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ABSTRACT

The increasing quality and the reducing cost of high-throughput sequencing technologies for 16S
rRNA gene profiling enable researchers to directly analyze microbe communities in natural
environments. The direct interactions among microbial species of a given ecological system can
help us understand the principles of community assembly and maintenance under various
conditions. Compositionality and dimensionality of microbiome data are two main challenges
for inferring the direct interaction network of microbes. In this article, we use the logistic
normal distribution to model the background mechanism of microbiome data, which can ap-
propriately deal with the compositional nature of the data. The direct interaction relationships
are then modeled via the conditional dependence network under this logistic normal assump-
tion. We then propose a novel penalized maximum likelihood method called gCoda to estimate
the sparse structure of inverse covariance for latent normal variables to address the high
dimensionality of the microbiome data. An effective Majorization-Minimization algorithm is
proposed to solve the optimization problem in gCoda. Simulation studies show that gCoda
outperforms existing methods (e.g., SPIEC-EASI) in edge recovery of inverse covariance for
compositional data under a variety of scenarios. gCoda also performs better than SPIEC-EASI
for inferring direct microbial interactions of mouse skin microbiome data.

Keywords: compositional data, direct interaction, inverse covariance matrix, microbial network,

latent variable model, majorization-minimization algorithm.

1. INTRODUCTION

M icrobes exist everywhere in natural environments; these microbiota can significantly impact the

health of humans, and their interactions are implicated in varied human health conditions (Pflughoeft

and Versalovic, 2012). Analysis of natural microbial communities can help us explore the way in which

microbes affect their host or living environment. The high-throughput sequencing technologies, such as 16S

rRNA gene profiling, provide an uncultivated microbial sampling strategy for diverse natural microbe
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communities (Kuczynski et al., 2012). The abundances of the underlying microbial species are quantified by

operational taxonomic units (OTUs) counts. But the counts, which are usually converted into compositional

data such as proportions based on total counts in one sample, only represent relative abundances of microbial

species owing to different collection scales and various sequencing depths. This feature of microbiome data is

called compositionality. Statistical analysis of such compositional data presents unique challenges since the

constant sum’s restriction can bring spurious results if it is ignored [e.g., correlation analysis (Pearson,

1897)]. In addition, the microbiome data are very high dimensional, with the number of measured OTUs

often larger than the sample size. Such high dimensionality also presents statistical challenges for statistical

inference, such as the inverse covariance estimation (Friedman et al., 2008).

An important goal of microbial ecology study is inferring the microbial interaction network in specific

environments from the observed high-dimensional and compositional microbiome data (Faust and Raes,

2012; Weiss et al., 2016). Interactions can be divided into two types: direct interaction and indirect

interaction. Direct interaction means the impact of one microbe on the other with no mediation through a

third one, whereas indirect interaction is the impact between two microbes that are mediated or trans-

mitted through a third one. Several methods have been proposed to infer the correlation network for

microbiome studies (Faust et al., 2012; Friedman and Alm, 2012; Ban et al., 2015; Fang et al., 2015; Cao

et al., 2016).

But compared with pairwise correlation dependences that include both direct and indirect interactions,

researchers are often more concerned with the conditional dependences that describe the direct interactions

(Friedman, 2004). Biswas et al. (2016) proposed an algorithm called MInt to learn direct interactions based

on a Poisson-multivariate normal hierarchical model from microbiome sequencing experiments. But MInt

does not explicitly account for the compositional nature of microbiome data. Kurtz et al. (2015) proposed

an approximate method called SPIEC-EASI to infer direct interactions in microbiome studies. The key

assumption of SPIEC-EASI is that the covariances of centered log-ratio transformations are near equal for

absolute abundances and their compositional representations when the number of microbes is large enough.

But this approximate assumption depends strongly on the condition number of the inverse covariance

matrix. Recently, Yang et al. (2016) proposed a novel algorithm called mLDM to explore direct associ-

ations among microbes and between microbes and environmental factors from a hierarchical Bayesian

model with sparsity constraints. However, mLDM lacks scalability and efficiency because numerous

ancillary interim parameters are introduced in the complex hierarchical structure, which means that the

computational burden rises considerably when the number of microbes becomes large.

