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ABSTRACT

In this study, we present an application paradigm in which an unsupervised machine
learning approach is applied to the high-dimensional influenza genetic sequences to in-
vestigate whether vaccine is a driving force to the evolution of influenza virus. We first
used a visualization approach to visualize the evolutionary paths of vaccine-controlled and
non-vaccine-controlled influenza viruses in a low-dimensional space. We then quantified
the evolutionary differences between their evolutionary trajectories through the use of
within- and between-scatter matrices computation to provide the statistical confidence to
support the visualization results. We used the influenza surface Hemagglutinin (HA) gene
for this study as the HA gene is the major target of the immune system. The visualization is
achieved without using any clustering methods or prior information about the influenza
sequences. Our results clearly showed that the evolutionary trajectories between vaccine-
controlled and non-vaccine-controlled influenza viruses are different and vaccine as an
evolution driving force cannot be completely eliminated.
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1. INTRODUCTION

The rapid growth of the influenza genome sequence data due to the advanced development of se-

quencing technology in recent years has provided the opportunity for a more comprehensive sequence

analysis of the influenza virus. The difficulty in sieving through and making sense of this mountain of data

relying solely on phylogenetic approaches has become increasingly limited, in part, due to the poor scalability of

the relevant algorithms (Nicholas, 2007). Therefore, a different methodology needs to be utilized to take

advantage of the massive amount of available data but at the same time to be able to expose important

information or structure within the data. Here, we present an application paradigm in which an unsupervised

machine learning approach is applied to the high-dimensional influenza genetic sequences so that the evolution

of the vaccine-controlled and non-vaccine-controlled influenza viruses in the past century can be visualized. The

main objectives of this study are twofold: (1) to visualize the evolution trajectories of influenza under vaccine

pressure and in the wild without using any prior information about the viruses and (2) to provide statistical

1Minnesota Supercomputing Institute, University of Minnesota-Twin Cities Campus, Minneapolis, Minnesota.
2Department of Computer Science and Engineering, University of Minnesota-Twin Cities Campus, Minneapolis,

Minnesota.
3Department of Veterinary Population Medicine, University of Minnesota-Twin Cities Campus, St. Paul, Minnesota.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 24, Number 8, 2017

# Mary Ann Liebert, Inc.

Pp. 787–798

DOI: 10.1089/cmb.2017.0025

787



confidence to support the visualization results. The influenza virus is believed to have originated from a natural

reservoir consisting of wild aquatic birds (Webster et al., 1992; Taubenberger and Kash, 2010).

The influenza A virus is divided into subtypes based on differences in the surface proteins hemag-

glutinin (HA) and neuraminidase (NA), which are targets of the human immune system. Antigenic

variants or immunologically distinct strains of A/H1N1, A/H3N2, and Type B have continued to emerge

since its introduction into humans (Schweiger et al., 2002). Vaccination is the main strategy in stopping

the infection and transmission of the virus in humans (Hannoun, 2013). There are three components in a

seasonal flu vaccine: (1) A/H1N1, (2) A/H3N2, and (3) Type B influenza. Each component is designed to

fight the specific strain in each subtype that is predicted to be the dominant circulating strain in the

upcoming flu season. Over the years, there have been more than 24 vaccine updates for the A/H3N2

strain, more than 17 updates for the Type B strain, and 10 updates for the A/H1N1 strain. Each vaccine

update is designed to provide immunity to the new antigenic variant that has emerged from the previous

flu season. However, the long-term effects of vaccination on the evolution of the virus itself are not clear.

