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ABSTRACT

Genome-wide association studies have revealed individual genetic variants associated with
phenotypic traits such as disease risk and gene expressions. However, detecting pairwise in-
teraction effects of genetic variants on traits still remains a challenge due to a large number of
combinations of variants (*1011 SNP pairs in the human genome), and relatively small sample
sizes (typically <104). Despite recent breakthroughs in detecting interaction effects, there are still
several open problems, including: (1) how to quickly process a large number of SNP pairs,
(2) how to distinguish between true signals and SNPs/SNP pairs merely correlated with true
signals, (3) how to detect nonlinear associations between SNP pairs and traits given small sample
sizes, and (4) how to control false positives. In this article, we present a unified framework, called
SPHINX, which addresses the aforementioned challenges. We first propose a piecewise linear
model for interaction detection, because it is simple enough to estimate model parameters given
small sample sizes but complex enough to capture nonlinear interaction effects. Then, based on
the piecewise linear model, we introduce randomized group lasso under stability selection, and a
screening algorithm to address the statistical and computational challenges mentioned above.
In our experiments, we first demonstrate that SPHINX achieves better power than existing
methods for interaction detection under false positive control. We further applied SPHINX
to late-onset Alzheimer’s disease dataset, and report 16 SNPs and 17 SNP pairs associated
with gene traits. We also present a highly scalable implementation of our screening algorithm,
which can screen *118 billion candidates of associations on a 60-node cluster in <5.5 hours.

Key words: genome-wide association mapping, SNP-SNP interaction, piecewise linear model

screening, stability selection, group lasso.

1. INTRODUCTION

Afundamental problem in genetics is to understand the interaction (or epistatic) effects from pairs

of or multiple single-nucleotide polymorphisms (SNPs) on phenotypic traits (Moore et al., 2010).

Existing methods for detecting causal SNP pairs include hypothesis-testing-based methods (Zhang et al.,
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2008; Wan et al., 2010; Purcell et al., 2007) and penalized multivariate regression (PMR) – based methods

(Park and Hastie, 2008; Lee and Xing, 2012; Bien et al., 2013). Arguably, PMR-based methods are

more powerful than hypothesis-testing-based methods because PMR can in principle jointly estimate

all marginal and interaction effects simultaneously (Lee and Xing, 2012; Hoffman et al., 2013).

However, statistical and computational bottlenecks have prevented PMR from being widely used for

detecting interaction effects on traits. Firstly, it is difficult to control false positives. One can use a ‘‘screen

and clean’’ procedure to compute p-values (Wasserman and Roeder, 2009; Meinshausen et al., 2009), but

this strategy substantially downgrades the power in genome-wide association mapping because only half

of the samples can be used for each step of screening and cleaning. Secondly, the high correlations

between pairs of SNPs also lead to decreasing the power of PMR, because PMR can only detect true

associations accurately under conditions with little correlation between different SNPs/SNP pairs

(Bühlmann et al., 2013). Lastly, there is a substantial computational challenge to overcome. If we were to

consider millions of SNPs as candidates in studying a particular phenotypic trait, the number of potential

pairwise interactions between pairs of SNPs to be considered is >1011. Such a massive pool of candidates of

SNP pairs makes it infeasible to solve the mathematical optimization program underlying PMR with cur-

rently available tools.

The past several years have seen the emergence of several statistical methods that can potentially be

employed to address the problems mentioned above. For the first problem of error control, Meinshausen

and Bühlmann (2010) proposed a procedure known as stability selection. The insight behind this technique

is that, given randomly chosen multiple subsamples, true associations of covariates (e.g., SNPs or SNP

pairs) to responses (e.g., a trait) will be selected at high frequency because true association signals are likely

to be insensitive to the random selection of subsamples. Second, to address the nonidentifiability problem in

regression due to intercovariate correlation, a randomized lasso technique has been proposed that randomly

perturbs the scale of covariates in the framework of stability selection, thereby relaxing the original

requirements on small correlation for recovery of true association signals from all covariates (Meinshausen

and Bühlmann, 2010). Naturally, such a scheme is expected to help distinguish between true and false

associations of SNPs/SNP pairs, because only true ones are likely to be selected under the perturbations.

Finally, to combat the computational challenge due to a massive number of covariates, a sure independence

screening (SIS) procedure (Fan and Lv, 2008) has been proposed to contain the operational size of the

regression problem under provable guarantee of retaining true signals. It is possible to use the idea behind

SIS to effectively perform simple independent tests on each pair of SNPs (or individual SNPs) and discard

the large fraction of candidates with no associations, such that one can end up with only O(NC) candidates

(where N is sample size and C is a data dependent constant) of which no true associations will be missed

with high probability. These theoretical developments notwithstanding, their promised power remains

largely unleashed for practical genome-wide association mapping, especially in nontrivial scenarios such as

nonadditive epistatic effects, due to several remaining hurdles, including proper models for association,

algorithms for screening with such models and on a computer cluster, and proper integration of techniques

for error control, identifiability, screening, etc., in such a new paradigm.

In this article, we present SPHINX [which stems from sparse piecewise linear model with high

throughput screening for interaction detection(X)], a new PMR-based approach built on the advancements

in statistical methodologies mentioned above. It is an integrative platform that conjoins and extends the

aforementioned three components, further enhanced with techniques allowing more realistic trait associ-

ation patterns to be detected. In particular, SPHINX is designed to capture SNP pairs with nonlinear

interaction effects (synergistic/antagonistic epistasis) on traits using a piecewise linear model (PLM), which

is better suited to model the complex interactions between a pair of SNPs and the traits. In short, SPHINX is

designed as follows: using an extension of SIS based on PLM, it first selects a set of O(NC) SNPs and SNP

pairs with the smallest residual sum of squares. Then it runs the randomized group lasso based on PLM on

the set of SNPs and SNP pairs selected in the previous step under stability selection. Finally, it reports SNPs

and SNP pairs selected by stability selection, whose coefficients are nonzero given a majority of sub-

samples. In Figure 1, we illustrate the overall framework of SPHINX. Note that in practical association

analysis with all pairs of SNPs, we should address the three problems mentioned above simultaneously,

which is a nontrivial task. To achieve this goal, we take the approach of unified framework, which requires

statistically sound models and algorithms and scalable system implementations.

