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ABSTRACT

Sparse energy functions that ignore long range interactions between residue pairs are
frequently used by protein design algorithms to reduce computational cost. Current dy-
namic programming algorithms that fully exploit the optimal substructure produced by
these energy functions only compute the GMEC. This disproportionately favors the se-
quence of a single, static conformation and overlooks better binding sequences with multiple
low-energy conformations. Provable, ensemble-based algorithms such as A* avoid this
problem, but A* cannot guarantee better performance than exhaustive enumeration. We
propose a novel, provable, dynamic programming algorithm called Branch-Width Mini-
mization* (BWM*) to enumerate a gap-free ensemble of conformations in order of in-
creasing energy. Given a branch-decomposition of branch-width w for an n-residue protein
design with at most q discrete side-chain conformations per residue, BWM* returns the
sparse GMEC in O(nw2q

3
2
w) time and enumerates each additional conformation in merely

O(n log q) time. We define a new measure, Total Effective Search Space (TESS), which can be
computed efficiently a priori before BWM* or A* is run. We ran BWM* on 67 protein
design problems and found that TESS discriminated between BWM*-efficient and A*-
efficient cases with 100% accuracy. As predicted by TESS and validated experimentally,
BWM* outperforms A* in 73% of the cases and computes the full ensemble or a close
approximation faster than A*, enumerating each additional conformation in milliseconds.
Unlike A*, the performance of BWM* can be predicted in polynomial time before running
the algorithm, which gives protein designers the power to choose the most efficient algo-
rithm for their particular design problem.
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1. INTRODUCTION

Computational structure-based protein design is a transformative field that can advance both basic

science and translational medical research. Several protein design algorithms have successfully pre-

dicted protein sequences that fold and bind the desired target in vitro (Frey et al., 2010; Roberts et al., 2012;

Rudicell et al., 2014; Stevens et al., 2006; Georgiev et al., 2012; Georgiev and Donald, 2007; Georgiev et al.,

2014; Donald, 2011), and even in vivo (Reeve et al., 2015; Roberts et al., 2012; Rudicell et al., 2014; Georgiev

et al., 2012; Georgiev et al., 2014; Donald, 2011). However, protein design is NP-hard (Kingsford et al.,

2005), making algorithms that guarantee optimality expensive for larger designs where many residues are

allowed to mutate simultaneously. Therefore, researchers have developed tractable approximations of the

protein design problem to obtain provably good approximate solutions (Leach and Lemon, 1998; Roberts

et al., 2012; Chen et al., 2009; Lilien et al., 2005; Georgiev and Donald, 2007; Donald, 2011, Smadbeck et al.,

2014), or employed heuristic approaches to rapidly generate candidate solutions (Lee and Subbiah, 1991;

Kuhlman and Baker, 2000; Jones, 1994; Desjarlais and Handel, 1995; Koehl and Delarue, 1994; Jiang et al.,

2000; Donald, 2011). Heuristic sampling of sequences quickly generates locally optimal candidate se-

quences, whereas provable algorithms are guaranteed to return the global minimum energy conformation

(GMEC). However, algorithms that compute only the GMEC have been shown to overlook sequences with

better binding affinity, because proteins exist as a thermodynamic ensemble and not just as a single low-

energy conformation (Roberts et al., 2012; Lilien et al., 2005; Chen et al., 2009). Provable, ensemble-based

algorithms ameliorate this issue (Roberts et al., 2012; Lilien et al., 2005; Silver et al., 2013).

One provable, ensemble-based algorithm is osprey’s K* (Roberts et al., 2012; Lilien et al., 2005), which

has been used to provably approximate the binding constant Ka. By explicitly modeling proteins as a

thermodynamic ensemble of molecular conformations, osprey/K* has successfully designed sequences that

have performed well both in vitro (Roberts et al., 2012; Chen et al., 2009; Frey et al., 2010; Rudicell et al.,

2014; Georgiev et al., 2012; Gorczynski et al., 2007; Stevens et al., 2006) and in vivo (Roberts et al., 2012;

Gorczynski et al., 2007; Rudicell et al., 2014; Frey et al., 2010), as well as in non-human primates (Rudicell

et al., 2014). K* accomplishes this by using dead end elimination followed by A* (DEE/A*) (Leach and

Lemon, 1998; Goldstein, 1994) to provably compute a gap-free list of conformations within an energy

window Ew of the GMEC, and provably approximate partition functions over molecular ensembles. A* search

uses a lower-bound scoring function, which allows it to outperform exhaustive search in practice, but cannot

guarantee any improvement over exhaustive search. In the worst case, A* must explore a significant part of

the exponentially large space of possible sequences and conformations to guarantee that the first conformation

returned is the GMEC. In addition, enumeration of each successive conformation is also worst-case expo-

nential time. Hence, enumerating a gap-free list with A* can be prohibitively expensive.