To shed light on this seemingly unsuspected problem, we used the nucleotide sequences from seasonal

human A/H3N2 influenza virus from 1971 to 2016 as an example to demonstrate the evolutionary progress

of this influenza virus against each successive vaccine introduction from 1971 to 2016. Figure 1 shows

progression of influenza evolution based on the nonsynonymous substitutions (dN) and synonymous

substitutions (dS) ratio analysis by using the HA1 domain of the HA gene from A/H3N2 virus. However,

some flu seasons did not provide sufficient information of the vaccine strain accession number; thus, the

actual plot did not ascend at 2016. The HA1 domain is a hypervariable domain of the HA gene where

constant mutational changes can be observed due to the immune pressure generated from the host. A dN=dS

ratio greater than 1 indicates that the site is under positive selection pressure and is undergoing molecular

adaptation. In Figure 1, a constant shift of positively selected sites (blue color: dN=dS ratio greater 1) could
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FIG. 1. Seasonal human A/H3N2 influenza dN=dS ratio analysis against time of vaccine introduction. A constant

shift of positively selected site location when a new vaccine was introduced. Horizontal axis represents the position of

HA1 domain of the HA gene. Vertical axis represents time progression from 1971 (bottom) to 2016 (top) when each

new (green square) and repeated (black square) vaccine was introduced. Red color bars denote the range of positions,

with dN=dS ratio from 0.8 to 1. Blue color bars denote the range of positions, with dN=dS ratio greater than 1. HA,

hemagglutinin.
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be observed whenever a new vaccine (green square) was introduced, which indicated that a new antigenic

variant had emerged.

When a repeated vaccine was introduced, the positively selected sites identified from the previous season

tended to remain unchanged; even though there were some years that blue sites changed, red regions

indicated the possible regions where the actual positively selected sites might have settled. If multiple

vaccines are recommended and at least one of them is recommended in the previous year, one still regards

that the current year has updated the vaccine recommendation; however, if the same multiple vaccines are

recommended for two successive years, they will be regarded as repeated strains, and different strains of this

set will be run in the program for these 2 years. Given the results from the dN=dS ratio analysis, we compared

the evolution trajectories of vaccine-controlled with non-vaccine-controlled influenza viruses and sought to

better understand the effect of vaccination on the evolution of the influenza virus. In the present study, we

used the human A/H3N2, A/H1N1, Type B, and avian H5 HA sequences as the vaccine-controlled samples.

We used the human H5N1 and avian H5N1 HA sequences as the non-vaccine-controlled samples.

2. BACKGROUND

Influenza viruses have the ability to infect a very broad range of avian and mammalian hosts. Their

genomic diversity is acquired through two biological mechanisms: antigenic drift and antigenic shift

(Webster et al., 1992). Antigenic drift consists of the accumulated and continual mutations on surface

proteins, resulting in the generation of antigenic variants. Of these surface proteins, we are focused on

the HA protein. Antigenic shift occurs when complete gene segments are exchanged among different

subtypes of influenza viruses within a host cell, resulting in what effectively amounts to a whole new

influenza virus genome. Both antigenic drift and antigenic shift allow for the virus to evade the host’s

immune response and to rapidly adapt to new hosts (Suzuki, 2006; Caron et al., 2009). The evolution of

influenza A virus is driven by the high rate of mutations and the ability to reassort gene segments.

Because of its high rate of mutation combined with the lack of error-correcting mechanisms during

replication, the influenza virus can easily generate different phenotypes that have the ability to survive

within its host and to infect others.

To keep track of the evolution of the virus, an annual update to the influenza vaccine composition is

needed to provide a vaccine-induced immunity to the general public (Boni, 2008). The main process in

influenza vaccine strain selection is to assess the match between the vaccine strain and the currently

circulating strains and the potential new antigenic variant (Russell et al., 2008). If the vaccine strain does

not match the currently circulating strains or the new antigenic variant that is likely to be the major variant

in the upcoming influenza season, the vaccine composition is updated to contain a representative of the new

variant (Russell et al., 2008). Each vaccine update is designed to provide immunity to the new antigenic

variant that has emerged from the previous flu season. The seasonal influenza vaccine is used to prevent the

infection and transmission of the virus, but its effect on the evolution of the virus itself is not clear.

