clusters that overlap which will also impair the reading process. Larger
clusters will tend to experience more overlaps. In essence, this is a random
disc packing problem: if two germs happen to attach to the flow cell at
distance r from each other, any cluster growth that leads to discs of radius
larger than r/2 leads to such an overlap and hence to an impaired reading
of the letters of the corresponding two strands.

We are now in a position to articulate the main tradeoffs that drive the
efficiency of shotgun sequencing which assembles the target using short reads
from a flow cell. There are three main parameters at play: the density A of
fragments initially placed on the flow cell, the length [ of the fragment reads,
and the disc radius r associated with the bridge amplification process:

e ) large looks desirable (because more fragment reads will facilitate
Step 2) but could be problematic for any fixed r because of possible
disc overlaps;

e | large is desirable (because it will facilitate Step 2) but could be
problematic because of the deterioration in reads quality as base
pair reads get out of phase;

e 7 large is necessary (to amplify signals and facilitate detection) but
this precludes the desire for a large A (because of disc overlaps).

We pose the following question: what is the optimal set of parameters to
maximize the “yield” and/or possibly minimize the cost in the presence of
all these tradeoffs?

There are many ways to frame the problem of optimizing yield in such
systems. In this paper we will first consider optimizing fragment yield, which
we define as the density of length [ fragments successfully read per unit area
of the flow cell. Then we consider metrics that are more directly tied to the
final objective of sequencing length L target DNA sequence. To that end
let us consider Step 2, the reassembly process.
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Following a simple, stylized model of the process, a condition for success-
ful reassembly is that the collection of successfully read fragments covers the
target DNA — i.e., if one denotes by aq,---,ar, the target DNA sequence,
then in the set of correctly read fragments there should exist a subset of

fragments, say si,...,s; such that s; contains the sequence aq,...ap,, s2
contains the sequence ap,4+1,...ap,,..., and so on, until s; contains the
sequence ap, ,41,--..ar, for some py,...,pr—1. This stylized model for re-

assembly is highly simplified. In practice we may encounter two scenarios,
de novo and reference-based sequencing. De novo sequencing [26, [10] [12]
refers to sequencing genomes which have not been previously characterized,
while reference-based sequencing [§] refers to the sequencing task where one
or more previously sequenced references which are similar to the target are
available. These present different challenges in the reassembly process, i.e.,
determining where fragments should be placed to reconstruct the target (se-
quence alignment has attracted considerable amount of attention, e.g., see
[1T7, 18, 19, 20, 21}, 27] and the references therein). Moreover, reassembly
requires additional slackness in the cover, i.e., in s;, there should be enough
letters on the left of ap, 41 and on the right of a,, to correctly reconstruct
the long sequence from the fragments exactly as in a puzzle. Assuming the
ability to appropriately map/align fragments, the existence of a covering
is a minimal requirement to sequence the target, see [5], 25] and references
therein for modern discussion of this problem.

A critical tradeoff associated with Step 2 now emerges. It is between the
number of correctly read fragments and their length. A large collection of
fragments is helpful, but if they are too short, i.e., [ is small, it is difficult
to obtain a covering of the entire DNA target sequenceﬂ

This brings us to the main problem addressed (and solved) in this paper.
We set as our goal the determination of the parameters associated with the
sequencing process as described earlier (namely the density A of fragments
placed on the flow cell, the duration of the growth process, and the length
of the fragment reads [) which ensure a pre-specified probability, say 9, e.g,
99%, of obtaining a covering of the target DNA sequence at minimal oper-
ation cost. Operational costs can be organized in two main categories: (a)
those associated with raw materials, e.g., DNA copies, reagents, flow cells;
(b) those associated with time, e.g., the time spend on the sequencing ma-
chine or the execution time of the signal processing algorithms. In this paper
we shall for simplicity adopt the flow cell area as the cost. Some reagent
costs and some flow cell processing time costs might be proportionaﬁ to the
flow cell area. We find it important to stress that our general mathemat-
ical framework can also accommodate other costs. For instance costs that

2Additionally, in the reference-guided assembly scenario, longer fragments are easier to
align with the target.