In this article, we use a logistic normal distribution to model the generation mechanism of compositional

data and propose a novel method called gCoda based on maximum likelihood with ‘1 penalty to estimate

microbial conditional dependence structures that can describe direct interactions in microbial communities.

One assumption of gCoda is that the latent absolute abundances follow a multivariate normal distribution in

log scale. This assumption turns the conditional dependence inference problem into estimating the structure

of the inverse covariance matrix. The other assumption is that the underlying ecological network is sparse,

which can offset the information loss from both the constant sum’s restriction of compositional data and the

dimensionality problem of microbiome studies. We propose an effective Majorization-Minimization (MM)

algorithm to solve the optimization problem involved in gCoda. The performance of gCoda is compared

with SPIEC-EASI under various simulation scenarios. Simulation studies show that gCoda gives much

better edge recovery than SPIEC-EASI for conditional dependence structures of compositional data. We

also compare the inferred interaction networks between gCoda and SPIEC-EASI through a real microbiome

data of mouse skin (Srinivas et al., 2013). The results of shuffled data show that the false positive count of

gCoda is less than SPIEC-EASI. The gCoda is broadly applicable in many contexts when the observed data

are compositional, and it’s freely available from (see Reference 1) under LGPL v3.

2. METHODS

2.1. Logistic normal distribution for compositional data

Suppose the absolute abundance y = (y1‚ . . . ‚ yp)T of p species in a microbial community is modeled as a

random vector, which cannot be directly observed in practice. Instead, only y’s relative representation

x = (x1‚ . . . ‚ xp)T ,
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xi =
yiPp

k = 1 yk

‚ i = 1‚ . . . ‚ p‚ (1)

is observed from biological experiments (Fang et al., 2015). The latent variable model in Equation (1) assumes

that an unobserved total absolute abundance w =
Pp

k = 1 yk exists, and it can be used to rebuild the absolute

abundance from its observed compositional representation. Analysis of the absolute abundance y, rather than its

compositional representation x, can overcome the constant sum’s restriction
Pp

k = 1 xk = 1 that presents great

challenges for correlation analysis (Pearson, 1897). The log-transformed data ln y = ( ln yp‚ . . . ‚ ln yp)T has

linear relationships with ln x = ( ln xp‚ . . . ‚ ln xp)T from Equation (1),

ln x = ln y - 1p ln w‚ (2)

where 1p is a p · 1 vector of 1’s. It is more convenient to deal with the log scale ln y than the original y

because of the simple linear relationship in Equation (2). Another reason is that y should be positive

whereas ln y does not have this restriction. So ln y is referred to as a latent variable in this article, and our

goal is to infer the relationships among microbes from observed compositional data.

The random compositional vector x follows logistic normal distribution (Aitchison and Shen, 1980) if

ln y follows a multivariate normal distribution N p(l‚S) with mean l and nonsingular covariance matrix S.

Under this logistical normal model, the structure of the inverse covariance matrix O =S - 1 represents

conditional dependence relationships among the elements of ln y since a zero entry Oij = 0 indicates that

ln yi and ln yj are conditional independent given other left variables. The conditional dependence structure

can describe direct interactions among microbial specials (Friedman, 2004). So inferring O from observed

compositional data can help explore the direct interaction networks in microbiome studies.

2.2. gCoda

gCoda assumes that observed compositional data follow the logistic normal distribution and the direct

interaction network of microbes is sparse. The first assumption, which can turn the inference of the direct

interaction network of microbes into that of the structure of the inverse covariance of normal distribution,

is about the distribution of compositional data. The second assumption, which can solve the under-

determinated problem caused by compositionality (Fang et al., 2015) or dimensionality (Friedman et al.,

2008), is about the edge density. Compared with absolute data, the totality information is lost for

compositional data. So we cannot construct one unique inverse covariance from the observed compo-

sitional data without any constraint. If the true underlying inverse matrix is also sparse enough, we can

try to find the most sparse one for the inverse covariances that all of them are corresponding to the

observed compositional data. Since most microbial pairs are not expected to interact with each other

directly when the number of microbes is large, the sparse assumption is reasonable in microbiome

studies.

