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Abstract

In diploid genomes, haplotype assembly is the computational problem of recon-

structing the two parental copies, called haplotypes, of each chromosome starting from

sequencing reads, called fragments, possibly affected by sequencing errors. Minimum

Error Correction (MEC) is a prominent computational problem for haplotype assembly

and, given a set of fragments, aims at reconstructing the two haplotypes by applying

the minimum number of base corrections. MEC is computationally hard to solve, but

some approximation-based or fixed-parameter approaches have been proved capable of

obtaining accurate results on real data. In this work, we expand the current charac-

terization of the computational complexity of MEC from the approximation and the

fixed-parameter tractability point of view. In particular, we show that MEC is not ap-

proximable within a constant factor while it is approximable within a logarithmic factor

in the size of the input. Furthermore, we answer open questions on the fixed-parameter

tractability for parameters of classical or practical interest: the total number of cor-

rections and the fragment length. In addition, we present a direct 2-approximation al-

gorithm for a variant of the problem that has also been applied in the framework of

clustering data.

Finally, since polyploid genomes, such as those of plants and fishes, are composed of

more than two copies of the chromosomes, we introduce a novel formulation of MEC,

namely the k-ploid MEC problem, that extends the traditional problem to deal with

polyploid genomes. We show that the novel formulation is still both computationally

hard and hard to approximate. Nonetheless, from the parameterized point of view, we

prove that the problem is tractable for parameters of practical interest such as the number

of haplotypes and the coverage, or the number of haplotypes and the fragment length.
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1 Introduction

The genome of diploid organisms, as humans, is composed of two parental copies, called

haplotypes, for each chromosome. The most frequent form of genetic variations between the

two haplotypes of the same chromosome are the Single Nucleotide Polymorphisms (SNPs).

Haplotype analysis is of fundamental importance for a variety of applications including agri-

cultural research, medical diagnostics, and drug design (Pirola et al., 2013; Bonizzoni et al.,

2003; Browning and Browning, 2008).

The task of the haplotyping problem is the reconstruction of each haplotype. However,

large scale direct experimental reconstruction from the collected samples is not yet cost-

effective. One of the computational approaches that have been proposed, haplotype assem-

bly, considers high-throughput sequencing reads (also called fragments) that have to be par-

titioned in order to reconstruct the haplotypes. Since for most of the SNP positions only

two nucleotides are observed, the haplotypes and, hence, the fragments can be represented

as binary vectors. The fragments obtained from sequencing may not cover some positions

of the haplotypes. These uncovered positions are called holes, whereas a sequence of holes

within a fragment is called gap.

The presence of sequencing and mapping errors makes the haplotype assembly prob-

lem a challenging task. In the literature, different combinatorial formulations of the prob-

lem have been proposed (Lancia et al., 2001; Lippert et al., 2002; Aguiar and Istrail, 2012;

Dondi, 2012). Among them, Minimum Error Correction (MEC) (Lippert et al., 2002) has

been proved particularly successful in the reconstruction of accurate haplotypes for diploid

species (He et al., 2010; Chen et al., 2013; Pirola et al., 2015b). However, MEC is a compu-

tationally hard problem. Indeed, MEC is APX-hard even if the fragments have at least one

gap (Cilibrasi et al., 2007) and remains NP-hard even if the fragments do not contain gaps
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(Gapless MEC) (Cilibrasi et al., 2007).

The genome of certain species – especially plants, fishes, and yeasts – is polyploid, that

is, it is composed of more than two copies for each chromosome, and the analysis of such

genomes may improve our knowledge of their specific variants, as well as of the mechanisms

of eukaryotic evolution (Berger et al., 2014; Aguiar and Istrail, 2013). Still, the development

of haplotype assembly methods for polyploid genomes has received only little attention in

the literature (Berger et al., 2014; Aguiar and Istrail, 2013; Das and Vikalo, 2015). In fact,

the mathematical foundations and a formulation of the MEC problem for polyploid genomes

have not been thoughtfully investigated yet.

The parameterized complexity framework proved to be useful for coping with the com-

putational intractability of MEC on diploid genomes, as it did for several well-known hard

combinatorial problems (Downey and Fellows, 2013). In particular, MEC is in FPT when

parameterized by the coverage (Patterson et al., 2014, 2015), that is, the maximum number

of fragments that cover a SNP position. Moreover, MEC is in FPT also when parameter-

ized by the length of the fragments (He et al., 2010), but this is known only under the all-

heterozygous assumption, which forces to reconstruct complementary haplotypes. In fact,

this assumption allows the dynamic programming algorithm of He et al. (2010) to focus

on the reconstruction of a single haplotype and, hence, to limit the possible combinations

for each SNP position. Despite the significant amount of work present in the literature for

the diploid case, some important questions related to the fixed-parameter tractability and

approximability of MEC are still open. Two significant open problems are whether there ex-

ists a constant-factor approximation algorithm for MEC and whether MEC is in FPT when

parameterized by parameters of classical or practical interest, such as the total number of

corrections or the length of the fragments. Indeed, removing the dependency on the all-

heterozygous assumption from the algorithm by He et al. (2010) does not appear straightfor-

4



ward and, hence, fixed-parameter tractability of MEC when parameterized by the fragment

length is still an open problem.

The restriction of MEC where the fragments do not contain holes (Binary MEC) is par-

ticularly interesting from a mathematical point of view, and is the variant of the well-known

Hamming k-Median Clustering Problem (Cilibrasi et al., 2007; Kleinberg et al., 1998) when

k = 2. This clustering problem asks for k representative “consensus” (also called “median”)

strings with the goal of minimizing the Hamming distance between each input string and its

closest consensus string. Hamming 2-Median Clustering is well studied from the approxi-

mation viewpoint, and at least two Polynomial Time Approximation Schemes (PTAS) have

already been proposed (Ostrovsky and Rabani, 2002; Jiao et al., 2004). Instead, the compu-

tational complexity of Binary MEC is still unknown.

In this work, we present advances in the characterization of the fixed-parameter tractabil-

ity and the approximability of MEC problem in the general, gapless, and binary cases. We

first show that MEC is not in APX, i.e., it is not approximable within constant factor. In

addition, we show that MEC is not in XP when parameterized by the number of non-hole

elements on SNP positions and fragments. Since these parameters are upper bounds for the

maximum number of corrections on each SNP position and on each fragment, it follows

that there is no algorithm for MEC exponential in the maximum number of corrections on

each SNP position and on each fragment. These parameters are of particular interest, since

recent sequencing tecnologies produce datasets with a low error rate and/or with a uniform

distribution of sequencing errors, hence the expected maximum number of corrections to

apply on each column/fragment is lower than the coverage/fragment length. However, this

result basically rules out the existence of fixed-parameter algorithms on (natural) parame-

ters strictly smaller than coverage and fragment length. Moreover, we show that a reduction

previously known (Fouilhoux and Mahjoub, 2012) can be adapted to prove that MEC is ap-
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proximable within factor O(log nm) (where n is the number of fragments and m is the number

of SNPs) and that MEC is in FPT when parameterized by the total number of corrections.

By inspecting novel combinatorial properties of gapless instances, we also show that Gap-

less MEC is in FPT when parameterized by the length of the fragments and that Binary MEC

can be approximated within factor 2. Although Binary MEC is known to admit a PTAS, the

2-approximation algorithm we give is more practical and intuitive than the previous approx-

imation results. Table 1 summarizes all the known results prior to this work and highlights

the novel contributions we present here (some of them were also presented in the preliminary

version of this paper (Bonizzoni et al., 2015)), establishing the new state of the art for MEC,

Gapless MEC, and Binary MEC problems. Table 1

Furthermore, in this paper we extend the formulation of the MEC problem to the poly-

ploid case by introducing the k-ploid Minimum Error Correction (k-ploid MEC) problem

and we analyze the aspects regarding its computational complexity, parameterized tractabil-

ity, and approximability. Notice that SNP positions usually assume at most two values also

in the polyploid case and, as a consequence, the haplotypes and the fragments can be still

represented as binary vectors. In particular, since fixed-parameter tractable algorithms for

parameters of practical interest revealed to be successful for dealing with diploid genomes,

we show that k-ploid MEC is in FPT when parameterized by the coverage and the number of

haplotypes and when parameterized by the fragment length and the number of haplotypes.