In our experiments, we show the efficacy of SPHINX in controlling false positives, detecting true

causal SNPs and SNP pairs, and using multiple cores/machines to deal with a large number of SNP pairs.
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FIG. 1. Overall framework of SPHINX. Using a screening method, we first discard SNPs/SNP pairs without asso-

ciations; given that the SNPs/SNP pairs survived in the screening step, we run a method that incorporates three different

techniques, each of which is introduced to address the problem on its right side.
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Furthermore, with SPHINX, we analyzed late-onset Alzheimer’s disease eQTL dataset (Zhang et al., 2013),

which contains *118 billion candidates of associations; the analysis took <5.5 hours using 60-node cluster

with 720 cores. As a result, we found 16 SNPs and 17 SNP pairs associated with gene traits. Among our

findings, we report the analysis of 6 SNPs (rs1619379, rs2734986, rs1611710, rs2395175, rs3135363,

rs602875) associated with immune system–related genes (i.e., HLA gene family) and an SNP pair (pair of

rs4272759 and rs6081791) associated with a dopamine-related gene (i.e., DAT gene); the roles of dopamine

and immune system in Alzheimer’s disease have been studied in previous research (Li et al., 2004;

Maggioli et al., 2013).

2. METHODS

SPHINX is a framework for genome-wide association mapping, which consists of PLM-based

screening technique and PLM-based randomized group lasso under stability selection. Among the

SPHINX components, the effectiveness of the randomization technique and stability selection are

demonstrated in Fan and Lv (2008); and Meinshausen and Bühlmann (2010) with theory and experi-

ments; the screening approach is extensively studied in both parametric and nonparametric settings

(Fan and Lv, 2008; Fan et al., 2011). In this section, we focus on describing our proposed novel model

PLM-based group lasso with the randomization technique and stability selection. We then present the

PLM-based screening method, followed by our system implementation of the screening method. Note

that SPHINX runs the screening method prior to the PLM-based randomized group lasso, as shown in

Figure 1.

2.1. Piecewise linear model-based group lasso

The relationships between genetic variations and phenotypic traits are complex, for example, nonlinear.

However, due to the highly under-determined nature of the mathematical problem—too many features

(SNPs and SNP pairs) but too few samples—it is difficult to employ models that have a high degree of

freedom. Traditionally, linear models have been used extensively in genome-wide association studies

despite the fact that these models are not flexible enough to capture the complexity of the trait-associated

epistatic interactions between SNPs.

We introduce a multivariate piecewise linear model (PLM), which is better suited to model the complex

interactions between a pair of SNPs and traits. Note that we employ PLM for adding additional degrees of

freedom into a linear model in a high-dimensional multivariate regression setting. Therefore, it is different

from the cases, in which we change the degrees of freedom in statistical tests such as the F-test. We denote

the j-th SNP for the i-th individual by xi
j 2 f0‚ 1‚ 2g, with the number of minor alleles at the locus. Let us

start converting a linear model into a piecewise linear model with two knots denoted by D = fg1‚ g2g, where

g1 = 1 and g2 = 2 for our SNP encoding. It uses three degrees of freedom, flexible enough to capture the

change of gene expression with a change in the genotype. Specifically, let mi
jk denote the genotype

encoding for the interaction between the j-th SNP and k-th SNP for the i-th individual, that is, mi
jk � xi

jx
i
k.

Then, we have a piecewise linear model as follows:

ŷ = 1C +
XP

j = 1

xjbj +
X
j< k

C(mjk‚ fujk‚ tjk‚ wjkg) + e‚ (1)

where mjk = [m1
jk‚ . . . ‚ mN

jk]T , ŷ is an output trait based on the model, bj is the regression coefficient for the j-

th SNP, and e is Gaussian noise. Here, J($) is a piecewise linear function given by

C(mi
jk‚ fujk‚ tjk‚ wjkg) =

mi
jkujk if mi

jk � g1‚

mi
jkujk + (mi

jk - g1)tjk if g1 < mi
jk � g2‚

mi
jkujk + (mi

jk - g1)tjk + (mi
jk - g2)wjk if mi

jk > g2‚

8<
: (2)

where ujk, tjk, and wjk represent the regression coefficients for the first, second, and third line

segment, respectively. Given the model in Equation. (1), to select significant SNPs/SNP pairs, we

propose the following penalized multivariate piecewise-linear regression, referred to as PLM-based

group lasso:
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C‚ fbjg‚ f
min
ujk ‚ tjk‚ wjkg y - 1C +

XP

j = 1

xjbj +
X
j< k

C(mjk ‚ fujk‚ tjk‚ wjkg)
( )�����

�����
2

2

+ k1

XP

j = 1

jbjj+ k2

X
j< k

ffiffiffiffiffiffi
jDj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

jk + t2
jk + w2

jk‚
q (3)

where k1 and k2 are regularization parameters, determining the sparsity of the solutions. Here the first ‘1

and second ‘1/‘2 norm are introduced to set the coefficients of individual SNPs and SNP pairs to exactly

zero respectively if they are irrelevant to the observed trait y. It is equivalent to group lasso penalty (Yuan

and Lin, 2005), and has been shown that it allows us to select true nonzero bjs and {ujk, tjk, wjk}s under

certain conditions (Bach, 2008). We can optimize Equation. (3) using standard optimization techniques for

group lasso such as a block coordinate descent (Friedman et al., 2007), or a proximal gradient method (Liu

and Ye, 2010) [we used a proximal gradient method to optimize Eq. (3) (Liu et al., 2009)] because the loss

function is differentiable and J($) is linear. Further, the penalty is separable because there is no overlap

between different groups of coefficients. Here, we considered the squared-loss for eQTL (expression

quantitative trait loci) mapping with continuous traits; however, our methodology can be extended to other

loss functions (e.g logistic loss in case/control studies).