3In this discussion, when we say proportional, we mean proportional through multi-
plicative factors that do not depend on the optimization variables, namely on the length
of the strands, the density of the strands on the flow cell, or the duplication factor.
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are proportional to the total number of strands (this might be the case for
certain processing times) or to the number of DNA copies (raw material),
rather than to the area. We will not discuss them here for the sake of brevity.

1.2. Related Work. To our knowledge, this is the first work attempting
to model and analyze the cluster growth process with a view on optimiz-
ing DNA sequencing cost/yield. The detailed simulations of the surface
physics associated with the bridge amplification process, [23| 22], support
that the disc/cluster processes we introduced earlier and will use are well
suited. Work optimizing this process has taken place in industry where
empirical evidence and simple rules of thumb have been used. There is,
however, a substantial body of work towards developing mathematical tools
for analyzing random spatial processes (see, e.g., [28] and some of our work
[3]). Indeed, this branch of mathematics is now ubiquitous with applications
in material science, cosmology, life sciences, information theory, to name a
few. Further developments of the mathematical foundations have recently
been carried out by us in [3], and proven to be invaluable, e.g., to under-
stand fundamental characteristics of large wireless systems and optimizing
their performance. Such stochastic geometry models have been embraced
by academia and industry, providing insight into current and future techno-
logical developments. Indeed the aim of this paper is to show that this may
also play a role in the DNA sequencing setting.

As mentioned earlier in this section, sequence assembly may be performed
with or without referring to a previously determined sequence (genome,
transcriptome). De novo genome shotgun assembly is a computationally
challenging task due to the presence of perfect repeat regions in the target
and by limited lengths and accuracy of the reads [12, 5, 25]. In the reference-
guided assembly setting, the reads are first aligned (i.e., mapped) to the
reference, easing some of the difficulties faced by the de novo assembly [g].
However, the reference often contains errors and gaps, creating a different
set of challenges and problems. In fact, if the sample is highly divergent
from the reference or if the reference is missing large regions, it may even be
preferable to use de novo assembly [11]. While the development of methods
for sequence assembly received significant attention, ultimate limits of their
performance have been less explored. The pioneering work of [16] provided
the first simple mathematical model for the reassembly process. This has
been followed with various refinements [5, 25] but to our knowledge none
has provided a mathematical framework to compute the flow cell parameters
needed to achieve a given likelihood of full target coverage. Moreover, no
previous work has linked this end objective to the optimization of the end-
to-end process as we will do in this paper.

1.3. Organization of the paper. In Section [2| we propose a stochastic
geometric model for the distribution of clusters on the flow cell resulting
from the bridge amplification process. The proposed model enables analysis
of the impact of the geometry of clusters on the achievable yield of fragment
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reads. Fragment read yield optimization is considered in Section In
Section [ we propose a simplified model for the reassembly problem which
is related to a queueing model and analysis. This allows us to consider the
end-to-end cost optimization of the sequencing process to meet a desired
likelihood of coverage for the target DNA sequence which is carried out in
Section [l

2. STOCHASTIC GEOMETRIC MODELS FOR SHOTGUN DNA SEQUENCING

In this section, we introduce basic geometric models for the cluster pro-
cesses associated with the DNA fragments resulting from bridge amplifica-
tion procedure on the surface of the flow cell. These are the singleton cluster,
shot-noise and the Voronoi models, respectively. These processes will be
tied to the salient features of fragment reading mechanisms.

In the singleton cluster process model, all clusters that intersect (or touch)
another cluster are discarded. The retained clusters are roughly modeled as
discs of radius r consisting of duplicates of the same DNA fragment. In the
shot-noise process model an attempt is made to read each cluster. Isolated
clusters are as in the singleton cluster case. A cluster which is in contact
with one or more clusters is still analyzed as a disc of radius r; however,
depending on the number and shape of the other clusters in contact, part
of the light signal stemming from that disc creates an interference which is
treated as noise. If signal dominates interference/noise, one can still read this
cluster. Finally, the Voronoi case studies the (hypothetical and somewhat
futuristic) scenario where one computes optimal masks that allow one to
mask all clusters that are in contact with the tagged cluster and hence to
cancel interference.