The latter result clearly applies also to the diploid case, but the algorithm that construc-

tively proves this result has a worse time complexity than the one we specifically propose

for the diploid case (which is instead based on a theoretical result that does not extend to

the polyploid case). Table 2 reports current knowledge of computational complexity, ap-

proximability, and fixed-parameter tractability for the newly introduced k-ploid MEC and its

variants, k-ploid Gapless MEC and k-ploid Binary MEC. Table 2
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Related work

The MEC problem was introduced in (Lippert et al., 2002), where it was shown to be NP-

hard on arbitrary instances. Cilibrasi et al. (2007) refined the computational complexity anal-

ysis by showing that MEC is NP-hard even on instances where fragments do not have gaps

(Gapless MEC) and that it is APX-hard on instances where fragments have at most one

gap (1-gap MEC). These restrictions are motivated by the characteristics of the prevailing

sequencing technologies of that time. Moreover, they also showed that MEC on instances

without holes (Binary MEC) is a special form of the Hamming 2-Median Clustering prob-

lem and, hence, it admits a Polynomial Time Approximation Scheme (PTAS) in a random-

ized (Ostrovsky and Rabani, 2002) and deterministic (Jiao et al., 2004) form. Interestingly,

the existence of a PTAS for Gapless MEC (or its APX-hardness) and the NP-hardness of

Binary MEC are still open questions (albeit Binary MEC with an arbitrary number of haplo-

types is NP-hard (Cilibrasi et al., 2007)).

Several heuristic approaches have been proposed to cope with the computational in-

tractability of MEC (see, for example, those surveyed by Geraci (2010) and Duitama et al.

(2012)). Many of these are based on graph-theoretical formulations of the problem. For

example, HapCUT (Bansal and Bafna, 2008) proceeds by iteratively computing max-cuts in

a graph where each vertex represents a fragment and each edge denotes the presence of con-

flicts between fragments, while HapCompass (Aguiar and Istrail, 2012) models the problem

as the Minimum Weighted Edge Removal (MWER) problem on a particular graph-based rep-

resentation of the fragments, called compass graph, and heuristically solves it with a strategy

based on cycle basis local optimization.

Also exact approaches have been successfully proposed. One of the first exact approaches

was proposed by Wang et al. (2005) who presented an exact algorithm based on the branch-

and-bound method. However, this approach was not always suitable for instances of realis-
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tic size, and a genetic algorithm was applied as heuristic for those cases. Since fragments

produced by Next-Generation Sequencing technologies usually span only a few SNP posi-

tions, He et al. (2010) proposed a dynamic programming algorithm whose time complexity

is exponential in the fragment length. This algorithm, from a theoretical point of view, es-

tablishes that MEC is in FPT when parameterized by the fragment length (but only under

the all-heterozygous assumption). However, it is also important to deal with long fragments,

as they usually improve the accuracy of the solution. As a consequence, the authors also

presented a reduction of MEC to MaxSAT in order to use well-known and effective MaxSAT

solvers for dealing with realistic instances composed of long fragments. For the same rea-

son, Chen et al. (2013) proposed an approach based on Integer Linear Programming (ILP)

coupled with a procedure for decomposing the input into small independent blocks in or-

der to improve performances. Notably, this approach does not necessarily rely on the all-

heterozygous assumption. Despite the decomposition procedure allows to greatly simplify

the input matrix for unweighted instances, the ILP formulation requires a large (quadratic)

number of variables and, hence, the approach failed in solving certain blocks of the input,

called hard blocks, resorting to an heuristic for solving them.

Patterson et al. (2014, 2015) proposed an FPT algorithm for MEC when parameterized

by the coverage. Using coverage as parameter is motivated by the fact that it is not expected

to grow as fast as fragment length in a realistic dataset with the advent of future-generation

sequencing technologies. However, limiting the coverage poses a practical limit on datasets

that can be managed, even if a recent parallel version (Aldinucci et al., 2014) allowed to

obtain a constant factor improvement on coverages that can be handled. To better model the

characteristics of data produced by future-generation sequencing technologies, Pirola et al.

(2015b) recently proposed a novel variant of the MEC problem, namely the k-constrained

MEC problem, where the maximum number of corrections for each column is bounded by a
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given constant k, and showed that this variant is in FPT when parameterized by k and cover-

age by introducing a dynamic-programming algorithm called HapCol (Pirola et al., 2015a).

This result does not conflict with the parameterized intractability we present in Section 3

when the parameter is the maximum number of corrections on each column, since HapCol

is exponential in both k and coverage. Furthermore, despite an algorithm exponential only

in the coverage already existed, HapCol represents a significant practical advancement since

the combined use of the two parameters allows to greatly reduce time and space requirements

on real data by better modelling the characteristics of such data.

To the best of our knowledge, a theoretical analysis of the computational complexity

of the MEC problem on polyploid genomes has never been performed before this work.

However, some approaches for dealing with haplotype assembly in polyploid genomes have

already been introduced. Aguiar and Istrail (2013) extended HapCompass in order to re-

construct multiple copies of the chromosomes, while Das and Vikalo (2015) formulated the

problem as a semi-definite program and devised a fast approximate algorithm for finding a

low-rank solution for them. Recently, Berger et al. (2014) proposed a maximum-likelihood

estimation framework for polyploid haplotype assembly which is able to manage high ploid-

ity while maintaining acceptable performance.

A computational problem related to polyploid haplotype assembly is the sequence mul-

tiassembly problem, which is the problem of reconstructing a set of k sequences from their

aligned fragments where k is unknown. However, the two problems differ in some key

points. Indeed, in the multiassembly problem, the fragments are often assumed to be error-

free (or previously error-corrected) and the aim is to minimize the cardinality k of such a

set. This computational problem models, for example, the tasks of estimating viral quasis-

pecies (Eriksson et al., 2008) or transcriptome assembly (Trapnell et al., 2010; Song and Florea,

2013; Bao et al., 2013) and is often based on the combinatorial problem of Minimum Path
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Cover of a directed acyclic graph representing the overlaps between the fragments. In-

terestingly, the problem can be solved in polynomial time if the input fragments are gap-

less (Fulkerson, 1956) or if there are only contiguous subpath constraints (Bao et al., 2013;

Rizzi et al., 2014), but becomes NP-hard if the fragments have at least one gap (Rizzi et al.,

2014; Beerenwinkel et al., 2014, 2015).
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2 Preliminary Definitions

In this section, we introduce some basic notions and the formal definition of the MEC prob-

lem. In the rest of the work, we indicate, as usual, the value of a vector s at position t as

s[t].

A fragment matrix is a matrix M composed of n rows and m columns such that each

entry contains a value in {0, 1,−}. Each row of M represents a fragment and, formally, is

a vector belonging to {0, 1,−}m. Symmetrically, each column of M corresponds to an SNP

position and is a vector belonging to {0, 1,−}n. We denote by fi the i-th row of M and by p j

the j-th column of M. As a consequence, the entry of M at the i-th row and j-th column is

denoted by fi[ j] or p j[i]. The length ℓi of a fragment fi is defined as the number of elements

in fi between the rightmost and the leftmost non-hole elements (included) and we denote

by ℓ the maximum length over all the fragments in M. Moreover, we say that a column p j

covers a row fi if p j[i] ∈ {0, 1} or there exist l, r with l < j < r such that pl[i], pr[i] ∈ {0, 1}

(i.e., p j[i] is a hole belonging to a gap) and we define the active fragments of p j as the

set AF (p j) of all the fragments covered by p j. We denote by AF (p j1 , p j2) the intersection

AF (p j1) ∩ AF (p j2) for two columns p j1 and p j2 . Therefore, the coverage cov j of a column

p j is equal to |AF (p j)| and we define as cov the maximum coverage over all the columns of

M. A column p j is heterozygous if it contains both 0’s and 1’s, otherwise is homozygous.

A hole is an entry fi[ j] of M equal to the symbol −. A gap in a fragment fi is a maximal

subvector of holes in fi surrounded by non-hole entries (that is, there exist two positions j1

and j2 with j1 + 1 < j2 such that fi[ j1], fi[ j2] , − and fi[t] = − for all t with j1 < t < j2). A

fragment matrix is gapless if no fragment contains a gap.

Two rows fi1 and fi2 are in conflict when there exists a position j, with 1 ≤ j ≤ m,

such that fi1[ j] , fi2[ j], and fi1[ j], fi2[ j] , −. Otherwise, we say that fi1 and fi2 are in
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agreement. A collection F of fragments is in agreement if any pair of fragments f1, f2 in F

are in agreement. A fragment matrix M is conflict free if there exists a bipartition (F1,F2)

of its fragments such that both F1 and F2 are in agreement.

When a fragment matrix M is conflict free, all the fragments in each part of the biparti-

tion can be merged in order to reconstruct a haplotype, intended as a fragment without holes.

Unfortunately, a fragment matrix M is not always conflict free. The Minimum Error Correc-

tion problem deals precisely with this issue by asking for a minimum set of corrections that

make a fragment matrix conflict free, where a correction of a given fragment fi at position j,

with fi[ j] , −, is the flip of the value fi[ j], replacing a 0 with a 1, or a 1 with a 0.