1.1. Design with sparse energy functions

Because protein design is computationally expensive, many protein design algorithms use sparse energy

functions that omit interaction energy between sufficiently distant atoms (Desmet et al., 2002; Fleishman

et al., 2011; Zhang and Lange, 2013; Robertson and Varani, 2007; Privett et al., 2012; Leaver-Fay et al., 2011;

Lazaridis and Karplus, 1999; Jiang et al., 2000; Jones, 1994; Kaufmann et al., 2010; Kilambi and Gray, 2012;

King et al., 2014; Kingsford et al., 2005; Koehl and Delarue, 1994; Kortemme et al., 2003; Krivov et al.;

2009). These sparse energy functions not only reduce the time to compute conformational energy, but also

define a different energy landscape: the omitted terms eliminate energy differences between conformations,

introducing optimal substructure to the energy landscape. Dynamic programming algorithms use concepts

such as tree decomposition and tree width to exploit this optimal substructure to compute the corresponding

GMEC more efficiently (Leaver-Fay et al., 2005; Xu and Berger, 2006; Krivov et al., 2009). However, these

algorithms compute only the GMEC and do not enumerate a gap-free list of conformations. Naı̈ve extensions

to do this are worst-case exponential time in enumerating additional conformations.

We propose a novel, dynamic programming algorithm called Branch-Width Minimization* (BWM*) to

efficiently and provably enumerate a gap-free ensemble of conformations, in order of increasing sparse

energy. To exploit the optimal substructure, our algorithm uses the concepts of branch-decomposition with

recursive heaps. Like tree decompositions, branch-decompositions have also been used in dynamic pro-

gramming approaches for discrete optimization problems (Fomin, 2003; Hicks et al., 2005; Hlinẽný et al.,

2008). Our algorithm treats the protein backbone as rigid and models side-chain flexibility using frequently

414 JOU ET AL.



observed, low-energy discrete conformations called rotamers (Lovell et al., 2000; Donald, 2011). Given a

branch-decomposition of branch-width w for an n-residue design with at most q rotamers per residue, our

algorithm computes the corresponding GMEC, called the sparse GMEC, in O(nw2q
3
2
w) time and O(nq

3
2
w)

space, and enumerates each additional conformation in merely O(n log q) time and O(n) space. Because

BWM* enumerates conformations in order of increasing sparse energy, the sparse ensemble of all con-

formations within an energy window Ew of the sparse GMEC may contain different conformations from

those in the full ensemble of all conformations within Ew of the GMEC. For a given sparse energy function,

we can compute a bound eB on the difference in energy between the sparse GMEC and GMEC. Using this

bound, we prove that a sparse ensemble of all conformations within an expanded energy window Ew + eB of

the sparse GMEC contains all conformations within Ew of the GMEC. Thus, BWM* is guaranteed to

compute a sparse ensemble which contains the full ensemble.

Since BWM* is a dynamic programming algorithm, we should be able to distinguish between problems

for which BWM* is more efficient, and those for which A* is more efficient. To test this hypothesis, we

defined a new measure, Total Effective Search Space (TESS), which can be computed in polynomial time a

priori before BWM* is run. Next, we ran BWM* and A* on 67 different protein design problems and found

that TESS perfectly discriminates between BWM*-efficient cases and A*-efficient cases. For the 73% of

cases in which BWM* is predicted by TESS to outperform A*, it computes the full ensemble or a close

approximation faster than A*, enumerating each additional conformation in milliseconds, and computes the

full ensemble in seconds, up to 315 times faster than A*. Of the other 27%, BWM* could enumerate the

sparse ensemble for some problems by using a smaller energy window and sparser energy functions, while

other problems were, as predicted, more suitable for a GMEC-based method or A*. In practice, we found

that branch-width w (used to calculate TESS) can be small irrespective of n, making TESS much smaller

than the worst-case bounds of O(qn) for A*.