From ln y*N p(l‚O - 1), the joint distribution of ( ln w‚ x) is as follows:

f ( ln w‚ x) = (2p) - p

2jOj
1
2

Yp

i = 1

x - 1
i exp -

1

2
Q

� �
‚

where Q = ( ln x + 1p ln w - l)TO( ln x + 1p ln w - l) and j � j is the determinant of a matrix. For the sake of

argument, the symbol x denotes the random variables (x1‚ x2‚ . . . ‚ xp - 1)T when x appears on the left of a

distribution function’s expression and x = (x1‚ x2‚ . . . ‚ xp)T when it appears on the right. So the conditional

distribution of ln w given x is a one-dimensional normal distribution with mean 1

1T
p O1p

1T
pO(l - ln x) and

variance 1

1T
pO1p

. Let F0 = Ep - 1
p

1p1T
p ; then, the distribution of x can be got after integrating f ( ln w‚ x) with

respect to (w.r.t) ln w,

f (x) = (2p) - p - 1
2

jOj
1T

p O1p

� �1
2 Qp

i = 1

x - 1
i exp - 1

2
Q1

� �
‚

where Q1 = (F0 ln x - F0l)T O - O1p1T
p O

1T
pO1p

� �
(F0 ln x - F0l).
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The negative log likelihood for (l‚O) based on the independent and identically distributed random

samples fx1‚ . . . ‚ xng of the logistic normal distribution is as follows:

L(l‚O) = - ln
jOj

1T
pO1p

+ tr S0 O - O1p1T
p O

1T
p O1p

� �� �
‚

up to a constant not depending on (l‚O), where tr( � ) is the trace of matrix, S0 = 1
n

Pn
k = 1 (F0 ln xk - F0l)�2

and a�2 = aaT for a column vector a. Because we are more concerned about the estimation of O than l, the

sample mean of F ln x can be used as the estimation of Fl and we can get the negative log likelihood for O,

L(O) = - ln jOj + ln (1T
pO1p) + tr S O - O1p1T

pO

1T
p O1p

� �� �
‚

where S = 1
n

Pn
k = 1 ( ln xk - l̂)�2 and l̂ = 1

n

Pn
k = 1 ln xk. Although the negative log likelihood for composi-

tional data is derived from parametric distribution, this function L(O) can be seen as the loss between

observed compositional data and the inverse covariance in nonparametric situations.

It has been pointed out that the estimation problem of the latent variable model for compositional

data is unidentifiable if there are no more assumptions about the unknown parameters (Fang et al.,

2015). In addition, the under-determined problem also arises if the sample size is smaller than the

dimension of variables (Friedman et al., 2008). Here, we assume that only few edges exist in the

conditional dependence network, that is, O is sparse. A commonly used approach of sparse structures

is to add ‘1 penalty to some loss function that measures the fitting of the observed data (Tibshirani,

1996). So, we consider the following objective function combining negative log likelihood and ‘1

penalty,

f (O) =L(O) + kn kOk1‚

where kOk1 =
Pp

i = 1

Pp
j = 1 Oij and the tuning parameters kn > 0 are used to balance the model fitting of

observed data and the sparse degree of O. Then, gCoda aims at finding the maximum likelihood estimation

with sparse ‘1 penalty as follows:

Ô = arg min
O�0

f (O) = arg min
O�0

L(O) + kn kOk1‚ (3)

where O � 0 means that O should be positive definite. Since the negative log likelihood function L(O) is

not convex, the optimization problem involved in Equation (3) is not convex when kn is small. Thus, only a

local minimization can be got as the estimation of inverse covariance. The following algorithm for gCoda

always provides an approximate estimation for O in practice.