Problem 1. Minimum Error Correction (MEC) problem

Input: a fragment matrix M of n rows and m columns.

Output: a conflict free matrix M′ obtained from M with the minimum number of correc-

tions.

Gapless MEC is the restriction of MEC where the input fragment matrix M is gapless,

while Binary MEC is the restriction of (Gapless) MEC where the matrix M does not contain

holes (that is, when M is a binary matrix).

Given a conflict free fragment matrix M, any heterozygous column p j encodes a bipar-

tition of the fragments covered by p j indicating which one belongs to one haplotype and

which one belongs to other. Instead, any homozygous column p j gives no information on

how the covered fragments have to be partitioned, and it is “in accordance” with any other

bipartition or heterozygous column. More formally, we say that two columns p j1 , p j2 of a

fragment matrix are in accordance if (1) at least one of p j1 , p j2 is homozygous, or (2) p j1 ,

p j2 are both heterozygous and are identical or complementary on the fragments covered by

both.

As stated in the following lemma, pairwise column accordance on gapless matrices is a
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necessary and sufficient condition for being conflict free.

Lemma 1. Let M be a gapless fragment matrix. Then, M is conflict free if and only if each

pair of columns is in accordance.

Proof. By definition, if M is conflict free, each pair of columns is in accordance. For this

reason, we just prove by induction on the number m of columns in M that if each pair of

columns is in accordance, then M is conflict free.

If m = 1, the lemma obviously holds.

Assume by induction that the lemma holds for the first m − 1 columns in M, we need

to prove that the lemma still holds for all the m columns. The submatrix on the first m −

1 columns is conflict free by induction and, for this reason, a bipartition (P1, P2) of the

corresponding fragments exists. We assume that pm is heterozygous, since the lemma clearly

holds when pm is homozygous. Moreover, we define ph the rightmost heterozygous column

on the first m − 1 columns and we ignore the homozygous columns between ph and pm

because they cannot induce conflicts and are in accordance with any other heterozygous

column. By assumption, ph and pm are in accordance. Hence, ph and pm define the same

bipartition on the fragments in AF (ph, pm). Since M is gapless, there is no column py in

{p1, . . . , ph−1} such that AF (py, pm) \ AF (ph) , ∅, hence AF (pm) \ AF (ph) ⊈ AF (py) for

1 ≤ y ≤ h− 1. It follows that there exists a bipartition (P1 ∪ P′
1, P2 ∪ P′

2) for every fragment

active on all the m columns, where (P′
1, P

′
2) is the bipartition induced by pm on the fragments

in AF (pm) \ AF (pm−1). As a consequence the submatrix on the first m columns is conflict

free. □

Since such a property is independent by the order of the columns, this result also ap-

plies to fragment matrices that can be transformed to gapless matrices by rearranging their

columns (gapless-reducible fragment matrices). Testing if a fragment matrix M is gapless-

reducible can be performed in polynomial time by testing if the binary matrix B(M) obtained
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from M by substituting each non-hole element with a one and each hole with a zero has the

consecutive ones property (C1P) (Meidanis et al., 1998). Therefore, we immediately obtain

the following result.

Corollary 2. Let M be gapless-reducible fragment matrix. Then, M is conflict free if and

only if each pair of columns is in accordance.

Gapless-reducibility, beside being of theoretical interest, can also be relevant in practice,

as it is potentially able to transform an “almost gapless” fragment matrix (i.e., a fragment

matrix with only a few short gaps due, for example, to indel sequencing errors) to a gapless

matrix and, hence, to apply algorithms designed for gapless instances which, in general,

could be more efficient than those designed for general instances.

Notice that the accordance relation among heterozygous columns is transitive since it

basically requires that pairs of columns are equal or complementary. Therefore, since ho-

mozygous columns cannot induce conflicts, we have the following result.

Corollary 3. Let M be a gapless fragment matrix. Then, M is conflict free if and only if

each pair of consecutive columns in the matrix obtained from M by removing its homozygous

columns is in accordance.

The property defined in Lemma 1 is particularly important when designing exact algo-

rithms for Gapless MEC, as it allows to test only for pairwise column accordance in order

to ensure that the matrix is conflict free. In fact, the fixed-parameter algorithm for Gapless

MEC that we present in Sect. 4 is based on this property. Furthermore, notice that if we relax

the requirement that M is gapless (or gapless-reducible), then the property does not hold.

Consider, for example, the fragment matrix M composed of three fragments f1 = 01−,

f2 = −01, and f3 = 1 − 0. The three columns are pairwise in accordance, but the matrix is

not conflict free (and, in fact, f3 contains a gap).
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Given two columns p j1 , p j2 of a fragment matrix M, we define their (generalized) Ham-

ming distance dH(p j1 , p j2) as |{i | {p j1[i], p j2[i]} = {0, 1}}| while their correction distance

d(p j1 , p j2) as the minimum between dH(p j1 , p j2) and dH(p j1 , p j2) (where p is the complement

of p on non-hole entries). Notice that the correction distance is non-negative and symmetric,

but does not satisfy the triangle inequality, hence, despite the name, is not a metric. We also

define the homozygous distance H(p j) as the minimum between the number of 0’s and 1’s

contained in p j. Intuitively, the correction distance is the cost of making a column equal or

complementary to another column, while the homozygous distance is the cost of making a

column homozygous.

A solution of MEC over a fragment matrix M is a bipartition of its fragments, that can

be encoded as a binary vector O. It is easy to see that the cost of that solution is:

costM(O) =
m∑

j=1

min(d(O, p j),H(p j)). (1)
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3 Approximation and parameterized complexity of MEC

In this section, we show that MEC is not in APX, that is MEC cannot be approximated within

constant factor. We achieve this result by introducing an L-reduction (Ausiello et al., 1999)

from the Edge Bipartization problem to MEC.

The Edge Bipartization problem is defined as follows.

Problem 2. Edge Bipartization (EB) problem (Garey and Johnson, 1979)

Input: an undirected graph G = (V, E).

Output: E′ ⊆ E of minimum size such that G′ = (V, E \ E′) is bipartite.

Now, we present the details of the reduction. Given an undirected graph G = (V, E), we

build the associated fragment matrix M(G) (with |V| rows and |E| columns) by setting, at

each column p j associated with edge e j = {u, v} ∈ E, fu[ j] = 0, fv[ j] = 1, and fz[ j] = − for

z , u, v. Notice that, by construction, there exists a conflict in M(G) between fragments fu

and fv if and only if {u, v} ∈ E.

Lemma 4. Let G = (V, E) be an undirected graph and M(G) be the associated fragment

matrix. Given a solution E′ of EB over G, we can compute in polynomial time a solution of

MEC over M(G) with |E′| corrections. Symmetrically, given a solution of MEC over M(G)

with h corrections, we can compute in polynomial time a solution E′ of EB over G of size at

most h.

Proof. (⇒) Let E′ be a set of edges such that (V1 ⊎ V2, E \ E′) is bipartite, where V1 and V2

are the parts of the bipartition. Build a matrix M′(G) from M(G) by flipping, for each e j =

{u, v} ∈ E′, the entry fu[ j]. Clearly, M′(G) is obtained from M(G) with |E′| corrections

and it does not contain conflicts induced by edges in E′. Let (F1,F2) be the bipartition of

fragments of M′(G) such that Fi := { fu | vu ∈ Vi} (for i ∈ {1, 2}). Each Fi is in agreement
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because it does not contain a pair of fragments associated with the endpoints of an edge of

E \ E′. Hence, M′(G) is conflict free.

(⇐) Let M′(G) be a conflict free matrix obtained from M(G) with h corrections and

let C′ be the subset of columns of M′(G) that contain exactly a correction. In fact, notice

that a single correction is sufficient to transform a column into a homozygous column in

accordance with any other column. Consider the set E′ := {e j ∈ E | p j ∈ C′}. Clearly,

|E′| ≤ h. Since M′(G) is conflict free, there exists a bipartition (F1,F2) of the fragments

such that both F1,F2 are in agreement. Build sets V1,V2 such that Vi := {vu | fu ∈ Fi} (with

i ∈ {1, 2}). We claim that (V1 ⊎ V2, E \ E′) is bipartite. Suppose to the contrary that there

exists an edge e j = {u, v} ∈ E \ E′ such that u, v ∈ Vi, i ∈ {1, 2}. Since fu[ j] = fv[ j] in

M′(G), this implies that exactly one of fu[ j] and fv[ j] has been corrected (since fu[ j] , fv[ j]

in M(G)). As a consequence, we have that e j ∈ E′, contradicting the assumption. □

Khot (2002) proved that, under the Unique Games Conjecture, EB is not in APX. Since

Lemma 4 proves that MEC is L-reducible to EB, we have the following result.