3. METHODS

In this study, utilizing the online NCBI influenza database (Bao et al., 2008), we collected HA sequences

from human A/H3N2, A/H1N1, Type B, and avian H5 HA sequences that represent the vaccine-controlled

samples. We also collected human H5N1 and avian H5 HA sequences that represent the non-vaccine-

controlled samples. Table 1 lists the year range and number of HA nucleotide sequences from each sample.

To focus on evolution trends in more recent years, we incorporated recent year data collected from 2007 or

2008 onward and randomly chose the same number of samples for each year.

3.1. Influenza evolution visualization

All genetic sequences were first converted into binary strings according to the method outlined in Lam

et al. (2012). Nucleotide sequences are represented by strings of characters out of an alphabet of four

letters: A, C, G, T. To obtain the binary string, each letter is replaced by a code of 4 bits: 1000, 0100, 0010,

and 0001, respectively. In the meantime, nucleotide sequences have some ‘‘wild cards’’ for cases where a

single A, C, G, or T cannot be perfectly determined. We, therefore, regarded that they might appear equally
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possibly. For instance, if Y stands for C or T, then we use 0101 to represent it. All binary strings were

collected into a matrix to which Principal Component Analysis (PCA; Jolliffe, 2002) was applied to extract

the dominant variation from the dataset. Here, we briefly outline the sequence of steps involved in the PCA.

Consider a data matrix Xm‚ n of dimensions m by n, with m being the number of strains and n being the

number of sites or positions (in this case, n = 987 · 4 = 3948 for nucleotide sequences). Each row of X

corresponds to a strain of virus, and each column of X corresponds to a particular position. We first center

the columns of the data matrix X with X̂ = X - 1
m

eeT X, where e is a column vector of all ones, and then we

obtain the sample covariance matrix C from X̂ by C = 1
(m - 1)

X̂T X̂. C is a square symmetric n · n matrix whose

diagonal entries are the variances of the individual sites across strains, and the off-diagonal terms are the

covariances between different sites.

The PCA algorithm is then applied to matrix C. The result is then visualized by plotting the top two or

three principal components of the projected data. Since each strain is encoded as a binary string and PCA

works at the binary data level, the pairwise distance relationship between the strains in a reduced space can

be understood as follows: Let k s - tkH denote the pairwise Hamming distance between two strains s‚ t

(number of differences in genetic sequences). Let k s - tkbin 1, k s - tkbin 2 denote the distance between

the binary encodings of the two sequences (1-norm and 2-norm, respectively), and let k s - tkproj denote

the 2-norm distance in lower-dimensional space after projection onto the leading principal components.

Every single change in the genetic sequence alphabet corresponds to changes to 2 bits in the binary

encoding. Hence, we have the relationship between the distance in the lower-dimensional space shown

on the plots, with the Hamming distance among the original sequences: k s - t k2
proj� k s - t k2

bin 2 =
k s - tkbin 1 = 2 k s - tkH .

3.2. Quantification

To provide statistical support to the graphical results obtained, we performed a statistical analysis

based on a method that combined a multi-class scatter matrix computation and class labels randomi-

zation. The projected data points served as the viruses’ two-dimensional (2D) coordinates, and the year

of isolation of each virus served as the class label. The multiclass scatter matrix involves the compu-

tation of between-class matrix (B) and within-class matrix (W; Box 1). These computed matrices were

not used explicitly as we only sought the trace of B and W. These are just the scalar scatter values: sum

of squared distances between points and their respective centers. The class separateness measure ko is the

ratio of trace B over trace W. A large ko indicates that the classes or clusters are well separated between

each other and that elements within a cluster are strongly related or share the same property. This is

basically an estimate on how well a multi-class Fisher’s linear discriminant could separate the classes

(Alpaydin, 2010). A class label randomization algorithm (Algorithm 1) provided the ‘‘distance measure’’

as a surrogate for the probability of observing the observed ko by chance. This is because the area under

the tail of the randomized k distributions beyond the observed separateness values was below a rounding

error of 10 - 16, which made the computation of p value not possible. The larger the distance, the less

likely the observed ko is generated by chance. We have also computed the k�o by using the new data

collected from 2007 or 2008 onward.