Algorithm 1: PLM-based Randomized Group Lasso Under Stability Selection

Input: X: SNP matrix, y: Expression of a single gene, Umar: selected individual SNPs by screening, Uint: selected

pairs of SNPs by screening, j: maximum expected number of false positives, fLtgT
t = 1: a set of regularization

parameters of (k1, k2), pthr: threshold for stability selection (0.5 < pthr £ 1).

Output: Ŝmar: selected individual SNPs, Ŝint: selected pairs of SNPs.

1
Qt

j = 0‚ j 2 Omar;
Qt

jk = 0‚ (j‚ k) 2 Oint and t = 1‚ . . . ‚ T .

2 for t = 1 to T do

3 (k1‚ k2))Lt .

4 sj = 0‚ 8j 2 Omar; sjk = 0‚ 8(j‚ k) 2 Oint

5 for k = 1 to a do

6 Randomly select ºN=2ß samples from N samples without replacement.

7 Given the ºN=2ß subsamples, solve the PLM-based randomized group Lasso in Eq. (4).

8 sj = sj + 1 for all selected individual term j

9 sjk = sjk + 1 for all selected pairwise terms (j, k)

10 Compute the maximum expected number of false positives (E(V )) via Eq. (5).

11 if E(V ) £ j then

12
Qt

j )
sj

a for all j 2 Omar

Qt
jk )

sjk

a for all (j‚ k) 2 Oint

13 Ŝmar = fj : maxt

Qt
j � pthrg; Ŝint = f(j‚ k) : maxt

Qt
jk � pthrg

Randomization As previously mentioned, high correlations between SNPs or SNP pairs make it hard to

distinguish between true association SNPs/SNP pairs and the correlated ones. To address the problem, we

randomly perturb the scale of covariates in Eq. (3) (Meinshausen and Bühlmann, 2010), called PLM-based

randomized group Lasso:

C‚ fbjg‚ f
min
ujk‚ tjk‚ wjkg y - 1C +

XP

j = 1

Wjxjbj +
X
j> k

C(Wjkmjk‚ fujk‚ tjk‚ wjkg)
( )�����

�����
2

2

+ k1

X
j

jbjj + k2

X
j< k

ffiffiffiffiffiffi
jDj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

jk + t2
jk + w2

jk:
q

(4)

Here P(Wj = 1) = P(Wj = d) = P(Wjk = 1) = P(Wjk = d) = 0.5, and d ˛(0, 1] determines the degree of per-

turbations (the smaller d, the larger perturbations). It has been shown that this randomization with sta-

bility selection weakens the condition for the recovery of true nonzero coefficients (Meinshausen and

Bühlmann, 2010). Furthermore, Meinshausen and Bühlmann empirically showed that the randomization is

very useful to distinguish between true causal signals and the false ones merely correlated with the true

signals (Meinshausen and Bühlmann, 2010). However, there is trade-off for the degree of random per-

turbations: as we increase the degree of perturbations, false positives will be reduced, but true negatives can

be increased.
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Stability Selection Next, to control false positives, we adopt stability selection (Meinshausen and Bühl-

mann, 2010), which takes the bootstrapping approach. Suppose we have a set of (k1, k2) parameters denoted

by fLtgT
t = 1, where Kt = (k1, k2)t. For each Kt, we solve Equation (4) based on randomly chosen samples size

of ºN=2ß for a times. Then we select SNPs or SNP pairs if their coefficients are set to nonzero more than

pthra (0.5 < pthr £ 1) times for any regularization parameters. Under certain assumptions, it has been shown

that the expected number of false positives E(V ) is bounded by

Algorithm 2: Piecewise Linear Model-Based Screening

Input: X: SNP matrix, y: Expression of a single gene, N: number of samples, P: number of SNPs, bmar: number of

SNPs to select per-iteration, bint: number of SNP pairs to select per-iteration, kmar: total number of SNPs to

select, kint: total number of SNP pairs to select.

Output: Umar: selected individual SNPs, Uint: selected pairs of SNPs.

1 Umar = Uint = ;, r = y;

2 while (kmar > jUmarj) jj (kint > jUintj) do

3 nmar = Min((kmar -jUmarj), bmar);

4 nint = Min((kint -jUintj), bint);

5 for SNP j =2 Omar do

6 RSSj = min
C‚ bj
kr - 1C - xjbjk2

2;
7 Sort(RSSj,ascending);

8 Umar = Umar W Top(RSSj,nmar);

9 for SNP (j‚ k) =2 Oint do

10 RSSjk = C‚ min
fujk‚ tjk‚ wjkgkr - 1C -C(mjk‚ fujk‚ tjk‚ wjkg)k2

2;

11 Sort(RSSjk,ascending);

12 Uint = Uint W Top(RSSjk, nint);

13 (Ĉ‚ b̂‚ fû‚ t̂‚ ŵg) = argmin
C‚ b‚ u‚ t‚ w

ky - 1C -
P

j2Omar
xjbj -

P
(j‚ k)2Oint

C(mjk‚ fujk‚ tjk‚ wjkg)j22;
14 r = y - 1Ĉ -

P
j2Omar

xjb̂j -
P

(j‚ k)2Oint
C(mjk‚ fûjk‚ t̂jk‚ ŵjkg);

E(V) � 1

2pthr - 1

q2
K

kmar + kint

‚ (5)

where qK is the expected number of nonzero coefficients in a solution of Equation. (4) (Meinshausen and

Bühlmann, 2010). Note that for whole genome-wide association studies, stability selection based on

Equation. (4) is computationally challenging due to all SNP pairs considered. Specifically, optimizing

Equation. (4) is non-trivial because it requires us to use an iterative algorithm such as a proximal gradient

method (Liu et al., 2009), which sweeps over such a large number of SNP pairs multiple times. To address

the problem, we introduce a PLM-based screening algorithm, which efficiently gives us small candidate

sets of association SNPs and SNP pairs, denoted by Umar and Uint. We describe PLM-based randomized

group lasso under stability selection in Algorithm 1.

2.2. Piecewise linear model-based screening

In Equation. (4), we include all P SNPs and P
2

� ��
= P(P - 1)

2

�
SNP pairs, which makes it impractical to

solve the problem at a whole-genome scale (e.g., millions of SNPs). To handle the quadratic explosion of

the number of SNP pairs, we propose a scalable screening method based on PLM. Our screening method is

designed to sequentially select potentially relevant SNPs and SNP pairs using a simple test scheme. Note

that this screening step focuses on avoiding missing true positives supported by sure-screening theory (Fan

et al., 2011).