2.3. MM algorithm and choice of kn

The optimization problem in Equation (3) is difficult because the objective function f (O) is neither convex

nor smooth, and the solution requires being positive definite. Here, an efficient MM algorithm is developed to

solve the constrained optimization problem in gCoda. The MM algorithm guarantees that the objective

function decreases in each step until a local optimum or a saddle point is reached by minimizing a series of

surrogate functions when optimizing surrogate functions is much easier than direct optimization for the

objective function. At the kth step of the MM algorithm, g(hjhk) is called a majorizing function of f (h) at hk if

g(hjhk) � f (h)‚ 8h and g(hkjhk) = f (hk). The MM algorithm updates h via hk + 1 = arg minh g(hjhk). This it-

erative procedure guarantees that f (hk) decreases in each iteration (Lange et al., 2000). We construct the

following majorizing function for f (O) in gCoda,

g(OjOk) = - ln jOj + tr O Ep - 1p1T
p Ok

1T
pOk1p

� �
S Ep - Ok1p1T

p

1T
pOk1p

� �� �

+ ln (1T
pOk1p) + 1

1T
pOk1p

(1T
pO1p - 1T

pOk1p) + kn kOk1:

It is obvious that g(OkjOk) = f (Ok). From the concavity of the logarithm function and Cauchy–Schwarz

inequality, we can get g(OjOk) � f (O). So, g(OjOk) is one majorizing function for f (O) at Ok. And

minimizing g(OjOk) w.r.t O is a standard graphical lasso problem since
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Ok + 1 = arg min
O�0

g(OjOk) = arg min
O�0

- ln jOj + tr(OSk) + kn kOk1‚

where Sk = Ep - 1p1T
p Ok

1T
pOk1p

� �
S Ep - Ok1p1T

p

1T
pOk1p

� �
+ 1

1T
pOk1p

1p1T
p . So, the MM algorithm decomposes the optimi-

zation problem (3) into a series of graphical lasso problems that can be solved effectively via the block-

wise coordinate descent approach (Friedman et al., 2008). The following algorithm summarizes details to

carry out the MM algorithm for gCoda mentioned earlier.

(1). Initialize O0 and set k)0.

(2). Repeat (a)–(c) until Ok converges:

(a). Compute Sk;

(b). Solve Ok + 1 = arg minO�0 - ln jOj + tr(OSk) + kn kOk1 via glasso algorithm;

(c). k)k + 1.

(3). Return converged Ok as Ô defined in Equation (3).

The positive parameter kn in Equation (3) controls the balance between the likelihood of observed data

and the sparsity of inverse covariance. Here, kn is selected via extended Bayesian information criteria

(EBIC, Chen and Chen, 2008). First, for given kn, compute Ô(kn) in Equation (3) and the EBIC score

EBIC0:5(kn) = nL(Ô(kn)) + #fÔ(kn)g( ln n + 2 ln p), where #fÔ(kn)g is the number of edges in the network

represented by Ô(kn). Then, k� = arg minkn
EBIC0:5(kn) is chosen for gCoda.

3. RESULTS

3.1. Simulation studies

The performance of gCoda and SPIEC-EASI is compared via compositional data rather than counts data

in simulation studies since they have the same assumption in Equation (1). Two variants of SPIEC-EASI

are denoted as SE(MB) and SE(GL) that infer interaction networks via neighborhood and covariance

selection, respectively. The area under the receiver operating characteristic (ROC) curve (AUC) is used to

assess the performance of gCoda and SPIEC-EASI in recovering nonzero entries in the sparse inverse

covariance.

The compositional data are generated from a logistic normal distribution with given mean l and inverse

covariance O as ln y*N p(l‚O - 1) and xi = yi=
Pk

i = 1 yi‚ 1 � i � p. The mean l controls the unbalance of

components and is generated from a uniform distribution in [ - 0:5‚ 0:5]p. The following six common sparse

network structures for O are used in our simulations:

1. Random graph: Two nodes are connected with probability 0.2 and strength –0.15 under equal pos-

sibility.

2. Neighbor graph: Randomly select p points in the [0, 1] plane and connect 10 nearest neighbors for

each point, with strength –0.8 being equally probable.

3. Band graph: Connect pair (i, j) if ji - jj � 4 and the strength is set as - 0:8‚ 0:6‚ 0:4‚ - 0:2 when

ji - jj = 1‚ 2‚ 3‚ 4.

4. Hub graph: Randomly select three points as hubs. The hubs are connected to nonhubs with proba-

bility 0.8 and strength 0.2, whereas pairs in nonhubs are connected with probability 0.2 and strength

0.2.