This article makes the following contributions:

1. A new dynamic programming algorithm called BWM*, which exploits branch-decompositions for protein

designs with sparse energy functions, and proof of its asymptotic time and space complexity bounds.

2. Proof that BWM* is guaranteed to enumerate a gap-free list containing all conformations within a

user-specified energy window Ew of the GMEC.

3. Definition of a new measure, Total Effective Search Space (TESS), which can be computed a priori

in polynomial time before running BWM*, and reliably predicts BWM* performance, allowing

selection of the most efficient algorithm for a particular design problem.

4. Comparison between A* and BWM* on 67 protein design problems showing that in 73% of the cases,

BWM* (as predicted) is superior to A* in both worst-case bounds and empirical enumeration time.

2. BACKGROUND

2.1. Sparse residue interaction graphs

Let G = (V, E) be a residue interaction graph (Fig. 1B) corresponding to a protein design problem (Fig. 1A),

with a vertex for every mutable residue, and an edge e for every pairwise residue interaction. The energy of a

FIG. 1. (A) A sample protein design problem represented as a residue interaction graph (B), with residues as vertices

and pairwise interactions as edges. (C) The sparse residue interaction graph generated by deleting (a, d), (a, e), (b, d),

and (b, e), shown as red crosses in (A) and (B).
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conformation c can be computed as E(c) =
P

e2E
Ee(c) where Ee(c) denotes the interaction energy of the residue

pair in c represented by e. By omitting interaction energies between certain residue pairs, the edge set E0 can be

deleted from G, producing a sparse graph G0 = (V, E- E0), shown in Fig. 1C. The energy function E0(c)

corresponding to G0 can then be defined to be E0(c) =
P

e2E
Ee(c) -

P

e2E0
Ee(c). In this way, the sparse energy of c

is represented as the difference between the full energy E(c) and the energy terms missing from E0(c).

2.2. Branch-decomposition in protein design

Let the branch-decomposition of G0 be an unrooted binary tree T = (D, P) with tree nodes D and tree

edges P, such as the one in Fig. 2A. T satisfies the following property: For every edge ðvi; vjÞ2 E - E0, there

exists a leaf node in T that corresponds to (vi, vj). This can be seen explicitly in the rooted branch-

decomposition, shown in Fig. 2B. For every edge p ˛P, we arbitrarily define the two subtrees separated by

removing p as SL and SR, and the respective sparse graph vertices contained in each subtree as SL( p) and

SR( p). This separation divides the vertex set V into three sets L( p), M( p), and R( p): M( p) = SR( p) X SL( p),

L( p) = SL( p) - M( p), and R( p) = SR( p) - M( p). By definition, this means that there are no edges between

L( p) and R( p) in G0. Finally, the branch-width w of a branch-decomposition is defined to be

w = max
p2P
jM(p)j. Branch-decompositions and similar concepts have previously been used in dynamic

programming algorithms for other discrete optimization problems (Fomin, 2003; Hicks et al., 2005;

Hlinẽný et al., 2008; Nilsson, 1998; Dechter and Mateescu, 2007). The following section describes

how BWM* uses the branch-decomposition T for protein design with sparse energy functions.

3. METHODS

We now arbitrarily root T, producing a tree such as the one shown in Fig. 2B. For every internal edge

p ˛P, let its two child edges be c1 and c2. We define the k-set of p k( p) = L( p) X M(c1) X M(c2). Note that

since w is the size of the largest M( p) for any p ˛P, jk( p)j £ w.

3.1. Total Effective Search Space

We can now define a new measure Total Effective Search Space (TESS), which predicts BWM* perfor-

mance. Let the set of mutable residues be R, and the number of unpruned rotamers for a residue r ˛R be qr. For

each nonempty k-set k and its corresponding M-set Mk, MkWk 4 R and the number of all unpruned

conformations for a particular subproblem can be computed as
Q

r2Mk[k
qr. This value corresponds to the total

number of conformations enumerated by BWM* for each Mk Wk, and summing over all nonempty k-sets is a