Our screening algorithm is a variant of iterative sure independence screening based on Equation. (1). It

greedily selects SNPs and SNP pairs based on the contribution of each candidate SNP or SNP pair to the

decrease of residual sum of squares. The PLM-based screening is described in Algorithm 2. Note that there

are two pairs of parameters (kmar, kint) and (bmar, bint). The pair (kmar, kint) determines the total number of

SNPs and SNP pairs selected, and (bmar, bint) determines the number of candidates selected per-iteration. In

our experiments, we used (kmar, kint) = (N, N) and (bmar, bint) = (10, 10) to limit the number of selected

correlated SNPs/SNP pairs at each iteration by 10. When SNPs are highly correlated, we recommend large

values of (kmar, kint) and small values of (bmar, bint), because it will allow us to select more independent

SNPs/SNP pairs. After the screening step, we obtain small candidate sets of SNPs and SNP pairs, and thus

it is computationally tractable to solve the high-dimensional problem in Equation (4).
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2.3. System implementation of piecewise linear model-based screening

We implemented a highly efficient shared- and distributed-memory parallel PLM-based screening al-

gorithm in C++. Our implementation can exploit parallelism when running on multicore machines, or on

clusters of multicore machines. To exploit shared-memory parallelism, we used PFunc (Kambadur et al.,

2009), a lightweight and portable library that provides C and C++ APIs to express task parallelism. For

distributed-memory parallelism, we used MPI (Message Passing Interface Forum, 1995, 1997), a popular

library specification for message-passing that is used extensively in high-performance computing. In this

section, we briefly describe some salient features of our implementation that optimize memory and

computational efficiency.

First of all, we optimize the memory footprint of SPHINX by storing each SNP using 2 bits (to represent

0, 1, 2), thereby giving us four SNPs per-byte of data. This way, the entire SNP dataset is compressed and

most of the operations, such as tests for SNP–SNP interactions, are performed as bit-wise operations. For

example, using this scheme, a 200-patient, 500,000-SNP dataset only occupies 250 MB of storage that can

be entirely cached in-memory on most modern machines. The SNP–SNP interaction pairs are constructed

on-the-fly in order to save space instead of explicitly storing P
2

� �
additional columns.

We also optimize our implementation for computational efficiency. Note that the significant SNPs and

SNP–SNP interactions are selected by solving millions of linear systems, followed by computation of the

2-norm of the resulting residual. To quickly solve the linear systems, we use the Cholesky factorization

(Bretscher, 1997) because Cholesky decomposition is faster (although less numerically stable in some

cases) than other alternatives such as QR decomposition (Bretscher, 1997) and singular value decomposition

(SVD) (Golub and Reinsch, 1970). Furthermore, we use BLAS and LAPACK kernels to optimize all the linear

operations. After the selection of the first SNP and SNP pair, incremental linear models are built; that is, given

a set of selected SNPs and SNP pairs, the best SNP or SNP pair to add to our model has to be determined. As

the number of selected candidates increases, the linear system becomes more expensive to solve, thereby

making successive later iterations expensive. In order to offset these costs, we resort to using a hand-coded

incremental version of the Cholesky factorization, which keeps the per-iteration costs near constant.

3. SIMULATION STUDY

In this section, we validate the effectiveness of SPHINX in terms of false positive control, statistical

power, and the benefits of using a piecewise linear model over a linear model via simulations because

ground-truth associations are unknown in real datasets. Furthermore, we show the scalability of our

screening implementation on multinode, multicore, and hybrid settings. We first conduct an extensive

simulation study to demonstrate and statistically validate the efficacy of SPHINX, in comparison to two

popular existing approaches: the two-locus test by PLINK (Purcell et al., 2007) with the –epistasis option

and the maximum likelihood method with the fully parametrized two-locus model (saturated two-locus test)

(Evans et al., 2006) with Bonferroni correction at significance level 0.01. We set jUmarj = N, jUintj = N, and

j = 3 for SPHINX, allowing for three false positives on average, and used the following sequence of

regularization parameters: k1 = k2 2{0.5, 0.1, 0.05, 0.01, 0.005}. We simulated chromosome 1 with 22834

SNPs and 2000 individuals using GWAsimulator (Li and Li, 2008), and generated traits under additive and

nonadditive scenarios: association SNP pairs have (1) additive and (2) non-additive interaction effects. We

ran the methods on 50 different data sets generated by randomly choosing 200 samples and 300 consecutive

SNPs from the simulated genome for each simulation setting. In our plots, we report the average perfor-

mance with error bars of 1/2 standard deviation.

3.1. Generation of simulation data

Let us denote S1 by a set of SNPs with marginal effects, and S2 by a set of SNP pairs with interaction

effects. For the additive scenario, we generate simulation data as follows:

yi =
X
j2S1

xi
jbj +

X
(j‚ k)2S2

xi
jx

i
kbjk + �i‚ (6)

where yi is the continuous response (e.g., gene expression level) for the i-th individual, xi
j 2 f0‚ 1‚ 2g

represents the encoding of the j-th SNP for the i-th individual (i.e., the number of minor alleles),

378 LEE ET AL.



ei represents Gaussian noise with zero mean and unit variance for the i-th individual, and bj and bjk are

constants that represent the size of marginal and interaction effects, respectively.

For the nonadditive scenario, we generate simulation data as follows:

yi =
X
j2S1

xi
jbj +

X
(j‚ k)2S2

f (xi
jx

i
k) + �i‚ (7)

where f (xi
jx

i
k) is given by

f (xi
jx

i
k) =

r1 : if xi
jx

i
k = 0‚

r2 : if xi
jx

i
k = 1‚

r3 : if xi
jx

i
k = 2‚

r4 : if xi
jx

i
k = 4‚

8>>><
>>>:

where rq * Unif(-bjk,bjk) for all q = 1,., 4. Note that in this nonadditive scenario, the relationship between

y and a pair of SNPs xj and xk is nonadditive due to the function f (xi
jx

i
k), which randomly assigns the size of

interaction effects according to the input genotype xi
jx

i
k.