Table 1. Vaccine-controlled and Non-vaccine-controlled

Human and Avian Sequences

Samples Year Sequences

Human A/H1N1 1918–2013 2140

Human A/H1N1a 2008–2016 1440

Human A/H3N2 1968–2009 175

Human A/H3N2a 2007–2016 1168

Human B (Vict/Yam) 1970–2013 818

Human B (Vict/Yam)a 2008–2016 920

Human H5N1b 1997–2012 127

Avian H5 (Mexico) 1994–2002 32

Avian H5 (China)b 1997–2002 32

aVaccine.
bNon-vaccine.
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4. RESULTS

The application of the high-throughput unsupervised method to the high-dimensional influenza virus

genetic sequence data has made possible the visualization of the evolution of the influenza virus in the span

of almost half a century. In this study, we present the graphical results from visualization of vaccine-

controlled and non-vaccine-controlled influenza viruses based on their genetic sequences alone. The human

influenza A/H3N2 has the highest number of vaccine updates among the three vaccine-controlled influenza

viruses circulating in humans. Given the observation about the constant shifting of positively selected sites

whenever a new vaccine was introduced, we sought to visualize the evolution trajectories of vaccine-

controlled and non-vaccine-controlled influenza samples. We also set out to compute the separateness

values of class or clusters for both vaccine-controlled and non-vaccine-controlled samples by using the

multi-class scatter matrix computation method for both the before and after class labels randomization

process. We performed 1000 runs of Algorithm 1 on these samples and listed the results in Table 2. The

observed separateness values ko of vaccine-controlled samples are consistently higher than those of the

non-vaccine-controlled samples. This suggested that the vaccinated samples have a very good separability

by isolation years.

In Figure 2, we observed that the human A/H3N2 viruses clustered around vaccine seed strains chrono-

logically since their introduction into humans in 1968. The evolution trajectory is directional, going from

lower left to lower right in the figure. In Figure 3a, two separate lineages of human Type B influenza are co-

circulating and each lineage shows the same observational characteristics as the A/H3N2; type B viruses are

also clustered around vaccine seed strains. Next to it, Figure 3b shows the trajectories of two lineages

(Yamagata and Victoria) that eventually got completely separated. Even though it is only the situation in the

United States, separateness is quite clear. Black circles as vaccine strains are shown only in one of the lineages

because only one virus in the United States was chosen for a vaccine strain, which is from Yamagata lineage.

Since the classical H1N1 virus was replaced by the pandemic swine H1N1 strain, we focused on its evolution

trend from 2008 onward. H1N1 behaved actively as two jumps (or ‘‘V’’ shapes), which are seen in Figure 4.

One was in 2013, whereas the other was in 2015. These two discontinuities indicated abrupt changes in gene

sequences from their correspondingly previous years, so the evolution trends suddenly jumped in completely

Box 1:

Virus isolation year as class label

C: Number of classes

Ni: Number of data points in class i = 1‚ 2‚ . . . C

� k = tr(B)
tr(W)

� B: Between-class scatter matrix

–
PC

i (ui - M)(ui - M)T

– M = 1
c

PC
i ui ‘‘global mean of dataset’’

� W: Within-class scatter matrix

–
PC

i

PNi

j (xj - ui)(xj - ui)
T

– ui: Mean of class i

Algorithm 1: Estimate Separateness Measures

Let ko = tr(Bo)
tr(Wo)

be the observed separateness value.