Some of these models will be used in Section [4] for the reassembly op-
timization alluded to above. For each case, we describe the mathematical
approach used to evaluate its performance. This will also be used in order
to give some yield optimizations of independent interest in Section

2.1. Random seed model and growth model. We consider the locations
of the initial DNA fragments (the centers of the clusters or the seeds) to
be a homogenous Poisson point process N on R?, with intensity A. This
parameter is simply the number of seeds per unit area. Growth of clusters
is assumed to be radially homogenous, so if a cluster does not come into
contact with any other cluster over a time r of growth, it will form a disc of
radius r. The amplification process creates up to 1000 copies of the initial
fragment in a disc of radius .5 microns [1]. This gives us a density a of 4(;&
fragments per square micron.

If it does come into contact with another cluster, we assume the growth
in that direction stops, but growth continues in all other directions. As r
approaches infinity, the configuration of clusters becomes the Voronoi dia-
gram associated with the point process N [28]. For r finite, the shapes are
known as the Johnson-Mehl growth model [28].
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2.2. Read reliability model. As already explained, phasing problems oc-
cur because nucleotides occasionally fail to incorporate in particular dupli-
cates or anneal to the base pair right next in line. These duplicates are then
out of sync with the rest of the duplicates and give off a different color sig-
nal. So even though amplifying the fragments gives a much stronger signal,
there is noise due to these out-of-phase duplicates limiting the accuracy of
the reads.

To model this in a single cluster, let X; denote the number of copies of
the original DNA fragment that remain in phase after [ steps of the process.
Let p be the probability that a DNA fragment gets out of phase at one step.

The random variable X; has a binomial distribution, where the number
of trials is the number of DNA fragment copies in a cluster, and (1 — p)’
is the probability that a fragment remains in phase, after [ steps, i.e. the
probability of success.

At first glance, it makes sense to require that p(l) = (1 —p)! > 3 (so
that on average, more than half the duplicates remain in phase) to have a
correct read. However, this does not capture certain phenomena, e.g. the
fact that as the radius becomes very small, fluctuations are high around the
mean. We will hence require that the number of duplicates remaining in
phase is above half by some positive margin. The probability of a correct
read will then rather be P(X; > ‘””’ + ¢) for some positive epsilon, which is
an important complementary parameter of our model. The value of epsilon
used here is 10, since the output yields using this value are on the same
order as the density of clusters achieved by Illumina technology [I].

2.3. The singleton cluster model. For a cluster with unimpeded growth
over time r, the number of DNA fragments in a cluster is amr?, so X; ~
B(amr2, p(1)).

When the number of trials is large, the binomial distribution can be ap-
proximated by the normal distribution. In the singleton case:

X ~ N(amr?p(l \/am" p(1)(1 — p(1))).

A cluster centered at y in N is isolated after time r if the ball centered
at y with radius 2r does not contain any other point of N. A homogenous
Poisson point process is stationary, so we can consider a typical ball centered
at 0. Given intensity A and radius r, we can then calculate the intensity of
isolated clusters A;(\, 7). By Slivnyak’s theorem,

i\, ) = APY(N(B(0,2r)) = 0)
= AP(N(B(0,2r)) = 0)
= de~r?

The overall fragment yield of singletons is the intensity of the isolated
clusters times the probability a cluster will enjoy a correct read:

Ay A, 1) = Ae= PP P (X, > amr? ¢,
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2.4. The shot-noise model. Using only isolated clusters is clearly subop-
timal. We consider here the situation where all clusters are used. In this
case, for each cluster, the amount of interference from contact with other
clusters during the growth/duplication process has to be taken into account.
According to our growth assumptions, the area of the typical cluster (as-
sumed with a seed located at 0) is |[Vo N B(0,7)|, where | - | is Lebesgue
measure, Vp is the Voronoi cell of the point at 0, and B(z,r) the ball of
center x and radius r. Here, we use a lower bound for the area that is easier
to calculate. The interference encountered from another cluster centered at
x; € N is considered to be half of the area of the overlap between the discs
B(0,r) and B(x;,r). We take the total interference for the typical cluster
to be the sum of these areas over all surrounding clusters. This is in fact an
upper bound on the actual interference, e.g. triple intersections are counted
twice (see Figure [1)).