Theorem 5. Under the Unique Games Conjecture (Khot, 2002), MEC is not in APX.

Edge Bipartization is NP-hard even if the graph is cubic, that is if each vertex has degree

three (Yannakakis, 1978). If the graph is cubic, then the fragment matrix built by our reduc-

tion contains two non-hole elements on each column and three non-hole elements on each

fragment. As a consequence, any optimal solution clearly places at most two corrections on

each column (actually, at most a correction is placed on each column of any optimal solution,

since it is enough for transforming the column into a homozygous column) and at most three

corrections on each fragment. Hence, from this observation and from the NP-hardness of EB

on cubic graphs, we obtain the following result.
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Theorem 6. MEC is not in XP1 when parameterized by the number of non-hole elements on

columns (SNP positions) and on rows (fragments).

As a consequence of Theorem 6, there is no algorithm for MEC of time complexity

O(n f (cp,c f )) where cp, c f are the maximum number of non-hole entries in each column and

row, respectively. Furthermore, since the number of non-hole elements on each column and

each row are upper bounds for the maximum number of corrections on each column and each

fragment, it follows that MEC is not in XP (hence, also not in FPT) when parameterized by

these parameters.

The inapproximability result given in Theorem 5 nicely complements an approxima-

tion (and fixed-parameter tractable) result that can be inferred by a reduction presented

in (Fouilhoux and Mahjoub, 2012), where MEC is reduced to the Maximum Bipartite In-

duced Subgraph problem (MBIS). Given a vertex-weighted graph G, MBIS asks for a max-

imum weight subset of vertices of G that induces a bipartite graph. The reduction defines a

graph, called fragment graph, whose set of nodes is the union of two sets: a set of nodes,

called fragment nodes, one for each fragment, and a set of nodes, called entry nodes, one for

each entry of the matrix. In order to avoid the removal of fragments nodes, they are assigned

a sufficiently large weight.

The reduction can be easily reworked in order to prove approximation and fixed-parameter

tractability results for MEC. More precisely, MEC is now reduced to the Graph Bipartization

(GB) problem, a problem related to MBIS. Given an unweighted graph G, GB asks for the

minimum number of vertex removals so that the resulting graph is bipartite. The reduction

given in (Fouilhoux and Mahjoub, 2012) can be modified by defining a new version of the

fragment graph (see Fig. 1), where each (weighted) fragment node is substituted with a suf-

1We recall that XP is the class of parameterized problems that admit an algorithm of time complexity n f (k)

for some computable function f and parameter k.
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ficiently large set of fragment nodes. From the construction of the fragment graph, it follows

that a fragment matrix M is conflict free if and only if the corresponding fragment graph is

bipartite and that a solution of MEC with k corrections corresponds to a solution of GB that

removes k vertices. Figure 1

Since GB can be approximated within factor O(log |V|) (Garg et al., 1996) and is in FPT

when parameterized by the number of removed vertices (Reed et al., 2004; Guo et al., 2006),

we have that:

Theorem 7. (1) MEC can be approximated in polynomial time within factor O(log nm)

where n is the number of rows and m is the number of columns.

(2) MEC is in FPT when parameterized by the total number of corrections.
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4 Gapless MEC is in FPT when parameterized by the frag-

ment length

In this section, we introduce a fixed-parameter tractable algorithm for Gapless MEC when

parameterized by the maximum length ℓ of the fragments. The algorithm is based on a

dynamic programming approach and aims at finding a specific tripartition for the columns

of a gapless fragment matrix M. In this section, we assume w.l.o.g. that M is a gapless

fragment matrix and the fragments of M are sorted by starting position.

Lemma 1 provides a sufficient and necessary condition for the reconstruction of a solu-

tion for Gapless MEC, that is a conflict free fragment matrix. For this reason, the gapless

condition is required by this algorithm. In fact, if the fragment matrix contains gaps, the

accordance of the columns is not sufficient to ensure that there are no conflicts. Therefore,

we firstly show a result that directly derives from Lemma 1. In particular, the following

proposition stresses the relationship between a bipartition of the fragments and a tripartition

of the columns in a gapless fragment matrix M that is conflict free.

Lemma 8. Given a gapless fragment matrix M, the following assertions are equivalent:

1. M is conflict free.

2. There exists a bipartition (F1,F2) of the fragments, where both F1 and F2 are in

agreement.

3. There exists a tripartition T = (L,H,R) of the columns such that each column in H is

homozygous, each column in L∪R is heterozygous, dH(p j1 , p j2) = 0 for all the columns

p j1 , p j2 ∈ L (p j1 , p j2 ∈ R, resp.) and dH(p j1 , p j2) = 0 for each column p j1 ∈ L and

each column p j2 ∈ R.
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Proof. The equivalence between (1) and (2) holds by definition. Therefore, we only show

that (1) and (3) are equivalent.

(⇒) If M is conflict free, each pair of columns p j1 , p j2 is in accordance by Lemma 1. By

definition, either at least one column is homozygous or d(p j1 , p j2) = 0. It directly follows

that a tripartition T = (L,H,R) can be built such that each column in H is homozygous,

each column in L ∪ R is heterozygous, dH(p j1 , p j2) = 0 for all the columns p j1 , p j2 ∈ L

(p j1 , p j2 ∈ R, resp.) and dH(p j1 , p j2) = 0 for each column p j1 ∈ L and each column p j2 ∈ R.

(⇐) Let p j1 , p j2 be two columns. If at least one column belongs to H, then p j1 and

p j2 are in accordance by definition. Otherwise, when p j1 and p j2 are both heterozygous,

then d(p j1 , p j2) = 0. Indeed, if they belong to the same part (L or R), then dH(p j1 , p j2) =

0, whereas if they belong to different parts then dH(p j1 , p j2) = 0. Hence, p j1 are p j2 in

accordance. □

Based on Lemma 8, we introduce an algorithm for Gapless MEC that builds a tripartition

of the columns of M in order to find a conflict free matrix M′ obtained from M with the

minimum number of corrections. Notice that in the rest of this section we implicitly refer

only to tripartitions built as reported in the third assertion of Lemma 8.

The algorithm iteratively proceeds row-wise and, at each step, computes a tripartition

for the columns considered so far. In particular, the key observation that allows to bound

the exponential complexity of the algorithm to the parameter ℓ is that we can build any

tripartition for all the columns in M by adding only a subset of columns, called active

columns, for each row. This subset contains the columns covering the current fragment and

the columns covering both previous and successive fragments. Indeed, we need to remember

the tripartition established by previous fragments for columns that are covered by successive

fragments. More formally, we define the set active columns for a fragment fi as:

AC( fi) = {p j | (p j[i] , −) ∨ (∃x, y with x < i < y | p j[x], p j[y] , −)}

21



Fig. 2 represents the active columns AC( fi) of a fragment fi. The cardinality of AC( fi) is

bounded by ℓ. In fact, considering a row fi, notice that ℓi ≤ ℓ and no column pk, to the left

of fi, is in AC( fi). Recall that fragments are sorted by starting position and assume that r

is the number of columns p j to the right of fi, such that there are fb, fq with b < i < q and

p j[b], p j[q] , −. Since the r columns must be contained in AC( fb) for a fragment fb with a

starting position preceding the one of fi, it holds that ℓi + r ≤ ℓb ≤ ℓ. It clearly follows that

|AC( fi)| = ℓi + r ≤ ℓ. Figure 2

Considering two rows fi1 and fi2 , with i1 < i2, a tripartition for all the columns in AC( fi1)∪

AC( fi2) can be computed by combining a tripartition T1 for AC( fi1) and a tripartition T2

for AC( fi2), only if T1 and T2 are “in accordance”, that is, they are partitioning the shared

columns in the same way. For this reason, we say that a tripartition T2 = (L2,H2,R2) for

AC( fi2) extends another tripartition T1 = (L1,H1,R1) for AC( fi1) if and only if L1 ∩AC( fi2) ⊆

L2, H1 ∩ AC( fi2) ⊆ H2, and R1 ∩ AC( fi2) ⊆ R2.

At each step i, the algorithm computes a tripartition T for AC( fi) extending a tripartition

T ′ for AC( fi−1). Since AC( fi−1) also contains all the columns p j with p j[i − 1] = − such

that there exists y < i − 1 with p j[y] , − and p j[i] , −, it follows that T even extends any

tripartition computed at the previous steps extended by T ′. As a consequence, we prove the

following implication.

Lemma 9. If there exists a conflict free matrix M′′ obtained from M on the first i − 1 rows

that induces a tripartition T ′ for the columns in AC( fi−1), and if T is a tripartition for the

columns in AC( fi) extending T ′, then there exists a conflict free matrix M′ obtained from M

on the first i rows that induces the tripartition T for the columns in AC( fi).