5. Block graph: Split p nodes into five blocks equally. Pairs in the same blocks are connected with

probability 0.3 and strength 0.5, whereas connecting pairs in different blocks are connected with

probability 0.1 and strength 0.25.

6. Scale-free graph: The B-A algorithm (Barabási and Albert, 1999) is used to build a scale-free

network. Start with a single node and then add p - 1 nodes one by one. In each step, the new node is

connected with three randomly selected old nodes, with probability-related nodes’ degrees in the

current graph. The strength is generated from a uniform distribution in [ - 0:8‚ - 0:6] [ [0:6‚ 0:8].

The diagonal elements of O are set large enough to make O positive definite and normalized all as 1. The

number of nodes p is set at 50, whereas the sample size is varied (n = 100, 200, and 500). For each
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combination of graph structure and sample size, we repeat simulations 20 times and calculate the averaged

AUC values as the final performance of gCoda and SPIEC-EASI.

Table 1 summarizes AUC values of different graph structures and sample sizes for gCoda and SPIEC-

EASI. For each simulation setting, AUC of gCoda is larger than both variants of SPIEC-EASI, that is,

gCoda outperforms SPIEC-EASI in the edge recovery of interaction networks. For each combination of

graph structure and method, AUC increases as the sample size increases, except for the scale-free network

and SE(MB). We can find that the performance of SPIEC-EASI is dependent on the network structure.

SPIEC-EASI works well for random, neighbor, band, and block graphs, but bad for hub and scale-free

graphs. Our gCoda is more robust than SPIEC-EASI from the simulation results. More detailed results for

ROC curves are shown in Figure 1. For small sample size and some specific graph structures, including

random, neighbor and band, ROC curves for gCoda and SPIEC-EASI are very close. The difference of

performances between gCoda and SPIEC-EASI increases as the sample size increases. The difference for

hub, block, and scale-free graphs is larger than the other three graph structures. SE(MB) performs worse

than random guess in the beginning part of ROC curves for the hub graph. The performance of SPIEC-

EASI is unstable for different graph structures.

We also consider the situation when the number of microbes is greater than or equal to the sample size

from simulation studies (Supplementary Fig. S1). The performances of gCoda and SPIEC-EASI are similar

in most graphs, whereas gCoda outperforms SPIEC-EASI for the scale-free graph. We also explore the

effect of compositionality on the estimation of the inverse covariance matrix for observed compositional

data through simulation studies (Supplementary Fig. S2). The results suggest that we cannot directly treat

the compositional data as absolute abundances when inferring the interaction network from observed data.

3.2. Analysis of mouse skin microbiome data

We apply gCoda to infer the direct interaction networks of microbes for a mouse skin microbiome data from

a study population of 261 mice (Srinivas et al., 2013). According to health conditions of the skin’s immuni-

zations, the samples in this data are divided into three groups: 78 nonimmunized controls (Control), 119

immunized healthy individuals (Healthy), and 64 immunized epidermolysis bullosa acquisita (EBA) individuals.

The data are further filtered by removing OTUs that are represented in less than 60% samples and removing

samples for which >60% OTUs are 0s. A total of 229 samples and 60 OTUs remain after data filtering. We add

all OTU counts by the maximum rounding error 0.5 and then normalize the counts into compositional data. The

parameters of stable selections for SPIEC-EASI are set according to the examples in https://github.com/zdk123/

SpiecEasi. Both gCoda and SPIEC-EASI use their default cut-off values to get the final inferred networks. The

numbers of inferred edges by these algorithms are comparable for the Control and EBA groups, whereas the

inferred network of microbes by gCoda is denser than SPIEC-EASI for the Healthy group.