This interference upper bound can be
described in terms of a shot-noise field
Iy defined on R? as a functional of
our Poisson point process N with re-
sponse function oy (z) = 3|B(0,r) N
B(z,r)|. For fixed r, a, depends only on
the distance ||z||, so we write a.(||z]|).
The total interference is I = Iy =
Jz ar (2l )V (de).

The Laplace functional of the interfer-
ence is:

Li(s) = e heime o)

FiGure 1. Cluster interference.
Overlap with the typical cluster B(0,r)

only occurs for clusters with centers contained in the ball of radius 2r around
0, so we consider only the interference on B(0,2r). Switching to polar
coordinates, the Laplace transform becomes

2r
Li(s) = exp(—27r)\/ (1 — e )pdv),
0

where

ap(v) =r?cos™! () — 54/ — %.

The random variable X; (the number of copies of the original DNA fragment
that remain in phase after [ steps) is now binomial with the number of trials
depending on the interference I. Since the interference comes from fragments
that are not copies of the seed of the tagged cluster, this area contains no
potential in-phase fragments. The area occupied by fragments of interest is
72 — I and thus,

Xu(I) ~ Bin(a(xr? — 1), p(1)), where p(l) = (1 — p).
The cluster is still analyzed as a disk of radius r, so the number of in-phase
DNA fragments needed for a correct read remains at least %am”? + €. The
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probability of a correct reading given interference I = x is
1
g(x) = P(X;(x) > 5@71'7“2 +ell =x)

and the fragment yield is

My A1) = A / o) (dz),

where f is the law of I, which is known through its Laplace transform
[28]. The computation of this yield, which is based on Fourier techniques,
is discussed in Appendix

2.5. The Voronoi model. In this subsection, we consider an optimal sce-
nario for collecting signal reads using our assumptions about cluster growth.
Clusters are allowed to grow until they have formed a Voronoi tessellation.
Then optimal sized masks having the shape of each Voronoi cell are used to
read the signal. In this scenario no interference from neighboring clusters is
present, and the only variable to optimize is the intensity A of the underlying
point process.

The closed form of the distribution for the area of Voronoi cells is un-
known, but it can be approximated by the generalized Gamma density:

v—1

Halz) = ggfjl}/,:)x exp(—xz¥) for z > 0.

This is the approximate distribution for the normalized cell size AA, where
A denotes the area. For A = 1, good choices for the area are: v = 1.08,
v =3.31, and x = 3.03 [2§].

For a general intensity A the area distribution is given by

fa(x) = Mra(Ax) = AFES ()L exp(—x (Ax)") for z > 0,

where v = 1.08, v = 3.31, and x = 3.03.

The expected fragment yield for the Voronoi case is then

Ay =X [PP(X; > %+ €|A = 2) fa(z)da.

3. FRAGMENT AND LETTER YIELD

In this section, we first study the fragment yield, namely the mean number
of correctly read fragments per unit space of the flow cell. We then study
the letter yield, which is based on the number of letters correctly read.

3.1. Numerical results on fragment yield. Below, we use the mathe-
matical expressions obtained above to optimize the yield in all three models
for [ fixed. For the singleton cluster and the shot-noise model, we optimize
over the radius r and the intensity A. For the Voronoi model, the optimiza-
tion is over .

Table 1 and Table 2 show optimal parameters and fragment yields for
[ =200 and [ = 150.

For [ = 200, a 45.7% increase in optimal fragment yield can be obtained
when considering all clusters and not just the singleton ones. This increase
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TABLE 1. Optimal Parameters for [ = 200

Value Singletons Shot-noise Voronoi
A 1.3981 1.9143 3.7478
r .2386 .2447
F-Yield (per square micron) 2844 4145 2.8422

in yield comes with a slighter larger radius and higher intensity than the
optimal parameters for singleton clusters. This corresponds to increasing
the amount of time for replication and increasing the number of initial DNA
fragments spread over the flow cell. This will mean more clusters overlap
with their neighbors, but many more correct reads can still be made for
clusters that only run into their neighbors late in the growth stage.