FIG. 2. An example branch-decomposition. (A) The edges of the sparse graph correspond to a node in the branch-

decomposition tree. Along the highlighted edge of the branch-decomposition, the mutable residues are separated into

three sets: the L-set, which exists only in leaves to the left of the edge; the R-set, which exists only in leaves to the right of

that edge; and the M-set, which can be found on both sides of the edge. (B) This tree is arbitrarily rooted for use by BWM*.
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deterministic measure of the time and space complexity of BWM*. We define the sum of productsP

k

Q

r2Mk[k
qr as the Total Effective Search Space. Because computing the smallest-width branch-decomposition

is NP-complete, polynomial-time approximation algorithms that typically do not return the optimal branch-

decomposition are used in practice. We now show that when using an algorithm that provably computes a

branch-decomposition in polynomial time bt = nO(1), TESS can be computed in polynomial time. The proof of

Theorem 1 is provided in section A.1 of the supplementary information (SI) in Jou et al. (2015).

Theorem 1. TESS can be computed in O(n2 + bt) time, where bt is the time taken to compute the

branch-decomposition of a sparse graph.

3.2. Algorithm: preprocessing and enumeration

The preprocessing phase of BWM* computes the energy of the sparse GMEC and constructs a data

structure for efficient enumeration of conformations in order of increasing sparse energy. This data

structure is called a recursive heap. Let a recursive heap H be a canonical min heap satisfying the heap

property, with the following two additional properties:

1. For every heap node in H, there are zero, one, or two child heaps. These child heaps are also recurisve

heaps, and their heap nodes have the same properties.

2. The sort key of nodes in H are the sum of the their own self key and the smallest keys of their two

child heaps, that is, the root keys of its two child heaps.

During preprocessing, BWM* performs a post-order traversal of T. For each edge with a nonempty k-set,

the following operations are performed:

1. Enumerate all possible rotamer assignments to the residues in M W k, and for each assignment look

up optimal assignments for the residues in L - k, which were previously computed in its child edges.

2. For each assignment to the residues in M, store all assignments to the residues in k in a canonical min

heap, called a k-heap. The key of each node is its energy, and the data is the assignment to the

residues of the k-set.

3. Construct a recursive heap for each rotamer assignment to the M-set using the k-heaps from step 2 and

the previously constructed child heaps from its two child edges. These were constructed earlier as a

consequence of post order traversal.

For every assignment in the M-set, we enumerate all assignments of the k-set and look up all remaining

assignments to the (L - k)-set from the child edges. Therefore, at the end of this procedure we have the

energy of the optimal assignment to the L-set for each assignment to the M-set in each recursive heap. Since

the residues of the L-set interact only with each other and the residues of the M-set, the optimal assignment

to the L-set is determined at the end of this procedure. As the L-set of the root edge contains all n mutable

residues, once the traversal has returned to the root edge the optimal solution for every residue has been

calculated, and the energy of the sparse GMEC is contained in the root node of the recursive heap

constructed at the root edge. The sparse GMEC can then be calculated by finding the lowest-energy partial

conformation in the k-set at the root, and recursively looking up the optimal assignments in its children to

reassemble the corresponding full conformation. After the sparse GMEC has been returned, the heap must

be updated to return the next best conformation. This procedure has two steps:

1. Call this procedure recursively on its two child heaps, and update the energy of the root node with the

new energies at the roots of its two child heaps.

2. After the energy of the root node is updated, it may no longer contain the minimum energy of the heap

and must be bubbled down to restore the heap property.

After these steps are completed, the resulting root of the heap now contains the energy of the next best

conformation. This procedure is called repeatedly to enumerate additional conformations.

We now give an upper bound on the size of jM Wkj, and analysis of the time and space complexity of the

preprocessing and enumeration steps of BWM*. The proofs of the theorems, along with details of the

construction of recursive heaps and enumeration phase are provided in section A.2 and section A.3 of the SI

in Jou et al. (2015).
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Theorem 2. The maximum subproblem M W k is bounded by the relation jM [ kjp 3
2

w.

Theorem 3. BWM* takes O(nw2q
3
2
w) time and O(nq

3
2
w) space to preprocess and return the sparse GMEC.

Theorem 4. Enumerating the next best conformation takes O(n log q) time and O(n) space to remove

the minimum-energy conformation from H.