In our experiments below, we denote N by the sample size, P by the number of SNPs, m by the

association strength of marginal and interaction effects (i.e., m = {bj, bjk}), and n by the number of true

association SNPs and SNP pairs (i.e., n = fjS1j‚ jS2jg). Furthermore, we randomly choose S2 such that each

SNP pair in S2 has the minor allele frequency less than MAF1 and MAF2. For the set S1, we randomly

choose SNPs with marginal effects among the SNPs with minor allele frequency less than 0.1.

3.2. False positive control

We first confirm that SPHINX effectively controls the number of false positives of SNP pairs under two

null hypotheses: (1) there exist no marginal and no interaction effects, and (2) there exist only marginal

effects but no interaction effects. As shown in Figure 2, for both null hypotheses, false positives were well

controlled with different sample sizes from 100 to 1000 and different numbers of SNPs from 100 to 700

(less than one false positive under both null hypotheses). However, PLINK and the saturated two-locus test

did not effectively control the number of false positives under the second scenario (up to 7.94 and 8470,

respectively) because SNP pairs correlated with SNPs having some marginal effects were falsely detected.

3.3. Comparison of different methods for the detection of SNP pairs with interaction effects

We present our comparison results among SPHINX, the two-locus test by PLINK (Purcell et al., 2007)

with the –epistasis option, and the saturated two-locus test (Evans et al., 2006) with various experimental

settings. We evaluate the performance of SPHINX, PLINK (Purcell et al., 2007), and the saturated two-

locus test (Evans et al., 2006) on simulation datasets with different numbers of true association SNP pairs,

different MAFs of true association SNP pairs, and different association strengths.

Comparison with different numbers of true association SNP pairs We performed experiments to show

that SPHINX exhibits high power even when false positives are wellsuppressed. In the simulation, we

randomly chose three SNPs for marginal effects (out of 300 SNPs), and set the number of SNP pairs from 1

to 5 (out of 44850 possible pairs) for interaction effects (SNPs with minor allele frequency between 0 and

0.2 were randomly chosen). Compared to PLINK and the saturated two-locus test, as shown in Figure 3,

SPHINX showed significantly larger true positive rates (up to *40%) while generating fewer number of

false positives (<0.18) under both scenarios of additive and nonadditive interaction effects. PLINK found a

smaller fraction of SNP pairs with true interaction effects (up to *10%), and the number of false positives

was less than 1.04. The saturated two-locus test found more true positives than PLINK but the number of

false positives was very large (>1000).

Comparison with different minor allele frequencies We evaluated the three different methods on sim-

ulation datasets with N = 200 (sample size), P = 300 (the number of SNPs), m = {3, 3} (association strength

of marginal and interaction effects), and n = f3‚ 3g (the number of true association SNPs and SNP pairs).

Figure 4 shows true positive rate and the number of false positives of the three different methods (columns)

with different MAFs of true association SNP pairs (i.e., MAF1 = MAF2 2 {0.1, 0.2, 0.3}) under the linear

scenario (Fig. 4a) and the nonlinear scenario (Fig. 4b). Overall, SPHINX achieved the best performance

considering both true positive rate and the number of false positives. When we compare between PLINK
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and SPHINX, under both the additive and nonadditive scenarios, SPHINX showed significantly better true

positive rate than PLINK while producing fewer number of false positives. Furthermore, SPHINX effec-

tively controlled the number of false positives over all regions of MAFs, showing that the theory of stability

selection (Meinshausen and Bühlmann, 2010) is in agreement with the empirical results (e.g., under the

additive scenario, SPHINX had 0.12 false positives on average). When we compare between the saturated

two-locus test and SPHINX, for both scenarios, the saturated two-locus test found slightly more true

positives but much larger number of false positives than SPHINX, which makes the saturated two-locus test

impractical. It can be explained by the fact that many parameters in the saturated two-locus test led to over-

fitting of the model.

Comparison with different association strengths We also tested the three methods with different asso-

ciation strengths m1 = m2 = 1,., 5 (N = 200, P = 300, MAF1 = MAF2 = 0.1, n = {3, 3}), and show true positive

rate and the number of false positives under the additive scenario in Figure 5a and b and under the

nonadditive scenario in Figure 5c and d). Overall, SPHINX showed the best performance among the three

methods as it found a relatively large number of true positives while effectively suppressing false positives

over all association strengths. Furthermore, under the nonadditive scenario, only SPHINX effectively

increased true positive rate as association strength increased under the control of false positives. PLINK

showed very low true positive rate (true positive rate was <0.05 for all association strengths), and the

saturated two-locus test produced many false positives (>200 in most cases).

3.4. Benefits of using a piecewise linear model for screening

We tested the benefits of using a piecewise linear model instead of a simple linear model during the

screening procedure. Throughout this section, we use PLS to indicate using a piecewise linear model for

screening and LS to indicate using a simple linear model for screening. For this experiment, we simulated

data with P = 500 (that generates candidates of 124750 SNP pairs), three SNPs having marginal effects with

FIG. 2. Number of false positives of SNP pairs found by SPHINX (a,d), PLINK (b,e), and saturated two-locus test

(c,f) with different sample sizes and the number of SNPs under two null hypotheses (see text for details).
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association strength of 1, and three SNP pairs having interaction effects with association strength of 3.