Proof. By definition, p j[i] , − and p j[y] = − for each column p j ∈ AC( fi) \ AC( fi−1) and

for each y < i. By assumption T extends T ′, hence build M′ such that the columns covered

by the first i − 1 rows are tripartitioned as in M′′ and the remaining columns only covered
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by fi are tripartitioned according to T . By construction, M′ induces the tripartition T for

AC( fi). Since M′′ is conflict free, it follows that M′ is conflict free by Lemma 8. □

At each step i and for each tripartition T = (L,H,R) for AC( fi), the algorithm chooses

the tripartition T ′ extended by T for AC( fi−1) that induces the minimum cost (recursive step)

and computes the minimum number of corrections to add on the current fragment fi in order

to tripartition all the columns in AC( fi) according to T (local contribution). In particular, the

algorithm considers the minimum number of corrections on fi such that p j[i] = 1 or p j[i] = 0

for all p j in L and, on the contrary, p j[i] = 0 or p j[i] = 1 for all p j in R. At the same time,

the minimum number of corrections on the fragment fi is computed for each column p j in

H such that p j on the first i rows can be optimally transformed into a homozygous column.

Therefore, we define D[i,T ] as the minimum number of corrections to obtain a conflict free

matrix M′ from M on the first i rows that induces a tripartition T for AC( fi). The algorithm

proceeds row-wise computing the value D[i, T ] for each fragment fi and for each tripartition

T for AC( fi) by the following recursive equation:

D[i, T ] = ∆(i,T ) + min
T ′ extended by T

D[i − 1, T ′] (2)

where T ′ is a tripartition for AC( fi−1). In the recursion, we consider only the tripartitions

T ′ extended by T , since the shared columns have to be partitioned in the same way. In

conclusion, the local contribution is defined as:

∆(i,T ) = O(i,H) +min


E0(i, L) + E1(i,R)

E1(i, L) + E0(i,R)
where T = (L,H,R) (3)

such that Ex(i, F) is the cost of correcting the columns in F for fragment fi to value x, that is

Ex(i, F) = |{ j | j ∈ F ∧ p j[i] < {x,−}}|, and O(i,H) is the minimum number of corrections

to apply on fragment fi such that the columns in H, considered on the first i rows, can be

turned into homozygous columns with minimum cost. Denote by #x
i, j the number of values
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equal to x in {p j[1], . . . , p j[i]}. The minimum between #0
i, j and #1

i, j states the minimum

number of corrections necessary to turn a column p j on the first i rows into a homozygous

column. Since O(i,H) refers only to the corrections on fragment fi, we can compute O(i,H)

as:

O(i,H) =
∑
j∈H



1 p j[i] = 0 and #0
i, j ≤ #1

i, j

1 p j[i] = 1 and #1
i, j ≤ #0

i, j

0 otherwise

(4)

Given a set of columns F, it is easy to see that
∑

i∈{1,...,n} O(i, F) =
∑

p j∈F H(p j).

The base case of the recurrence is D[1,T ] = ∆(1,T ) for each tripartition T for AC( f1).

The algorithm returns the optimum corresponding to minT D[n,T ] where T is a tripartition

for AC( fn). Furthermore, an optimal tripartition for all the columns can be computed by

backtracking.

The algorithm computes all the values D[i, T ] for each tripartition T of the columns in

AC( fi) and for each i in {1, . . . , n}. It follows that there are O(3ℓ · n) entries and, therefore,

the space complexity is equal to O(3ℓ · n). Given a tripartition T , we need O(3ℓ) time to enu-

merate all the tripartitions T ′ extended by T because we have to tripartition all the columns

in |AC( fi−1) \ AC( fi)| with AC( fi−1) ≤ ℓ and, consequently, |AC( fi−1) \ AC( fi)| ≤ ℓ. Since

∆(i,T ) can be computed in O(ℓ) time, each entry D[i,T ] can be computed in O(3ℓ · ℓ). It

follows that the total running time of the algorithm is O(32ℓ · ℓ · n). Notice that storing par-

tial information during the computation (using an approach similar to the one presented in

(Patterson et al., 2014)) we can decrease the complexity to O(3ℓ · ℓ · n).

We now show the correctness of the algorithm.

Lemma 10. Consider a gapless fragment matrix M.

1. If D[i,T ] = h, then there exists a conflict free matrix M′ obtained from M on the first

i rows with h corrections that induces a tripartition T for the columns in AC( fi).
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2. If M′ is a conflict free matrix obtained from M on the first i rows with h corrections

that induces a tripartition T for the columns in AC( fi), D[i,T ] ≤ h.

Proof. We prove the lemma by induction on i. Both the statements obviously hold for i = 1.

Assume that lemma holds for i − 1, we show that both the statements hold for i.

(1) By Eq. (2), there exists a tripartition T ′ for AC( fi−1) such that T extends T ′ and

D[i, T ] = h = ∆(i,T ) + D[i − 1,T ′]. Assuming D[i − 1, T ′] = h′, by induction there exists

a conflict free matrix M′′ obtained from M on the first i − 1 rows with h′ corrections that

induces a tripartition T ′ for AC( fi−1). By Proposition 9, there exists a conflict free matrix M′

obtained from M on the first i rows that induces a tripartition T for AC( fi). Since T extends

T ′, by construction we can add ∆(i,T ) corrections on fragment fi in order to build M′ starting

from M′′. It follows that M′ is obtained from M with ∆(i,T ) + h′ = h corrections.

(2) Assume that M′′ is the submatrix of M′ obtained from M on the first i−1 rows with

h′ corrections that induces a tripartition T ′ for AC( fi−1). Clearly, T ′ is extended by T due to

the fact that M′′ is equal to M′ on the first i−1 rows. Since M′ contains ∆(i,T ) corrections

on the row fi by construction, it follows that h = ∆(i,T ) + h′. Moreover, we know that

D[i − 1,T ′] ≤ h′ by induction and by Eq. (2) that D[i, T ] = ∆(i,T ) +minT ′′ extended by T D[i −

1,T ′′]. Hence, since minT ′′ extended by T D[i−1,T ′′] ≤ D[i−1,T ′], we conclude that D[i,T ] ≤

∆(i,T ) + h′ and, consequently, D[i,T ] ≤ h. □

From the correctness of the algorithm, it directly follows that:

Theorem 11. Gapless MEC (without the all-heterozygous assumption) is in FPT when pa-

rameterized by the length of the fragments and it can be solved in O(3ℓ · ℓ · n) time.
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5 A 2-approximation algorithm for Binary MEC

In this section we present a 2-approximation algorithm for Binary MEC, that is the restric-

tion of MEC where the fragment matrix has values in {0, 1} only, and hence does not contain

holes. The approximation algorithm is based on the observation that heterozygous columns

in binary matrices naturally encode bipartitions of the fragments and that, by Lemma 1, if the

columns of a gapless fragment matrix are pairwise in accordance then the matrix is conflict

free. In particular, Algorithm 1 builds a feasible solution SOL[t] for each t in {1, . . . ,m} as-

suming that pt is the closest column to an (unknown) optimal bipartition O of the fragments.

Each solution SOL[t] corrects columns p j′ with cost H(p j′) ≤ d(pt, p j′) into homozygous

columns (equal to 1 or 0 depending on the best choice), whereas it corrects the remaining

columns p j′′ with cost d(pt, p j′′) < H(p j′′) into heterozygous columns equal (or complemen-

tary, depending on the best choice) to pt. It is easy to see that SOL[t] for each t in {1, . . . ,m}

is a feasible solution (by Lemma 1) and that its cost is exactly costM(pt), as reported in Eq. 1.

Algorithm 1 A 2-approximation algorithm for Binary MEC
Require: A n × m binary matrix M

for t = 1 to m do ▷ Assume that pt is the column “closest” to O

for j = 1 to m do

if H(p j) ≤ d(pt, p j) then

Set p j homozygous in SOL[t]

else

Set p j equal/complementary to pt in SOL[t]
return arg minSOL[t] costM(pt)

Algorithm 1 is a 2-approximation algorithm for Binary MEC.

Lemma 12. Given a fragment matrix M without holes, if OPT is the optimum for Binary
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MEC on input M, then Algorithm 1 returns in O(m2n) time a feasible solution with cost

OPT ′ such that OPT ′ ≤ 2 · OPT.

Proof. Assume that pO is the column of M closest to an optimal bipartition O, that is

d(O, pO) ≤ d(O, p j) for each j in {1, . . . ,m} and assume that dH(O, pO) ≤ dH(O, pO) (if

dH(O, pO) < dH(O, pO) we can substitute O with O since they encode the same biparti-

tion). Clearly, one such a column exists and dH(O, pO) ≤ d(O, p j) for each j in {1, . . . ,m}.