3.3. Sparse error bounds

To show the bounds on error introduced by sparse graphs, we first define two terms to bound the largest

possible difference between sparse and full energy for any conformation c from the set of all allowed

conformations C. Let E0max =
P

e2E0
max
c2C

Ee(c) and E0min =
P

e2E0
min
c2C

Ee(c) bound the positive and negative energy

change for c, respectively. While these bounds are loose, they have the benefit of being computable in

polynomial time. With these two terms, we can bound the total energy difference between the GMEC c*

and the sparse GMEC c0, and show the relationship between the sparse ensemble and full ensemble. The

following lemma bounds the sparse energy difference between the sparse GMEC and GMEC. The proof for

lemma 1 is provided in section A.4 of the SI in Jou et al. (2015).

Lemma 1. The difference in sparse energy between the sparse GMEC c0 and the GMEC c* is bounded

by the relationship jE0(c*) - E0(c0)j < E0max - E0min.

With these results we can now show that a sparse ensemble S0 of conformations within Ew + E0max - E0min

of the sparse GMEC is guaranteed to contain the full ensemble S* of all conformations within Ew of the

GMEC. The proof for Theorem 5 is provided in section A.4 of the SI in Jou et al. (2015).

Theorem 5. For any conformation c, if E(c) £ E(c*) + Ew then E0(c) £ E0(c0) + Ew + E0max - E0min

We can now show the total complexity to enumerate a gap free list of k conformations, starting from the

sparse GMEC. The proof for Theorem 6 is provided in section A of the SI in Jou et al. (2015).

Theorem 6. BWM* provably computes the sparse GMEC and an ensemble of the top k conformations

in O(nw2q
3
2
w + kn log q) time and O(nq

3
2
w + kn) space, which is guaranteed to contain all conformations

within Ew of the GMEC when all conformations within Ew + E0max - E0min have been enumerated.

4. COMPUTATIONAL EXPERIMENTS

4.1. Experimental methods

We implemented BWM* in our laboratory’s open source osprey (Gainza et al., 2013) protein design

package. To test the hypothesis that TESS could predict whether BWM* or A* would be faster, and also

determine empirical enumeration times, we ran BWM* and A* on 67 different design problems taken from

Gainza et al., (2012). Each protein design problem consists of a rigid backbone design with 4–16 mutable

residues and 5–10 allowed amino acid mutations per residue. Side-chain flexibility was modeled using a

rigid rotamer library with 153 modal rotamers (Lovell et al., 2000). For each protein design problem, DEE

was run with energy windows Ew of both 0.5 kcal/mol and 1 kcal/mol, followed by either A* or BWM*

with different distance and energy cutoffs: distance cutoffs (deleting edges whose minimum distance

between all unpruned rotamer pairs exceeds the cutoff distance) of 7 Å, 8 Å, and energy cutoffs (deleting

edges whose maximum absolute interaction energy between all unpruned rotamer pairs is less than cutoff

energy) of 0.1 kcal/mol and 0.2 kcal/mol. Then the performance was compared with the TESS predictions.

Information on the 67 protein design problems, along with details of the computational experiments

performed, are provided in section C of the SI in Jou et al. (2015).

4.2. Total Effective Search Space predictions

To determine if TESS could be used to predict BWM* performance, we plotted TESS for all 67 protein

design problems against the number of unpruned conformations after DEE, as shown in Fig. 3. Shown in

green dots is the TESS for 39 out of 67 design problems for which BWM* enumerated the sparse ensemble
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for an energy cutoff of 0.1 kcal/mol and an energy window of 1 kcal/mol. Ten more design problems

(shown as light green dots) were solved efficiently by increasing the energy cutoff to 0.2 kcal/mol to make

the residue interaction graph sparser, and decreasing the energy window to 0.5 kcal/mol to prune additional

conformations from the design search space. The TESS for these 49 problems in which BWM* outperforms

A* is less than 8.97 · 108 conformations (shown with a line in Fig. 3). TESS remains larger for the

remaining 18 problems for which BWM* exceeded memory limits during preprocessing. Using a larger

energy cutoff (0.3–0.5 kcal/mol) reduced the TESS for 6 of these 18 problems (yellow triangles) below

8.97 · 108 (blue triangles), and BWM* was able to compute the sparse ensemble, as seen in Fig. 3B. For 11

additional problems (orange diamonds), reducing the energy window to 0 kcal/mol reduced their TESS

below 1.57 · 1011 conformations (blue diamonds), which was sufficient to compute the sparse GMEC but

not the sparse ensemble. In one case neither the sparse ensemble nor the sparse GMEC could be computed,

which is shown as a red dot and red cross, respectively. In this case the periplasmic copper/silver-binding

protein (PDB id: 2qcp) contains a set of residues with large interaction energy greater than 0.5 kcal/mol and

many unpruned rotamers, producing a dense subgraph with a large TESS.