Table 1. Performance Comparisons of gCoda

and SPIEC-EASI via Area-under-the-

curve Values in Simulation Studies

N Method

Network structure

Random Neighbor Band Hub Block Scale free

100 gCoda 0.714 0.795 0.848 0.696 0.803 0.752

SE(MB) 0.708 0.760 0.833 0.526 0.745 0.605

SE(GL) 0.712 0.770 0.834 0.543 0.692 0.611

300 gCoda 0.800 0.893 0.900 0.793 0.849 0.781

SE(MB) 0.730 0.860 0.865 0.579 0.786 0.651

SE(GL) 0.755 0.842 0.864 0.588 0.712 0.634

500 gCoda 0.837 0.912 0.920 0.822 0.857 0.789

SE(MB) 0.732 0.889 0.874 0.594 0.798 0.648

SE(GL) 0.774 0.863 0.875 0.604 0.718 0.639

The area under the curve value is the area under the receiver operating

characteristic curve. SE(MB) and SE(GL) are two variants of SPIEC-EASI. The

results are the averages over 20 simulation runs.
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FIG. 1. ROC curves of gCoda and SPIEC-EASI. Each row corresponds to a specific graph structure, whereas each

column corresponds to a specific sample size. SE(MB) and SE(GL) are two variants of SPIEC-EASI. These results are

averaged over 20 replications with the same simulation setting. ROC, receiver operating characteristic.
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Since no prior information of true taxon-taxon interaction networks exists in real data, we compare

gCoda and SPIEC-EASI from the following aspects. The first is the false positive count of shuffled OTU

tables. It is supposed to find no interaction among species from shuffled data, so the count of edges inferred

by gCoda or SPIEC-EASI can measure the false positive count in real data. The second is the running time

of gCoda and SPIEC-EASI for shuffled data under a Linux workstation: Intel(R) Xeon(R) E5640

(2.66 GHz) CPU and 16 GB MEM. All of these measures are replicated 10 times, and the averaged results

are summarized in Table 2. We can find that the false positive count of gCoda is less than SPIEC-EASI.

And gCoda is much faster than SPIEC-EASI since the stable selection procedure of SPIEC-EASI is time-

consuming.

We also compare the overlaps among networks for different groups and different methods. Figure 2

summarizes the results of shared edges between different networks under various situations via Venn

diagrams. The number of edges shared among three mouse groups for gCoda is larger than the two variants

of SPIEC-EASI. The network size for the Healthy group via gCoda is much larger than for SPIEC-EASI.

One possible reason of this phenomenon is that the Healthy group is in the middle of the other two groups,

Table 2. Performance Comparisons of gCoda

and SPIEC-EASI via False Positive Count and Running

Time(s) in the Mouse Skin Data

Method

False positive count Time(s)

Control Healthy EBA Control Healthy EBA

gCoda 3.2 1.8 2.5 1.29 0.35 3.63

SE(MB) 5.8 7.1 9.4 67.41 66.52 64.52

SE(GL) 5.6 7.1 9.3 74.10 68.24 76.91

The false positive count is the false positive edge’s count for the shuffled OTU

count matrix. Time(s) is the running time for shuffled data. SE(MB) and SE(GL)

are two variants of SPIEC-EASI. The results are the averages over 10

replications.

FIG. 2. Venn diagrams of shared edges among the inferred networks by gCoda and SPIEC-EASI. The first row

represents overlaps for the Control, Healthy, and EBA groups that are inferred from the same algorithm, whereas the

second row represents overlaps of three algorithms for the same group. SE(MB) and SE(GL) are two variants of

SPIEC-EASI.

706 FANG ET AL.



and many connections among microbes are needed to maintain the intermediary role. Since the two variants

of SPIEC-EASI are based on the same approximation formula, the overlap between these two variants is

large for all of the three mouse groups.

4. DISCUSSION

High-throughput sequencing technologies provide unprecedented opportunities to explore the relation-

ships among microbes in natural environments. But inferring direct taxon-taxon interaction networks from

sequencing data is still difficult since only relative abundances of microbes can be observed from mi-

crobome studies and the sample size is often smaller than the number of microbes. Here, we propose a

novel method called gCoda to infer the sparse direct interaction network among microbes from the logistic

normal distribution of observed compositional data. From simulations with various graph structures and

analysis of real microbiome data, gCoda is found to be more accurate and robust in edge recovery than

existing methods (e.g., SPIEC-EASI).

Our gCoda is derived from the penalized maximum likelihood and can lead to a sparse inverse co-

variance matrix to construct the direct interaction network. It is more stable and accurate with less com-

putation time than existing methods, such as SPIEC-EASI. We believe that gCoda will be broadly

applicable in many other contexts where compositional data are observed.
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