We show that, under this assumption, d(pO, p j) ≤ 2d(O, p j). By the triangle inequality,

dH(pO, p j) ≤ dH(pO,O) + dH(O, p j). Hence, since dH(pO,O) ≤ d(O, p j) ≤ dH(O, p j), we

have dH(pO, p j) ≤ 2dH(O, p j). Similarly, we can prove that dH(pO, p j) ≤ 2dH(O, p j). As a

consequence we have that d(pO, p j) ≤ 2dH(O, p j) and that d(pO, p j) ≤ 2dH(O, p j), which

then imply d(pO, p j) ≤ 2d(O, p j). Clearly, since d(pO, p j) ≤ 2d(O, p j), we also have that

min(d(pO, p j),H(p j)) ≤ 2 min(d(O, p j),H(p j)).

Since Algorithm 1 iteratively assumes that each column p j is the closest column to the

unknown optimal bipartition O, we have that the cost of the returned solution is OPT ′ ≤

costM(pO) ≤ 2
∑m

j=1 min(d(O, p j),H(p j)) = 2OPT . Since each iteration t of the algorithm

computes SOL[t] in O(mn) time, the total running time is clearly equal to O(m2n). □

Algorithm 1 runs in O(m2n) time and, due to its simplicity, it is a more direct and practical

approach than the PTAS algorithms known in the literature (Ostrovsky and Rabani, 2002;

Jiao et al., 2004).
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6 Polyploid MEC

In this section, we introduce a formulation of the MEC problem applied to polyploid genomes.

In particular, we assume that the number k of chromosome copies is known a priori, and,

for this reason, we consider the k-ploid variant of the problem, that is, the k-ploid Minimum

Error Correction (k-ploid MEC) problem.

The main concepts and definitions for this problem are the same of those introduced in

Section 2 for the (diploid) MEC problem. The most important difference lies in the definition

of the output. In fact, the goal of the novel formulation is to reconstruct k haplotypes, where

k is the (given) number of chromosome copies that compose the polyploid genome of the

species under study. As a consequence, we need to generalize the concept of conflict free

fragment matrix. In particular, let M be a fragment matrix, we say that M is k-conflict free

if and only if there exists a k-partition F = (F1, . . . ,Fk) of its fragments such that each part

Fi is in agreement. At last, we formally define the k-ploid MEC problem:

Problem 3. k-ploid Minimum Error Correction (k-ploid MEC) problem

Input: an integer k and a fragment matrix M of n rows and m columns.

Output: a k-conflict free matrix M′ obtained from M with the minimum number of correc-

tions.

As for the MEC problem, Gapless k-ploid MEC is the restriction of k-ploid MEC where

the input fragment matrix M is gapless, while Binary k-ploid MEC is the restriction of

(Gapless) k-ploid MEC where the matrix M does not contain holes (that is, when M is a

binary matrix). Furthermore, notice that all the fragments in each part of the k-partition of a

k-conflict free matrix can be merged in order to reconstruct a haplotype, in the same way as

it can be done for the bipartition of a conflict free matrix in the diploid case.

Clearly, k-ploid MEC is a generalization of (diploid) MEC. As a consequence, k-ploid
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MEC inherits some hardness results from MEC. Since we know that MEC is APX-hard (Cilibrasi et al.,

2007), that MEC is not in APX under the Unique Games Conjecture (Section 3), that gapless

MEC is NP-hard (Cilibrasi et al., 2007), and that MEC is not in XP when parameterized by

the number of non-hole elements on rows and columns (Section 3), the following theorem

clearly holds.

Theorem 13. k-ploid MEC is APX-hard, k-ploid MEC is not in APX under the Unique

Games Conjecture, gapless k-ploid MEC is NP-hard, and k-ploid MEC is not in XP when

parameterized by the number k of haplotypes and the number of non-hole elements on rows

and columns.

In addition, Cilibrasi et al. (2007) showed that if the number of haplotypes to be re-

constructed is specified as part of the input and if the input mfragment matrix does not have

holes (such as in the case of k-ploid Binary MEC), the k-ploid Binary MEC problem becomes

NP-hard. However, the authors were not able to say whether there exists a constant-factor

approximation algorithm for the problem.

In the following sections, we propose two algorithms that allow to prove that k-ploid

MEC is in FPT when parameterized by coverage and number of haplotypes (Section 6.1)

and when parameterized by fragment length and number of haplotypes (Section 6.2). The

choice of parameters is reasonable, since, depending on the characteristics of sequencing

technologies, coverage or fragment length are usually limited by small constants. More-

over, species that naturally have more than 8 haplotypes are quite rare among higher-order

organisms.
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6.1 k-ploid MEC is in FPT when parameterized by coverage and num-

ber of haplotypes

In this section, we introduce a fixed-parameter tractable algorithm for k-ploid MEC when

parameterized by the coverage cov and the number k of haplotypes. The algorithm is based

on a dynamic programming approach and aims at finding a k-partition of minimum cost

for all the fragments. This algorithm extends on the k-ploid case the general idea used

in (Patterson et al., 2014) for solving the diploid MEC problem.

The algorithm iteratively proceeds column-wise and, at each step, computes a k-partition

for the fragments covered by the columns considered so far. The key idea for the fixed-

parameter tractability of the algorithm is to show that an optimal k-partition for all the frag-

ments can be built through this iterative procedure by adding, at each step, only a subset of

fragments whose cardinality is limited by the coverage.

Let M be a fragment matrix and p j be one of its columns. Then, we denote with F j =

(F j
1 , . . . ,F

j
k ) a k-partition for the fragments in AF (p j). Let p j1 , p j2 be two columns of M,

then we say that F j2 extends F j1 if and only if, for each e ∈ {1, . . . , k}, F j1
e ∩AF (p j2) ⊆ F j2

e .

If a k-partition F j1 is extended by a k-partition F j2 , it follows that we can easily build a k-

partition F j1, j2 for the fragments in AF (p j1 , p j2) such that F j1, j2 extends both F j1 and F j2 .

Therefore, it is easy to see that any k-partition for all the fragments covered by the first j

columns can be built starting from a k-partition for all the fragments covered by the first

j − 1 columns that induces a k-partition F j−1 for AF ( j − 1) and a k-partition F j for the

fragments in AF (p j) where F j extends F j−1.

We define D[ j,F j] as the minimum number of corrections to obtain a k-conflict free

matrix M′ from M on the first j columns such that M′ induces a k-partition F j for the

fragments in AF (p j). The value D[ j,F j] for each column p j and for each k-partition F j for
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AF (p j) can be computed by the following recursive equation:

D[ j,F j] = ∆( j,F j) + min
F j−1 extended by F j

D[ j − 1,F j−1] (5)

where F j−1 is a k-partition for AF (p j−1) and ∆( j,F j) is the “local contribution” of the

k-partition F j on column p j. Informally, ∆( j,F j) is the minimum number of corrections

needed for making the fragments in AF (p j) k-conflict free on column p j according to the

k-partition F j. Such a cost can be easily computed as ∆( j,F j) =
∑k

e=1 min(#0(F j
e ), #1(F j

e ))

where #u(F j
e ) = |{i | p j[i] = u}|, i.e. the number of fragments in F j

e with value u in column

p j.

The base case of the recurrence is D[1,F1] = ∆(1,F1) for each k-partition F1 for the

fragments in AF (p1). The optimum is minFm D[m,Fm] and a corresponding optimal k-

partition for all the fragments of the input fragment matrix can be computed by backtracking.

The algorithm computes the entries D[ j,F j] for each k-partition F j of the fragments

in AF (p j) and for each j in {1, . . . ,m}. Since the number of k-partitions for cov elements

is kcov, it follows that there are O(kcov m) entries. Given a k-partition F j, we need O∗(kcov)

time2 to enumerate all the k-partitions F j−1 extended by F j because we have to partition

all the fragments in the set AF (p j−1) \ AF (p j) (whose cardinality is clearly, at most, cov).

Since ∆( j,F j) can be computed in polynomial time, each entry D[ j,F j] can be computed

in O∗(kcov). It follows that the total running time of the algorithm is O∗(k2cov). Notice that,

by storing partial information during the computation (as suggested in Section 4), we can

decrease the complexity to O∗(kcov). We omitted a detailed analysis of the polynomial fac-

tors in the time complexity since it would require to explicitly describe how fragments and

partitions are represented and manipulated but it would not be useful for our purpose of

characterizing the parameterized complexity of the problem.

In conclusion, we prove the correctness of the algorithm.
2We recall that O∗(kcov) denotes the class O(kcovpoly(nm)), where nm is the size of the input.
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Lemma 14. Consider a fragment matrix M.