Given the simulation data, for both PLS and LS, N candidates of SNP pairs were selected. We then

evaluated true positive rate of PLS and LS under different minor allele frequencies (MAFs) of true

association SNP pairs from 0.1 to 0.4 (fixing N = 200) and different sample sizes from 100 to 600 (fix-

ing MAF1 = MAF2 = 0.1). Figure 6 represents the average true positive rate of PLS and LS with error bars

of 1/2 standard deviation when the underlying true interaction effect was additive (Fig. 6a and b), and

nonadditive (Fig. 6c and d). In general, our results show that PLS is very useful under various simulation

settings. When true model was linear, true positive rates of PLS and LS were comparable in most of our

settings as shown in Fig. 6 a,b), which was not expected because a simple linear model would be ideal

given finite data under the additive scenario. It seems that the model complexity of PLS was small enough

not to lose much power. When true model was nonlinear, PLS showed clear benefits over LS. As seen in

Figure 6c and d, the true positive rate of PLS substantially increased as sample size and minor allele

frequency increased but the true positive rate of LS marginally improved. It seems that the true positive rate

of PLS significantly increased due to the fact that additional degrees of freedom allowed PLS to fit well into

the data under the nonadditive scenario.
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FIG. 3. Comparison of true positive rate and the number of false positives among SPHINX, PLINK, and saturated

two-locus test with different numbers of true association SNP pairs under the additive scenario (a,b) and the nonad-

ditive scenario (c,d).
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FIG. 4. Comparison of true positive rate and the number of false positives for SPHINX (first column), two-locus test

by PLINK (second column), and saturated two-locus test (third column) under the linear scenario (a) and the nonlinear

scenario (b). In each panel, x-axis and y-axis show MAFs of true association SNP pairs (MAF1, MAF2), and z-axis

represents the true positive rate or the number of false positives.
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FIG. 5. Comparison of true positive rate and the number of false positives among SPHINX, PLINK, and saturated

two-locus test with different association strengths under the additive scenario (a,b) and the nonadditive scenario (c,d).
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3.5. Scalability of Screening Implementation

We carried out scalability experiments for our screening implementation on oxygen, a six-node cluster of

dual-socket, quad-core Intel Xeon E5410 machine with 32GB of RAM per-node running Linux Kernel

2.6.31-23 (total 48 cores). Figure 7 shows the throughput (SNPs processed per second) for various scenarios

when running on a simulated dataset that had 200 SNPs, 500 samples, and 20 true association SNPs. Each

experiment was run for 50 iterations, where each iteration considered 200 marginal candidates and 200
2

� �
interaction candidates. To test the effect of simultaneously evaluating multiple responses (e.g., eQTL

mapping on many gene traits), we ran experiments with the number of responses varying from 1 to 16. The

left panel depicts the multinode (cluster) performance of our implementation on oxygen; as can be seen, our

implementation is able to process up to 14,000 SNPs per second on 6 machines and shows near-linear

speedup. Furthermore, our implementation handles an increasing number of responses (e.g., gene traits)

gracefully; processing 16 responses in a multitask fashion only results in a 3.5· slowdown when compared

to processing just one response (4,000 SNPs per second as opposed 14,000 SNPs per second). The middle

panel shows the near-linear speedup achieved when we use pure multithreading on a single node of oxygen.

The scalability is slightly less than the multinode case because of memory bandwidth issues that result from

BLAS-2 operations such as matrix-vector products. Finally, the right panel demonstrates our algorithm’s

capability to exploit both multicore and cluster architectures together. In this experiment, we ran eight

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Additive scenario

T
ru

e 
po

si
tiv

e 
ra

te

Sample size

Piecewise linear screening
Linear screening

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

MAF (MAF1=MAF2)

T
ru

e 
po

si
tiv

e 
ra

te

Additive scenario

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Non−additive scenario

T
ru

e 
po

si
tiv

e 
ra

te

Sample size
0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

0.8

1

MAF (MAF1=MAF2)

T
ru

e 
po

si
tiv

e 
ra

te

(Non−additive scenario

a b

c d

FIG. 6. Comparison of true positive rate between piecewise linear screening and linear screening under different

sample sizes and MAFs of true association SNP pairs under additive scenario (a,b) and nonadditive scenario (c,d).
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threads per-node and increased the number of nodes from one to six to achieve a near-linear speedup. To

conclude, our implementation is able to efficiently process large datasets while scaling near-linearly.

4. ASSOCIATION ANALYSIS OF LATE-ONSET ALZHEIMER’S DISEASE DATA

We applied SPHINX to late-onset Alzheimer’s disease (AD) data from Harvard Brain Tissue Resource

Center and Merck Research Laboratories (Zhang et al., 2013) in an attempt to detect causal SNPs asso-

ciated either marginally or epistatically to molecular traits of interest. This data concerns 206 AD cases

with 555,091 SNPs in total and expression levels of 37,585 DNA probes including known and predicted

genes, miRNAs, and noncoding RNAs in three brain regions including cerebellum, visual cortex, and

dorsolateral prefrontal cortex, profiled on a custom-made Agilent 44K microarray. Specifically, we are

interested in the expression traits of all 718 genes in visual cortex related to neurological diseases according

to GAD (genetic association database) (Becker et al., 2004), and we focused on the 18,137 SNPs residing

within 50 kb from these genes, in an attempt to search for cis-acting causal SNPs or ‘‘restricted’’ trans-

acting (i.e., acting on genes within the same functional group) SNPs related to neurological diseases. This

Table 1. Significant Trait-Associated SNPs in Alzheimer’s Disease

Dataset (Zhang et al., 2013) Found by SPHINX

SNP GENE Affected gene Stability score

rs1047631 DTNBP1 DTNBP1 0.705

rs536635 C9orf72 SELL 0.651

rs7483826 WT1 WT1 0.979

rs2699411 LRPAP1 LRPAP1 0.824

rs16844487 LRPAP1 LRPAP1 0.763

rs1323580 PTPRD HHEX 0.631

rs4701834 SEMA5A SEMA5A 0.631

rs7852952 PTPRD PTPRD 0.724

rs2734986 HLA-A HLA-A 0.628

rs1611710 HLA-A HLA-A 0.617

rs2395175 HLA-DRB1 HLA-DRB1 0.692

rs602875 HLA-DQB1 HLA-DQB1 0.809

rs3135363 HLA-DRB1 HLA-DQB1 0.717

rs1619379 HLA-A HLA-A 0.967

rs156697 GSTO2 GSTO2 0.943

rs7759273 ABCB1 PARK2 0.67

For each SNP, we represent GENE, which is located within 50 kb from the

corresponding SNP. The stability score represents the proportion for which the SNP

was selected in stability selection.
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FIG. 7. Performance of the parallel implementation of our screening algorithm on oxygen cluster.
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results in a massive problem involving 18,137 SNPs, *164 million SNP-pairs, and 718 gene traits, that is,