TABLE 2. Optimal Parameters for [ = 150

Value Singletons Shot-noise Voronoi
A 3.2625 4.6031 8.6723
r .1562 .1686
F-Yield (per micron?) .9146 1.5704 8.6108

For each case, decreasing ! to 150 from 200 resulted in a smaller opti-
mal radius and a larger optimal intensity. With a smaller [, a fragment is
more likely to remain in-phase, making it is easier for in-phase fragments to
comprise half the cluster plus the fixed margin €. This allows clusters to be
smaller and more densely packed to obtain a higher yield.

The percent increases in the fragment yield obtained when switching to
[ =150 are

e Singletons: 221.59%
e Interference: 278.87%
e Voronoi: 202.96%.

3.2. Numerical results on letter yield. In view of the differences be-
tween [ = 200 and [ = 150, it makes sense to consider the optimal letter
yield, namely I\, (l,7, ), the mean number of letters correctly deciphered
per unit space. So, below, optimization takes place w.r.t. [ as well.

We see that the optimizing value of [ is actually somewhere around 100,
which is shorter than the read length provided by, e.g., Illumina’s HiSeq
sequencing platforms.

The percent increases in the fragment yield obtained when switching from
[ = 150 to the optimal [ are

e Singletons: 31.07%
e Interference: 49.14%
e Voronoi: 18.89%.
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TABLE 3. Optimal Parameters for Letter Yield

Value Singletons Shot-noise  Voronoi
A 6.2320 9.5769 12.1160
r 1130 1233
l 91.4570 86.1716  119.8302

L-Yield (per micron?) 179.8272  344.2525  1535.7

In this optimized setting, the letter yield of the shot-noise case is close to
twice that of the singleton cluster case.

4. REASSEMBLY MODEL AND OPTIMIZATION

This section is focused on the optimization of the probability of reassembly
of the original DNA sequence.

4.1. Reassembly model. The reassembly question can be formulated in
terms of

e n the number of fragments in the genomic library (fragments cor-
rectly deciphered);

e [ the DNA sequence length in base pairs (letters); for the human
genome, L = 3 billion;

e [ the length of the fragments in the same unit.

We see L as a segment on the real line and we assume that the fragment
starting points form a Poisson point process on the real line with parameter
A=
L
As already explained we are interested in the probability of complete
reassembly. We will first reduce this to the probability that all letters are
covered.

4.2. Analytic expression for the reassembly probability. Within the
Poisson setting described above, this can be reduced to a queuing theory
question: consider an M /D /oo queue, namely a queue with Poisson arrivals,
an infinite number of servers and a constant service time of length [. The
probability of reassembly is then just the probability that the busy period
in such a queue exceeds L. The distribution of the busy period can be
determined through its Laplace transform.
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Let N be a Poisson point process on R with parameter A\. Let {7} }ren
be the following random sequence of times:

Ty =0,
l, it N(0,1) =0

T = max xz, if N(0,1) >0" and
zeN, z<l
Te1+1, if N(T—1, Tk +1) =0

= max @, i N(Tp—1,Tj—1+1) >0 for k> 1.

zEN, x<Tj_1+l1

The busy period of the queue is T' = Tk, defined by

SO L if K =1
Pl Gl <0, K>

where K is the random variable K = min{n € IN : T,, = [} and the &; are
i.i.d random variables with distribution equal to that of the last Poisson
arrival in the interval (0,7). We claim that the & are equal in distribution
to Il — (njn < 1), where n ~ exp(A). Indeed, the distribution of the distance
of the first point in a Poisson point process on R from 0 is the same looking
forward and looking backward. By this and translation invariance,

. (d) .
I— min |z[|=1— min |z
z€N:xe(0,1) zeN:xe(—1,0)

d

) max x+1
zeN:ze(—1,0)

(4)

= max z.
zeN:xe(1,0)

Now, let 7 @, exp(A). The Laplace Transform of (n|n < 1) is

\Iln\n<l($) = E(e_snm < l)
E(e_snl{n<l})

P(n <)