Repeat j = 1 : K2

Repeat i = 1 : K1

Generate a randomization of the class labels

Compute the within-cluster scatter W

Compute the ratio ki = tr(B)
tr(W)

= tr(T) - tr(W)
tr(W)

Compute the mean l and std r for all ki = 1‚ ::K1

Compute the distance dj = l - k0

r
Compute the mean �d and std d̂ of all dj = 1::K2

Report the distance of ko from the mean in the form of �d � d̂
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different directions. However, Hamming distance plot shows that even the mutation rate between 2008 and

2016 was considerably low, *3%, let alone the mutation rate between two consecutive years. There is, hence,

not sufficient evidence to speculate about mutation. A vaccinated avian sample was used (avian H5) to further

understand the evolution characteristic of vaccine-controlled influenza.

In late 1993, an outbreak of avian H5 influenza in poultry in Mexico was detected and a long-term

vaccination program was implemented in the hope of bringing the outbreak under control and of eradi-

cating the virus (Lee et al., 2004; Escorcia et al., 2008). The vaccination program was in effect for more

than 13 years, but an increase in the respiratory signs of disease was observed in vaccinated chickens

(Escorcia et al., 2008). In other words, the vaccine strain used in the vaccination program no longer

matched the circulating strain in the field. The vaccine strain (A/Ck/Mexico/CPA-232/1994) was isolated in

1993 and has been in use for the duration of the program for more than a decade. Using the available

genetic HA sequences from these vaccinated chicken, we produced a three-dimensional (3D) PCA plot

(Fig. 5) to show the evolution of the field isolates from 1994 to 2002. The first observation from Figure 5 is

FIG. 2. Seasonal human A/H3N2 influenza virus evolution trajectory. Each arrow points to a vaccine seed strain (red

dot). The directional evolution can be seen as traveling from lower left to the top and then coming down to the lower right.

Table 2. Class Separateness Results:

Vaccine- and Non-vaccine-controlled Human and Avian Samples

Sample (human) ko k�o Distance Distance

A/H3N2 (1968–2009/2007–2016b) 30.5 2.72 978.3 – 0.031 1031 – 0.031

B: Victoria (1970–2013/2008–2016b) 26.3 4.09 1310 – 0.02 499.1 – 0.0154

B: Yamagata (1970–2013/2008–2016b) 25.3 0.68 1327.8 – 0.019 105.2 – 0.0029

A/H1N1 (1918–2013/2008–2016b) 24.7 5.74 617.2 – 0.04 2787 – 0.82

H5N1 (1997–2002)a 1.0 — 34.8 – 0.029 —

Sample (avian) ko k�o Distance Distance

Avian H5 Mexico (1994–2002) 1.7 — 12.23 – 0.11 —

Avian H5N1 China (1997–2002)a 0.268 — 3.16 – 0.0.6 —

aNon-vaccine.
bVaccine.
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FIG. 3. Seasonal human Type B influenza virus evolution trajectory. Two separate lineages (Victoria and Yamagata)

are evolving simultaneously: (a) top to lower left and to lower right and diverging further (b). Vaccine introductions are

indicated by year labels in (a) and shown as black circles in (b).
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that a directional evolutionary trend similar to other vaccinated samples can be seen in this figure. Second, a

chronological pattern is obvious, indicating that the virus had undergone constant evolution or antigenic

drift away from the early strains. A split in the evolutionary path can be seen occurring in the 1990s. This

split or divergence has been reported in studies by Lee et al. (2004) and Escorcia et al. (2008) based on

phylogenetic analyses conducted on the same sequence sample.

Figure 6 illustrates the evolution trajectory of the non-vaccine-controlled human H5N1 influenza

from 1997 to 2002. We included the human H5N1 virus as the ‘‘control’’ since this subtype is not

currently being vaccinated against in humans but is under active research due to its high mortality rate

FIG. 4. Seasonal human H1N1 influenza virus evolution trajectory in three dimensions. Vaccine strains are black

crosses.