*118 billion candidates of associations between SNPs/SNP-pairs and traits. We employed a cluster with a

total of 720 cores (see Methods for experimental details), which took 4.5 hours to perform screening and

<1 hour for stability selection with PLM-based randomized group lasso. Using SPHINX, we found 16 SNPs

and 17 SNP pairs significantly associated with the expression traits (see Tables 1 and 2 for the list of all

SNPs and SNP pairs found by SPHINX). Note that most association studies on AD have focused on

Table 2. Significant Trait-Associated SNP Pairs Identified by SPHINX

in Alzheimer’s Disease Dataset (Zhang et al., 2013)

SNP A GENE A SNP B GENE B Affected gene Stability score

rs10501554 DLG2 rs7805834 NOS3 NEFH 0.684

rs4547324 Intergenic rs7870939 PTPRD MEIS1 0.602

rs1956993 NUBPL rs6677129 LOC199897 FARP1 0.633

rs27744 LTC4S rs13209308 PARK2 CLCN2 0.629

rs17150898 MAGI2 rs7798194 CDK5 NINJ2 0.605

rs2802247 FLT1 rs9533787 DNAJC15 ADH1C 0.629

rs10883782 CYP17A1 rs10786737 CNNM2 SCN1B 0.683

rs7139251 ITPR2 rs12915954 IGF1R IL6 0.605

rs11207272 PDE4D rs2274932 ZBP1 ARSB 0.635

rs2634507 TOX rs11790283 VLDLR SFXN2 0.622

rs17309944 BDNF rs358523 HTR1A GRIK1 0.665

rs10501554 DLG2 rs17318454 RFX4 GNAS 0.611

rs4900468 CYP46A1 rs10217447 PTPRD CAPN5 0.64

rs17415066 KCNJ10 rs912666 SUSD1 SEMA5A 0.663

rs6578750 CCKBR rs12340630 TAL2 CTNNA3 0.631

rs4272759 PGR rs6081791 PDYN DAT 0.71

rs2679822 MYRIP rs4538793 NXPH1 CPT7 0.85

For each SNP A(B), we represent GENE A(B), which is located within 50 kb from the SNP. The stability score

represents the proportion for which the pair was selected in the stability selection.

0 1 2
−0.2

−0.1

0

0.1

0.2
M1

SNP

G
en

e 
ex

pr
es

si
on

 le
ve

l

0 1 2
−0.5

0

0.5
M2

0 1 2
−0.5

0

0.5
M3

0 1 2
−0.5

0

0.5
M4

0 1 2
−0.5

0

0.5
M5

0 1 2
−0.5

0

0.5
M6

0 1 2
−0.5

0

0.5
M7

0 1 2
−0.2

−0.1

0

0.1

0.2
M8

0 1 2
−0.5

0

0.5
M9

0 1 2
−0.5

0

0.5
M10

0 1 2
−0.5

0

0.5
M11

0 1 2
−1

−0.5

0

0.5
M12

0 1 2
−1

−0.5

0

0.5

1
M13

0 1 2
−0.5

0

0.5
M14

0 1 2
−0.2

−0.1

0

0.1

0.2
M15

0 1 2
−0.5

0

0.5
M16

SNPs with marginal effects

0
1

2
0

1
2

−1

0

1

SNP1

E1

SNP2

G
en

e 
ex

pr
es

si
on

 le
ve

l

0
1

2
0

1
2

−1

0

1

E2

0
1

2
0

1
2

−1

0

1

E3

0
1

2
0

1
2

−1

0

1

E4

0
1

2
0

1
2

−1

0

1

E5

0
1

2
0

1
2

−1

0

1

E6

0
1

2
0

1
2

−1

0

1

E7

0
1

2
0

1
2

−1

0

1

E8

0
1

2
0

1
2

−1

0

1

E9

0
1

2
0

1
2

−1

0

1

E10

0
1

2
0

1
2

−1

0

1

E11

0
1

2
0

1
2

−1

0

1

E12

0
1

2
0

1
2

−1

0

1

E13

0
1

2
0

1
2

−1

0

1

E14

0
1

2
0

1
2

−1

0

1

E15

0
1

2
0

1
2

−1

0

1

E16

0
1

2
0

1
2

−1

0

1

E17

SNP pairs with interaction effects

a b

FIG. 8. Gene expression levels according to the genotypes of (a) 16 SNPs and (b) 17 SNP pairs found by SPHINX. In

(a), x-axis represents genotypes and y-axis shows the average gene expression levels of individuals who possess the

corresponding genotype with error bars of 1/2 standard deviation. In (b), x- and y-axis represent genotypes of an SNP

pair and z-axis shows the average gene expression levels.
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detecting SNPs with marginal effects, and SNP pairs associated with AD are largely unknown. The patterns

of marginal and interaction effects are illustrated in Figure 8.

4.1. Marginal effects in late-onset Alzheimer’s disease dataset

Among 16 SNPs identified with marginal effects, 13 SNPs were located near affected genes (12 SNPs are

located within 50 kb, and 1 SNP is located within 130 kb from their associated genes), and 3 SNPs were

associated with a gene trait in a different chromosome. As an example, here we investigate 6 SNPs

(rs1619379, rs2734986, rs1611710, rs2395175, rs3135363, rs602875) associated with HLA (human leu-

kocyte antigen) genes including HLA-A, HLA-DRB1, and HLA-DQB1, related to the immune system. All 6

SNPs were located nearby the affected HLA genes, which encode proteins for antigen presentation

(Bodmer and Bodmer, 1978). We observed that 5 SNPs out of the 6 SNPs had positive correlation with the

expression levels of their associated genes, whereas 1 SNP (rs1619379) had negative correlation with the

expression levels of its associated gene (HLA-A).