Based on our analysis, the plot contains three distinct regions: all protein design problems with TESS

below 8.97 · 108 conformations are tractable for BWM*, and in this region it will always outperform A*.

For protein design problems with TESS values above 1.57 · 1011 conformations, BWM* attempts to

enumerate all conformations of a prohibitively large subproblem even when computing only the sparse

GMEC, and A* will have the advantage. For the problems that lie between these two thresholds, increasing

the energy cutoff and reducing the energy window allows BWM* to return the sparse GMEC and possibly

the sparse ensemble as well. This shows that the performance of BWM* can be reliably predicted with

TESS. The next section compares the performance of BWM* and A* for the 49 problems on which BWM*

is predicted to perform better.

FIG. 3. Total Effective Search Space predicts BWM* performance. x-axis shows TESS for each design problem

using their respective cutoff and energy window. y-axis shows unpruned conformations for each design problem after

DEE pruning with their respective energy window. (A) Dark green points: full ensemble with energy cutoff 0.1 kcal/

mol, energy window 1 kcal/mol. Light green points: full ensemble with energy cutoff 0.2 kcal/mol, energy window

0.5 kcal/mol. The yellow triangles, orange diamonds, and red dot have x values of TESS using unpruned conformations

with energy cutoff 0.1 kcal/mol, energy window 1 kcal/mol for cases where larger energy cutoffs or smaller energy

windows were necessary to finish preprocessing. (B) Blue triangles: x values are TESS for calculating only the sparse

ensemble (energy cutoff 0.3 kcal/mol or higher, energy window 0.5 kcal/mol). (C) Blue diamonds: x values are TESS

for calculating only the sparse GMEC (energy cutoff between 0.1 and 0.5 kcal/mol, energy window 0 kcal/mol). Red

cross: x value is TESS for computing the sparse GMEC of 2qcp (see text).
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4.3. Ensemble enumeration time

BWM* was able to provably compute the full ensemble in 45 out of 49 protein design problems for at

least one combination of energy window, distance, and energy cutoffs. For the 36 design problems where

BWM* enumerates the full ensemble with Ew = 1 kcal/mol, energy cutoff 0.1 kcal/mol, Fig. 4A shows the

maximum observed problem size jM W kj and branch-width w compared to the number of mutable residues

n. The maximum observed problem size never exceeds 6, and its upper bound never goes beyond 7.5

(w £ 5). The fact that the maximum observed subproblem is small irrespective of n makes TESS much

smaller than the search space of A* (O(qn)), as shown by the solid line in Fig. 4C. This reduced effective

search space allows BWM* to search more efficiently than A*, and as plotted in Fig. 4B, BWM* enu-

merates not only the sparse ensemble but also the full ensemble faster than A*. In cases where BWM*

cannot fully enumerate the full ensemble (because the error bounds calculated according to Lemma 1 are

large), the sparse ensemble contains more than 93% of all conformations in the full ensemble. One such

case is the protein YciI from H. influenzae (PDB id: 1mwq) with energy window of 1 kcal/mol and an

FIG. 4. Both actual and worst-case bounds for BWM* are better than A*. (A) Comparison of the number of

mutable residues considered. The maximum observed subproblem size is jM W kj and worst-case problem size is 3
2

w,

which bounds jM W kj from above. (B) Times to enumerate full ensemble for all design problems with energy window

of 1 kcal/mol and energy cutoff of 0.1 kcal/mol. (C) Actual search space size vs. worst-case bounds. x-Axis is the 36

design problems in (A). Problems are ranked by A* worst-case problem size (qn); q and n measure the size of the design

problem and are shown below the line; n increases from 4 to 16, shown in orange, and q is between 3 and 41, shown in