1. If D[ j,F j] = g, then there exists a k-conflict free matrix M′ obtained from M on

the first j columns with g corrections that induces a partition F j for the fragments in

AF (p j).

2. If M′ is a k-conflict free matrix obtained from M on the first j columns with g correc-

tions that induces a partition F j for the fragments in AF (p j), then D[ j,F j] ≤ g.

Proof. We prove the lemma by induction on j. Both statements obviously hold for j = 1.

Assume that lemma holds for j − 1, we show that both statements also hold for j.

(1) By Eq. (5), there exists a k-partition F j−1 for fragments in AF (p j−1) such that F j−1

is extended by F j and D[ j,F j] = ∆( j,F j) + D[ j − 1,F j−1]. By induction there exists a

k-conflict free matrix M′′ obtained from M on the first j − 1 columns with at least D[ j −

1,F j−1] corrections that induces a partition F j−1 for the fragments in AF (p j−1). Since F j−1

is extended by F j, there exists a k-partition F j−1, j that induces F j−1 when restricted to

AF (p j−1) and that induces F j when restricted to AF (p j). As a consequence, we can build a

fragment matrix M′ which is equal to M′′ on the first j− 1 columns and whose j-th column

is the correction of p j such that each part of F j is in accordance. Such a correction, as

explained before, needs to flip at least ∆( j,F j) elements of p j. Since M′′ is k-conflict free

and since no fragment in AF (p j)\AF (p j−1) is covered by one of the first j−1 columns, M′

is k-conflict free. Moreover, the total number of corrections needed to obtain M′ from the

first j columns of M is clearly equal to ∆( j,F j)+D[ j−1,F j−1] = D[ j,F j] by construction.

(2) Assume that M′′ is the submatrix of M′ obtained from M on the first j− 1 columns

with g′ corrections that induces a partition F j−1 for the fragments in AF (p j−1). Obviously,

since M′′ is equal to the first j−1 columns of M′, M′′ is k-conflict free and F j extends F j−1.

Since ∆( j,F j) is the minimum number of corrections needed to transform column p j into

column p′
j of M′ such that each part of F j is in agreement, we have that ∆( j,F j) + g′ ≤ g.
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By induction we know that D[ j − 1,F j−1] ≤ g′, hence we have that D[ j,F j] ≤ ∆( j,F j) +

D[ j − 1,F j−1] ≤ g. □

From the correctness of the algorithm, it directly follows that:

Theorem 15. k-ploid MEC is in FPT when parameterized by coverage and number of hap-

lotypes.

6.2 k-ploid MEC is in FPT when parameterized by fragment length and

number of haplotypes

In this section, we introduce a fixed-parameter tractable algorithm for k-ploid MEC when

parameterized by the fragment length ℓ and the number of haplotypes k. Recall that, for many

applications, both parameters are bounded by small constants. For example, the widespread

Illumina sequencing technologies produce reads spanning only one or a few SNP positions

and most species do not have more than 4–8 haplotypes.

This algorithm is based on a different approach than that presented in Section 4 for diploid

MEC because that algorithm heavily relies on the characterization of conflict free fragment

matrices given by Lemma 8 that cannot be easily extended to the k-ploid case. Indeed, one

of the key ingredients for proving the existence of the tripartition T in Lemma 8 (assertion 3)

is that each heterozygous column implicitly encodes a partial solution (that is, a bipartition

of the fragments covered by that column). As a consequence, the existence of a solution

for the fragments covered by any pair of heterozygous columns (i.e., their accordance) can

be easily checked by testing the equality or the complementarity between the two columns

on their shared active fragments. This idea cannot be directly applied to the k-ploid case,

since a single heterozygous column is clearly not sufficient to encode a k-partition (with k

non-empty parts). Groups of h columns (for some fixed h) could be a natural encoding of
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k-partitions, but, in this case, we cannot check their accordance only by testing the equality

or complementarity between these groups (as we do in the diploid case). Hence, a charac-

terization of k-conflict free fragment matrices based on the existence of a partition for the

columns (analogous to the tripartition T of the diploid case) seems not straightforward. No-

tice that the algorithm we introduce in this section for k-ploid MEC can be clearly applied

also to diploid MEC, but the one designed in Section 4 has a better time complexity.

The novel algorithm uses an approach similar to that of (He et al., 2010). In particular,

the algorithm, rather than k-partitioning the fragments, aims at the direct reconstruction of k

haplotypes such that each fragment aligns to one of them with the minimum total amount of

mismatches. Clearly, this is equivalent to computing a k-conflict free fragment matrix M′

obtained from M with the minimum amount of corrections. Indeed, given k haplotypes, a k-

conflict free matrix M′ can be computed in polynomial time by correcting each fragment in a

such of way that it perfectly aligns to its closest haplotype (in terms of Hamming distance on

non-hole elements). Intuitively, the algorithm, for each column p j, computes the minimum

number of mismatches needed for aligning each fragment ending at column p j or before to

a set of k haplotypes. Such a minimum number of mismatches is computed by partitioning

the fragments into two parts: (i) those ending exactly at column p j and (ii) those ending

strictly before (that is, on the left of) column p j. The key observation for reducing the time

complexity is that the set of fragments ending at column p j (denoted with E( j)) aligns to

a subvector (or a “window”) of each haplotype whose length is at most ℓ, where ℓ is the

maximum length of a fragment.

In the following, a haplotype window is an ℓ-long vector over {0, 1} and, as usual, given

a vector v, v[i1 : i2] represents the subvector of v between positions i1 and i2 (included and

1-based). We say that a haplotype window ĥ′ overlaps with another haplotype window ĥ if

ĥ′[2 : ℓ] = ĥ[1 : ℓ − 1]. We define D[ j, (ĥ1, . . . , ĥk)] as the minimum number of corrections
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needed by fragments in
∪ j

t=1 Et to reconstruct k haplotypes (h1, . . . , hk) such that, for each

he, he[ j − ℓ + 1 : j] is equal to ĥe. The algorithm proceeds column-wise computing the

value D[ j, (ĥ1, . . . , ĥk)] for each column p j and for each collection of k haplotype windows

(ĥ1, . . . , ĥk) as follows:

D[ j, (ĥ1, . . . , ĥk)] = ∆( j, (ĥ1, . . . , ĥk)) +min D[ j − 1, (ĥ′
1, . . . , ĥ

′
k)]

for each ĥ′
e overlapping with ĥe with 1 ≤ e ≤ k (6)

where ∆( j, (ĥ1, . . . , ĥk)) is the cost needed to align the fragments in E( j) to the haplotype

windows ĥ1, . . . , ĥk and that can be easily computed as follows:

∆( j, (ĥ1, . . . , ĥk)) =
∑

fi∈E( j)

min
ĥe

dH(ĥe, fi[ j − ℓ + 1 : j]) (7)

where dH is the Hamming distance between the two vectors. Without loss of generality and

for the sake of simplicity, we assume that if j − ℓ + 1 ≤ 0, then the expression dH(ĥe, fi[ j −

ℓ + 1 : j]) is replaced with dH(ĥe[ℓ − j + 1 : ℓ], fi[1 : j]) in Eq. 7.

The base case of the recurrence is D[1, (ĥ1, . . . , ĥk)] = ∆(1, (ĥ1, . . . , ĥk)) for each collec-

tion of haplotype windows (ĥ1, . . . , ĥk). Moreover, the algorithm returns the value min(ĥ1,...,ĥk) D[m, (ĥ1, . . . , ĥk)]

corresponding to the optimum, and a collection of k optimal haplotypes can be reconstructed

by backtracking.

The algorithm computes all the values D[ j, (ĥ1, . . . , ĥk)] for each position j from 1 to m

and for each collection of haplotype windows (ĥ1, . . . , ĥk). Each haplotype window is an ℓ-

long binary vector, hence the number of collections of k haplotype windows is 2kℓ. As a con-

sequence, O(m2kℓ) entries have to be stored for the backtracking phase. Furthermore, given

a position j and a collection of haplotype windows (ĥ1, . . . , ĥk), each entry D[ j, (ĥ1, . . . , ĥk)]

can be computed by Eq. (6) in time O∗(2k). Indeed, the number of collections of k haplo-

type windows overlapping (element-wise) with (ĥ1, . . . , ĥk) is 2k and ∆( j, (ĥ1, . . . , ĥk)) can be

computed in polynomial time, which is needed to obtain the minimum Hamming distance
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between each fragment (there are at most cov fragments ending at each position) and a haplo-

type window (of length ℓ) of the collection. It follows that the total running time is O∗(2kℓ+k)

and, by storing partial information, it can be decreased to O∗(2kℓ).

The following lemma shows the correcteness of the algorithm.

Lemma 16. Consider a fragment matrix M.