1 l
=—— | N GHVzgg

1-— 87/\1 0

1 A
— (st
1—e M [S-F)\(l € )
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Now, if K = 1, then Tx = . So, E[e™*Tx|K = 1] = e~ . For k > 1,
Ele T8 |K = k] = E[B—S(HZE(l—(m\m<l)))]

k—1

— 5 H e_Sl]E[esm Ini <]
i=1

_ sl _SZ\IJ _ k-l
=€ € 77|77<l( S)

g \ sl _ o= k-1 |
A—s 1—e N

Since K is a geometric random variable with success probability p = P(N(0,1) =
0) = e, the Laplace transform of the busy period T is

Ur(s) = Ele*"]

- im[e—sTKyK = k]P(K = k)

k=1
[e's) k—1
A e—sl_e—)\l

_ E —sl k—1
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1
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We want to compute P(T" > L), so we invert the Laplace transform of the
CDF, which is easily calculated from the Laplace transform of the density:

1
Lp,(s) = ;\I/T(s).
The inversion is done numerically using the Euler Inversion method [2].

4.3. Reassembly optimization. In our optimization, we ask the following
question: For a given genome length, what is the smallest area the sequenc-
ing flow cell needs to have in order to get a high probability that the entire
genome can be reassembled?

To answer this, let A be the area (in square microns) of the flow cell
where fragments are replicated and sequenced. Then, n = A\;, where \;
is the optimal yield per square micron for fragments of length [ as derived
in Section [2 Assume L is given. Then consider the M/D /oo queue with

arrival rate % and service time /.
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FIGURE 2
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TABLE 4. Optimal Parameters needed for P(7 > 100, 000) > .99.

Singletons Shot-Noise

Optimal [ 97 92
Minimum A (square microns) 6,483 3,088

For each [, we find the minimum A such that the probability of reassembly,
P(T > L), is greater than some threshold. Finally, we optimize over [ to find
the smallest required area. The optimal [ is the fragment length that requires
the least flow cell area to obtain the desired probability of reassembly.

Figure [2| shows the minimum area needed to achieve a probability of
reassembly of .99 versus the length of the fragments for a genome of length
100, 000.
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5. CONCLUSION

This paper establishes a connection, which is new to the best of our knowl-
edge, between stochastic geometry and queuing theory on one side, and fast
DNA sequencing on the other side. This connection allowed us to propose a
simple model which captures the essential steps of the fast sequencing pro-
cess: segmentation of multiple copies of the DNA into random fragments,
replication of the randomly placed fragments on the flow cell, spatial inter-
actions between the resulting fragment clusters, read of fragments through
their cluster amplification, taking the possibility of read errors and interfer-
ence between clusters into account, and finally assembly of the successfully
read fragments. This model is analytically tractable, which allowed us to
quantify and optimize various notions of yield, including the yield of the
end to end sequencing process, in function of the key parameters. This
basic model seems generic and flexible enough for us to envision a series
of increasingly realistic and yet tractable variants for each step of the pro-
cess and eventually a comprehensive quantitative theory for this class of
sequencing problems.

6. APPENDIX

6.1. Numerical method for the shot noise model. We discuss here
the numerical evaluation of the probability of a successful read in a cluster
in the shot-noise model: E[g(I)]. For this we need the probability density
of I. This random variable has a mass at 0 and a continuous part with
support on R*. The mass at 0 is P(I = 0) = P(B(0,2r)) = 0) > 0. For
the continuous part, the interference must be conditioned on having a point
in the ball B(0,2r), since this will ensure a non-zero interference. Letting
Py =P(I =0)=P(N(B(0,2r)) =0), the expected yield is
Ay(A, 1) = AE(g(1)) = A (Pog(0) + (1 = Bo) [ 9() f1in(B(0.2))>0(x)d).
In order to compute the integral fooo 9(x) f1n>0(x)dz, we need to approx-

imate f7nso. The Fourier transform of the density can be calculated from
the Laplace transform:

Frinso(s) = E(e /N (B(0,2r)) > 0)
1
T 1-T,

(E(e ") — E(e ™ |N = 0)P(N =0)).

Then, frn>o(s) = 1JP0 F1 (f}(s) - Po) and the mean value of interest
is
(Pog(0) + J5° g(@)F (fi(s) = Ro) ]
The inverse Fourier transform is approximated using the inverse fast Fourier

transform (ifft in MATLAB). The total integral is approximated using the
trapezoidal rule.
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