red. Solid green line: Actual number (
Q

r
qr) of unpruned conformations after DEE, where qr is the number of unpruned

rotamers for mutable residue r and q = max
r

qr . Solid blue: TESS. Dotted blue: BWM worst-case problem size bounds

qjMWkj. Dotted green: A* worst-case problem size bounds qn.
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energy cutoff of 0.1 kcal/mol, where the number of conformations enumerated by BWM* exceeded 10,000

before it provably enumerated the full ensemble. Fig. 5 compares the sequence-specific ensembles for this

case, and shows that the sparse ensemble contains almost all low-energy conformations in the full en-

semble. The missing conformations introduce less than a 3% difference in the Boltzmann-weighted par-

tition function (Roberts et al., 2012; Georgiev et al., 2008b). A detailed description of the high similarity

between sparse and full ensemble, as well as additional runtime comparisons for the remaining nine cases

in which BWM* computes the full ensemble can be found in section B of the SI in Jou et al. (2015).

Fig. 6 shows the individual and cumulative time taken by BWM* and A* to return each additional

conformation in the gap-free list for two representative design problems. For the aortic preferentially ex-

pressed protein-1 (PDB id:1u2h), BWM* computes the full ensemble before A* even returns the first

conformation. For cases like the third KH domain of heterogeneous nuclear ribonucleoprotein K (PDB id:

1zzk), the preprocessing time of BWM* can be significant, but once BWM* begins enumerating confor-

mations it rapidly enumerates more conformations than A* in less time. This is because BWM* requires only

O(n log q) time (milliseconds, empirically) for each additional conformation generated, as shown in Fig. 6B

and D. Simply modifying A* to use the sparse energy function does not change the worst-case complexity of

A*, and BWM* is still faster. A comparison of runtimes showing superior performance of BWM* compared

to A* with a sparse energy function are provided as Fig. 3 in section B of the SI in Jou et al. (2015).

FIG. 5. The sparse ensemble closely approximates the full ensemble. Figures shown for YciI protein from

H. influenzae (PDB id: 1mwq) with energy cutoff of 0.1 kcal/mol and energy window of 1 kcal/mol. For each sequence, the

x-axis plots the full energy of each conformation of the ensemble, and the y-axis plots the percent contribution of each

conformation to the partition function Z (called q in Georgiev et al., 2008b). Conformations in both the full and sparse

ensembles are colored green. Conformations in the full ensemble that are not in the sparse ensemble are in red. Con-

formations in the sparse ensemble that are not in the full ensemble are in blue. GMEC is circled in green.

FIG. 6. BWM* enumeration is orders of magnitude faster than A*. Figures shown for aortic preferentially

expressed protein-1 (PDB id:1u2h) with energy cutoff 0.1 kcal/mol, and third KH domain of heterogeneous nuclear

ribonucleoprotein K (PDB id: 1zzk) with distance cutoff of 7 Å. Energy window was 1 kcal/mol for both. Blue: BWM*

time. Green: A* time. (A) and (C) show cumulative time against total conformations enumerated. (B) and (D) show

enumeration time per conformation.
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CONCLUSION

We have presented a novel dynamic programming algorithm called BWM* for use with sparse energy

functions that provably computes the sparse GMEC, and also (unlike other sparse-GMEC-based algo-

rithms) enumerates a gap-free list of conformations in order of increasing sparse energy. BWM* exploits

the optimal substructure of the sparse energy landscape to efficiently enumerate conformations in merely

O(n log q) time. In contrast, A* cannot guarantee better performance than exhaustive enumeration. We

defined a new measure, TESS, which can be computed a priori in polynomial time to predict BWM*

peformance, and showed that A* can be substituted when BWM* is not favorable. In the cases where

BWM* is predicted to perform better, BWM* enumerates the full ensemble faster than A*. Our results

indicate that the branch-width w (and a fortiori, the worst-case bounds of O(n2q
3
2w) of our algorithm) can be

small irrespective of the total number of mutable residues n, thereby making TESS much smaller than the

worst-case bounds for A*. This, combined with the predictable performance of BWM*, gives protein

designers the power to choose beforehand the most efficient algorithm for their particular protein design

problem. Similarly to our previous algorithms, BWM* can also be extended to incorporate continuous

backbone and side-chain flexiblity (Gainza et al., 2012; Hallen et al., 2013; Georgiev and Donald, 2007,

Georgiev et al., 2008a).

AVAILABILITY

The design software is available as open-source software online (Jou et al. 2015), or by contacting the

authors.
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