FIG. 5. Vaccine-controlled avian H5 influenza virus evolution trajectory in three dimensions. The vaccine was intro-

duced in early 1990s, and the virus slowly evolved away from the vaccine strain and established two separate lineages.
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in infected humans. Figure 6 suggests that this subtype has evolved into a few dominant clusters since

1997. Three major evolutionary trends or clustering patterns can be seen originating from the center

cluster that contains viruses from 1997. This also implies that this influenza subtype has undergone HA

gene diversification. Although it has diversified since 1997, the specific H5 HA gene identified in 1997

has remained present in these days (Wei et al., 2012).

FIG. 6. Non-vaccine-controlled human H5N1 influenza virus evolution trajectory in three dimensions. The virus has evolved

into a few dominant lineages since 1997. Three major evolutionary lineages can be seen originating from the center cluster,

which contains viruses from 1997. However, the specific H5 HA gene identified in 1997 has remained present in these days.

FIG. 7. Non-vaccine-controlled avian H5 influenza virus evolution trajectory in three dimensions. Multiple clusters

scattered throughout, sharing almost the same time periods, thus suggesting the co-circulation of multiple clades or

sublineages of the avian H5 subtype.
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Figure 7 shows the evolution of the non-vaccine-controlled avian H5 influenza virus. The overall

observation that arises from this figure is that rather than forming a restricted directional trend, the

evolution of the virus is characterized by a collection of clusters scattered on the plot. The collection of

clusters suggests a diverse pool of the genetic diversity of the virus. For the avian H5 subtype, a less

focused evolutionary trend than vaccine-controlled influenza viruses can be observed. The increased ge-

netic diversity since 2000 has been observed by Garcia et al. (1997) and is captured in this figure, with

clusters scattered to the left and extended to the upper and lower corner at almost the same time. This

clearly suggests the co-circulation of multiple clades or sublineages of the avian H5 subtype. The diverse

genetic diversity of the avian H5 represented by multiple clusters across a long time period indicated that

the avian subtype in the wild evolves much slower than seasonal human influenza viruses.

5. DISCUSSION AND CONCLUSIONS

Vaccination is the principal measure for preventing influenza and for reducing its impact (Wood et al.,

2001; Webby et al., 2004). Almost a century ago after the isolation of the first influenza virus, influenza

vaccines have been persistent and have evolved to respond to the evolution of the influenza viruses evolving

in humans (Gunn et al., 2010; Hannoun, 2013). Antigenic drift of influenza viruses occurs frequently among

circulating strains, which leads to new antigenic variants. However, whether the drift mechanism occurs with

the presence of vaccine pressure is an important question that needs to be addressed at a different level as

vaccination is the primary method in the prevention and protection of humans against the influenza virus.

Two studies (Lee et al., 2004; Hensley et al., 2009) have shown that vaccination forces mutations on the HA

protein of the influenza virus. These mutations changed the way in which the virus gradually evolved and

adapted to a new vaccine-protected environment. Here, we extended the spectrum of analysis to include

vaccine-controlled human and avian samples and non-vaccine-controlled human and avian samples to better

compare and contrast and understand the evolutionary dynamic of influenza viruses under vaccine pressure.

Using vaccinated and non-vaccinated samples from both human and avian hosts, we hope to minimize

potential data selection bias and at the same time to provide a fair comparison across hosts under vacci-

nation pressure. Our method utilized only the genetic composition of the HA sequences alone without using

any specific clustering algorithms. As mentioned earlier and shown in Figure 1, genetic sequences contain

important signals that are used to detect evolutionary trends between different influenza subtypes under

vaccination pressure. The genetic composition combined with the implicit positional information of the HA

gene is enough to provide clues that the vaccine-controlled influenza viruses are under pressure to mutate to

escape immune responses. Our method takes advantage of the binary coding of each sequence that pre-

serves the positional information of each HA gene.