1. If D[ j, (ĥ1, . . . , ĥk)] = g, then k haplotypes (h1, . . . , hk) can be reconstructed with g

corrections from the fragments in
∪ j

t=1 Et such that, for each he, he[ j − ℓ + 1 : j] is

equal to ĥe.

2. If k haplotypes (h1, . . . , hk) are reconstructed from the fragments in
∪ j

t=1 Et with g cor-

rections, then D[ j, (ĥ1, . . . , ĥk)] ≤ g (with ĥe = he[ j−ℓ+1 : j], for each e ∈ {1, . . . , k}).

Proof. We prove the lemma by induction on j. Both statements obviously hold for j = 1.

Assume that lemma holds for j − 1, we show that both statements hold for j.

(1) By Eq. (6) there exists a collection of haplotype windows (ĥ′
1, . . . , ĥ

′
k) overlapping

(element-wise) with (ĥ1, . . . , ĥk) such that D[ j, (ĥ1, . . . , ĥk)] = ∆( j, (ĥ1, . . . , ĥk)) + D[ j −

1, (ĥ′
1, . . . , ĥ

′
k)]. By induction, there exists k haplotypes (h′

1, . . . , h
′
k) that can be reconstructed

with D[ j − 1, (ĥ′
1, . . . , ĥ

′
k)] corrections from the fragments in

∪ j−1
t=1 Et such that, for each h′

e,

h′
e[ j−ℓ : j−1] is equal to ĥ′

e. As a consequence, h′
e[ j−ℓ+1 : j−1] is equal to ĥe[1 : ℓ−1] for

each e in {1, . . . , k}. Let (h1, . . . , hk) be the collection of j-long haplotypes such that he[1 :

j − 1] = h′
e and he[ j] = ĥe[ℓ], for each e in {1, . . . , k}. Each fragment in E( j) aligns to one

of (h1, . . . , hk) with ∆( j, (ĥ1, . . . , ĥk)) total mismatches while, by induction, the fragments in∪ j−1
t=1 Et align with D[ j−1, (ĥ′

1, . . . , ĥ
′
k)] total mismatches. Hence, (h1, . . . , hk) is a solution of

k-ploid MEC on the fragments
∪ j

t=1 Et with cost g = ∆( j, (ĥ1, . . . , ĥk))+D[ j−1, (ĥ′
1, . . . , ĥ

′
k)].

(2) Let (ĥ′
1, . . . , ĥ

′
k) and (ĥ1, . . . , ĥk) be the collections of haplotype windows such that ĥ′

e

is equal to he[ j−ℓ : j−1] and ĥe is equal to he[ j−ℓ+1 : j] for each e in {1, . . . , k}. We assume

36



that g′ is the number of corrections needed by fragments in
∪ j−1

t=1 Et to reconstruct the haplo-

types (h1[1 : j − 1], . . . , hk[1 : j − 1]). By induction, it follows that D[ j − 1, (ĥ′
1, . . . , ĥ

′
k)] ≤

g′. By construction, ∆( j, (ĥ1, . . . , ĥk)) is the minimum number of corrections that frag-

ments in E( j) need for reconstructing the haplotype windows (ĥ1, . . . , ĥk). Hence, g ≥

∆( j, (ĥ1, . . . , ĥk)) + g′ ≥ ∆( j, (ĥ1, . . . , ĥk)) + D[ j − 1, (ĥ′
1, . . . , ĥ

′
k)] ≥ D[ j, (ĥ1, . . . , ĥk)]. □

From the correctness of the algorithm, it directly follows that:

Theorem 17. k-ploid MEC is in FPT when parameterized by fragment length and number

of haplotypes.
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7 Conclusions

Minimum Error Correction is a prominent combinatorial problem for haplotype assembly.

Investigating the approximation complexity and the fixed-parameter tractability of MEC

has proven useful to develop practical haplotype assembly tools (Bansal and Bafna, 2008;

Patterson et al., 2014; He et al., 2010; Pirola et al., 2015b). Despite in this paper we ad-

dressed some issues that were left open, some other theoretical questions still need an an-

swer.

In this work, we showed that, under the Unique Games Conjecture, MEC is not ap-

proximable within any constant factor. However, the approximation complexity of Gapless

MEC and the computational complexity of Binary MEC are still unknown. It would be

interesting to explore whether Lemma 1, that we used in this paper for achieving a direct

2-approximation algorithm for Binary MEC and an FPT algorithm for Gapless MEC, is also

useful for answering to these open questions.

In Section 6.2, we presented a fixed-parameter algorithm for k-ploid MEC when param-

eterized by fragment length ℓ and the number k of haplotypes. If applied on diploid MEC,

it has a worse time complexity than that specifically presented for the diploid case (Sec-

tion 4). Unfortunately, the algorithm for diploid MEC relies on Lemma 8, that cannot be

easily extended to the k-ploid case. For this reason, another interesting research direction is

to investigate whether a novel definition of accordance can be proposed in order to extend

both Lemma 1 and the characterization of conflict free fragment matrices given by Lemma 8

to the k-ploid case and, hence, to derive a parameterized algorithm based on such a charac-

terization.

Recent advances in sequencing technologies are radically changing the characteristics

of the produced data. For example, long gapless reads with sequencing errors uniformly
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distributed will likely be common in the near future. The design of FPT algorithms that

exploit these characteristics has been recently started by Pirola et al. (2015b) but further

improvements (either of the underlying models or of the algorithm’s time complexity) will be

essential to face the growing availability of these data. Furthermore, the drop in sequencing

costs allows large-scale studies of rare diseases. In fact, they are usually caused by rare

mutations that can only be reliably discovered by sequencing several related individuals.

Hence, we expect an increasing interest in the study of new formulations extending MEC

on structured populations (where additional constraints induced by the Mendelian laws of

inheritance improve the accuracy of the reconstructed haplotypes (Pirola et al., 2012)), as

initially done in (Halldórsson et al., 2011).
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Figure 1: A 3×4 fragment matrix (left) and the associated fragment graph (right). Fragment-
nodes are in black, while entry-nodes are in white.
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Figure 2: The set AC( fi) of active columns for a fragment fi. There are r columns p j to the
right of fi such that there exist two fragments fb, fq with b < i < q and p j[b], p j[q] , −.
Since fragments are sorted by starting position, we have that |AC( fi)| = ℓi + r ≤ ℓb ≤ ℓ.



Table 1: Current knowledge of computational complexity, approximability, and fixed-
parameter tractability for MEC and its variants, Gapless MEC and Binary MEC. Notice
that the expression “all-het” states that the corresponding result holds only under the all-
heterozygous assumption, while UCG is the Unique Games Conjecture by Khot (2002). The
results on parameterized complexity hold for MEC, hence the negative result holds only for
MEC while the positive results also hold for its restrictions.

Computational
complexity

Approximability
Parameterized
complexity

MEC
NP-hard
(Lippert et al., 2002)

APX-hard
(Cilibrasi et al., 2007)

< APX under UGC
O(log nm) approxim.
(Sect. 3)

< XP on cp and c f

(only MEC, Sect. 3)

FPT by ℓ (all-het)
(He et al., 2010)

FPT by cov
(Patterson et al.,
2014)

FPT by ℓ (Sect. 6.2)

FPT by h (Sect. 3)

Gapless MEC NP-hard
(Cilibrasi et al., 2007)

?

Binary MEC ?

PTAS
(Ostrovsky and Rabani,
2002; Jiao et al.,
2004)

Simple direct 2-
approx
(Sect. 5)

n number of fragments; m number of SNPs/columns;
ℓ maximum fragment length; cov maximum coverage;
h minimum number of corrections; cp/c f maximum number of non-hole elements on each col-
umn/fragment;



Table 2: Current knowledge of computational complexity, approximability, and fixed-
parameter tractability for the newly introduced k-ploid MEC and its variants, k-ploid Gapless
MEC and k-ploid Binary MEC. The results on parameterized complexity hold for k-ploid
MEC, hence the negative result holds only for k-ploid MEC while the positive results also
hold for its restrictions.

Computational
complexity

Approximability
Parameterized
complexity

k-ploid MEC NP-hard when k = 2
(Sect. 6)

< APX when k = 2
under UGC (Sect. 6)

< XP on cp, c f , and
k (only k-ploid
MEC, Sect. 6)

FPT by cov and k
(Sect. 6.1)

FPT by ℓ and k
(Sect. 6.2)

k-ploid
Gapless MEC

NP-hard when k = 2
(Sect. 6)

?

k-ploid
Binary MEC

NP-hard
(Cilibrasi et al., 2007)

PTAS
(Ostrovsky and Rabani,
2002; Jiao et al.,
2004)

ℓ maximum fragment length; cov maximum coverage;
cp/c f maximum number of non-hole elements on each column/fragment;