We found out that 5 SNPs (out of the 6 SNPs) had genome annotations in their locations. For

associations between the three SNPs (rs1619379, rs2734986, rs1611710) and HLA-A, we observed

that rs1619379 and rs1611710 coincide with H3K27Ac histone mark and transcription factor binding

sites, respectively, and rs2734986 aligns with spliced ESTs. It suggests that rs1619379 and rs1611710

may perturb regulatory elements of HLA-A, and rs2734986 may be related to a mechanism for DNA

transcription. In case of the association between rs2395175 and HLA-DRB1, rs2395175 was in an

intron of a HLA-DRB1 gene (chr6:32489683-32557613). Finally, for associations between the two

SNPs (rs3135363, rs602875) and HLA-DQB1, we observed that rs3135363 coincides with both

transcription factor binding site and H3K27Ac histone mark, which hints that rs3135363 may be

related to regulatory mechanisms for HLA-DQB1. For rs602875, we did not find any specific genome

annotations.

It should be noted that associations between HLA genes and late-onset AD (Lehmann et al., 2001;

Maggioli et al., 2013) have been found, and these findings have been replicated in previous studies. It has

been reported that there is association between HLA-A and late-onset of AD (Payami et al., 1997; Guerini

et al., 2009), and Lehmann et al. (2006) replicated the association between HLA-B7 and AD. Further-

more, recently HLA-DRB1 identified by SPHINX has been reported as a new susceptibility locus for AD

(Lambert et al., 2013). Lambert et al. identified 11 new loci associated with AD that includes HLA-DRB1

from 17,008 AD cases and 37,154 controls. This dataset is independent from ours, which indicates that

our findings can be reproducible. As we found associations between the 6 SNPs and HLA genes, and

previous studies reported associations between HLA genes and AD, it would be interesting to further

investigate whether these associations are related to regulatory mechanisms or transcription factor

bindings.

4.2. Interaction effects in late-onset alzheimer’s disease dataset

Among 17 SNP pairs identified with interaction effects, as an example, we investigate the bio-

logical underpinnings of one of our findings—the pair rs4272759 (chr11:100899750) and rs6081791

(chr20:1988298) that is jointly (but not marginally) associated with DAT (dopamine active transporter,

chr5:1392905-1445545) — to demonstrate the biological validity of our results. Specifically, the expression

level of DAT is high only when both SNPs are heterozygous (i.e., both SNPs have only one minor allele).

SNP rs4272759 is located 605 base-pairs upstream of the start position of gene PGR (progesterone re-

ceptor, chr11:100900355-101001255), whereas SNP rs6081791 is 13,407 base-pairs downstream of gene

PDYN (prodynorphin, chr20:1959402-1974891). An extensive literature survey has yielded intriguing bi-

ological evidence to explain the association involving DAT with PGR and PDYN, suggesting that our

finding is biologically plausible. It was reported that progesterone treatment could increase the dynorphin

concentration and prodynorphin mRNA level (prodynorphin is the precursor protein of dynorphin) (For-

adori et al., 2005), suggesting that a disruption of the PGR function could alter the activity of PDYN, which

supports our finding that the SNPs in PGR and PDYN are epistatic. A direct association between PDYN and

DAT has also been reported. For example, it has been reported that prodynorphin expression in the striatum

is associated with D1 dopamine receptor stimulation (Gerfen et al., 1990); furthermore, in the experiments
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with DAT knock-down mice, Cagniard et al. (2005) found that the increased level of dopamine is asso-

ciated with the level of dynorphin expression. Overall, evidence from the literature seems to support a

hypothesis drawn from our association analysis of interacting genetic variations that a pair of SNPs

affecting PGR and PDYN are likely to lead to an epistatic effect on DAT, and it would be interesting to

further examine the status of DAT in the case studied in Foradori et al. (2005), and the status of PGR in

cases studied in Gerfen et al. (1990) and Cagniard et al. (2005) to directly confirm and characterize such an

epistatic effect.

5. CONCLUSIONS

We developed a unified framework for detecting marginal and pairwise interaction effects on traits,

built on state-of-the-art techniques including screening, randomization, and stability selection. Further-

more, to facilitate the detection of SNPs and SNP pairs associated with traits at a whole genome scale, we

implemented an efficient and scalable screening program. We validate the efficacy of SPHINX via

simulations and the analysis of late-onset Alzheimer’s disease dataset. Note that detecting pairwise

interaction effects on traits requires us to address computational and statistical challenges simulta-

neously, which stem from a large number of SNP pairs to be tested, correlations between SNPs/SNP

pairs, and nonlinear patterns of marginal and interaction effects; to our knowledge, SPHINX is the first

attempt to address these challenges within a single framework. We further note that by redefining mi
jk in

Equation (1), it is possible to investigate different choices of interaction encodings [e.g., data-driven

encoding (He et al., 2015)]. In this article, we adopted the widely used genotype encoding for the

pairwise interaction (i.e., multiplication of two SNPs). For future work, we plan to (1) incorporate diverse

prior knowledge into our model such as trait networks using graph-guided fused lasso (Kim and Xing,

2009) or grouping information on both genotypes (e.g., LD structures) and phenotypic traits (e.g.,

pathways) using structured input–output lasso (Lee and Xing, 2012), (2) use kernel techniques for

detecting multiway interactions among SNPs, (3) detect interaction effects under case-control settings via

logistic regression, and (4) combine linear mixed model with SPHINX to correct for population struc-

tures (Rakitsch et al., 2013).

ACKNOWLEDGMENTS

This work was done under a support from NIH 1 R01 GM087694-01; NIH 1RC2HL101487-01 (ARRA);

AFOSR FA9550010247; ONR N0001140910758; NSF Career DBI-0546594; NSF IIS-0713379; P30

DA035778A1; and Alfred P. Sloan Fellowship awarded to E.P.X.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Bach, F.R. 2008. Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res. 9, 1179–1225.

Becker, K.G., Barnes, K.C., Bright, T.J., and Wang, S.A. 2004. The genetic association database. Nat. Genet. 36,

431–432.

Bien, J., Taylor, J., and Tibshirani, R. 2013. A lasso for hierarchical interactions. Ann. Stat. 41, 1111–1141.

Bodmer, W.F., and Bodmer, J.G. 1978. Evolution and function of the HLA system. Br. Med. Bull. 34, 309–316.

Bretscher, O. 1997. Linear Algebra with Applications. Prentice-Hall, Eaglewood Cliffs, NJ.
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