In this study, we have demonstrated that the evolutionary trajectories for vaccine-controlled influenza are

directional and restricted. The restricted directional evolutionary trends and clusters formation around the

vaccine strains along the evolutionary paths exhibited by the vaccine-controlled influenza viruses are in

sharp contrast to the non-vaccine-controlled influenza viruses. Apart from this distinction, the naturally

emerged chronological ordering of vaccine-controlled influenza viruses in both 2D and 3D visualizations is

much more noticeable than the non-vaccine-controlled viruses. This natural chronological ordering reflects

the active adaptation of the viruses to their changing environment. The class separateness measure exposes

the fact that vaccine-controlled influenza viruses that share the same isolation year have the tendency to

cluster tightly together with good separateability. Each separate cluster or group represents a distinct

genetic diversity of the virus group. In contrast, non-vaccine-controlled influenza viruses that were isolated

within the same time period appeared to be more scattered, and the clusters exhibited a much larger within-

cluster distance with no narrow restricted bands being observed. These observations suggested that the

mutations on the HA gene were not restricted to certain sites alone and that the majority of these mutations

were most likely synonymous nucleotide substitutions on the HA gene.

Also, the number of clusters observed are almost identical to the number of vaccine updates for the

seasonal human A/H3N2 and influenza B viruses. The very low value of ko computed from non-vaccine-

controlled influenza viruses has clearly captured the fact that non-vaccine-controlled viruses are not ac-

tively evolving by the year. In contrast, the vaccine-controlled influenza viruses have been actively

evolving and adapting to the changing environment constantly as new vaccine composition is being

introduced year after year. This is clearly reflected in the very high ko value for vaccine-controlled
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influenza viruses. Evidently, the same observation can be drawn from k�o values. The absolute k�o values are

notwithstanding far less than those from longer year spans since k�o describes a shorter time, which makes

far less groups.

Another consequential observation is that Yamagata lineage shows far less separateness values than any

other k�o. It may confound one if one looks at Figure 3b because Yamagata lineage, at the left, seems to have

a very well-spread line. Nonetheless, if one looks carefully, viruses from each year as a matter of fact

bounce back and forth along this line, which explains them not being successfully separated. Although our

analysis was based on genetic sequences alone, the results suggested that a clear difference existed among

influenza viruses evolving in a vaccine-protected environment than in the wild. This difference is shown

through the multi-class scatter computation of their evolutionary paths. This quantitative measurement also

serves as a basic statistical support to the observed differences in the evolution dynamics between vaccine-

controlled and non-vaccine-controlled influenza viruses.

There are other potential factors besides vaccination that can affect the evolution of influenza viruses,

such as host-specific immune response, the large difference in life expectancy between humans and avian

species, vaccine efficacy and effectiveness, the transmission channel of the virus in a different environment,

and geographical regions. These factors have not been considered in this present study because our overall

objective is to present a genetic sequence-only approach as the first step in understanding the evolution of

influenza viruses in a protected environment. Our approach works directly at the sequence level with no

prior assumption about the evolution of the virus. It is a departure from the traditional one-dimensional

phylogenetic approach in that we visualize influenza evolution in 2D and 3D space. All phylogenetic methods

make or rely heavily on the assumptions about the underlying evolutionary process ( Jenkins et al., 2002).

By using methods that avoid making assumptions about the parentage relations among the strains, we

can avoid possible misinterpretation of the results. As has been shown in this article, a data-driven approach

with no prior assumptions about the evolution of the influenza virus affords us a different perspective in

directly visualizing how the virus evolves in a span of more than half a century. This perspective has given

us insight into the way we think about the driving forces behind the emergence of human seasonal influenza

antigenic variant strains season after season. Perhaps, vaccination did play a role in forcing the virus to

undergo a different evolutionary path to continue to establish itself in its occupied host. A definitively

scientific conclusion cannot be drawn without a thorough study of the virus in a controlled experiment for

an extended period, which should, nonetheless, include multiple influenza epidemics in humans.
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