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ABSTRACT

As the sequencing cost continued to drop in the past decade, RNA sequencing (RNA-seq) has
replaced microarray to become the standard high-throughput experimental tool to analyze
transcriptomic profile. As more and more datasets are generated and accumulated in the
public domain, meta-analysis to combine multiple transcriptomic studies to increase sta-
tistical power has received increasing popularity. In this article, we propose a Bayesian
hierarchical model to jointly integrate microarray and RNA-seq studies. Since systematic
fold change differences across RNA-seq and microarray for detecting differentially ex-
pressed genes have been previously reported, we replicated this finding in several real
datasets and showed that incorporation of a normalization procedure to account for the bias
improves the detection accuracy and power. We compared our method with the popular
two-stage Fisher’s method using simulations and two real applications in a histological
subtype (invasive lobular carcinoma) of breast cancer comparing PR+ versus PR- and
early-stage versus late-stage patients. The result showed improved detection power and
more significant and interpretable pathways enriched in the detected biomarkers from the
proposed Bayesian model.

Keywords: Bayesian hierarchical model, differential expression (DE), meta-analysis, microarray,

normalization, RNA sequencing (RNA-seq).

1. INTRODUCTION

Gene expression profiling based on the DNA microarray technique is a mature and powerful approach

that has been widely applied in large-scale genomic analysis and biomedical research in the past two

decades. More recently, with the development in next-generation sequencing technology and decreasing

running cost, RNA sequencing (RNA-seq) has become a more popular tool in profiling transcriptome.

Compared with the traditional probe hybridization-based microarray, RNA-seq has many advantages

(Mortazavi et al., 2008; Consortium et al., 2014). First, RNA-seq has a wider detection range of expression

levels compared with microarray. For low-expressed genes, the intensities obtained from microarray are
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mostly un-distinguishable from background noise. On the other hand, sequencing reads from RNA-seq can

accurately quantify these genes. Second, RNA-seq can be used to detect novel transcripts, which is im-

possible in microarrray with only known probes. Third, RNA-seq can also be used to examine transcriptome

fine structure such as allele-specific expression and splice junctions. Despite the aforementioned benefits,

there are potential biases and artefacts that need to be appropriately addressed in the analysis of RNA-seq data

as well. Due to the random RNA fragmentation and sampling nature in RNA-seq, transcript length bias is

inherent to the RNA-seq studies where short transcripts with less mapped reads are usually at a statistical

disadvantage relative to long transcripts in the same sample (Oshlack et al., 2009). In addition, read mapping

uncertainty and sequence base composition (e.g., GC content bias) (Zheng et al., 2011) are also factors that

can confound the analysis results of RNA-seq.

Many studies have been conducted to compare the two platforms in various aspects. As one of the

earliest studies to introduce RNA-sequencing into the field, Marioni et al. (2008) showed that RNA-seq was

comparable to microarray in differential expression (DE) analysis between human kidney and liver sam-

ples. Sultan et al. (2008) further explored the performance of two platforms in the analysis of human HEK

and B cells and found that RNA-seq was more sensitive than microarrays, where differentially expressed

genes (DEGs) detected only by RNA-seq fell in the lowest range of expression levels. Other studies, though

restricted by small sample size, reached similar conclusions by using different datasets under different

scenarios (Bradford et al., 2010; Xiong et al., 2010; Su et al., 2011). As part of the third phase of large-scale

MicroArray Quality Control Consortium (MAQC-III) launched by FDA (a.k.a. SEQC), Wang et al. (2014)

conducted a comprehensive rat study to assess the concordance of RNA-seq and microarray by using a

range of chemical treatment conditions. They found that RNA-seq outperformed microarray at detecting

weakly expressed genes, and the concordance between the two platforms for detecting the number of DEGs

depended on treatment effects and the abundance of genes.

Furthermore, they showed a systematic difference between log fold change (logFC) of RNA-seq and that

of microarray for DEGs. Similar results have been reported in Robinson et al. (2015) that microarray was

more systematically biased in DE analysis of low-intensity genes than RNA-seq, whereas the detection

power of RNA-seq is more sensitive to the per-gene reading depth. In addition, they showed that the

correlation between microarray and RNA-seq effect size was low for lowly expressed genes. The sys-

tematic difference in effect size between two platforms can be partially attributed to the ratio compression

problem in microarray (i.e., the observed expression fold change is consistently underestimated) caused by

inefficient hybridization (Draghici et al., 2006).

Meta-analysis in genomic research is a set of statistical tools that is used for combining multiple

‘‘-omics’’ studies of a related hypothesis and can potentially increase the detection power of individual

studies. With the increasing availability of mRNA expression data sets, many transcriptomic meta-analysis

methods for microarray and some for RNA-seq were developed in the past decade. As far as we know, no

meta-analysis methods have been developed to jointly analyze the data from both microarray and RNA-seq

yet. Considering the availability of both data types in the public domain, integration of the two platforms

can potentially increase the detection power well by utilizing the advantages and overcoming the disad-

vantages of each platform. Particularly, the cross-platform meta-analysis method needs to adjust for the

systematic bias in logFC between the two platforms, as pointed out earlier.

The most popular type of meta-analysis is a two-stage approach, where summary statistics such as

p-value or effect size are first computed for each study and then, meta-analysis methods are used to

combine the summary statistics (Tseng et al., 2012). One naive two-stage method that is used to perform

cross-platform meta-analysis involves applying some state-of-the-art tools for DE analysis in each platform

individually (e.g., edgeR or DESeq2 for RNA-seq and LIMMA or SAM for microarray) (Tusher et al.,

2001; Smyth, 2005; Robinson et al., 2010; Love et al., 2014), and then combining the p-values by Fisher’s

or Stouffer’s method (Fisher, 1925; Stouffer et al., 1949). Another alternative is to integrate raw data from

all studies by using a joint stochastic model. These approaches have the potential to offer improved

efficiency over the two-stage methods and, at the same time, retain the platform-specific features. More-

over, as one essential issue mentioned earlier, it is relatively simpler to adjust for the systematic bias in

effect sizes between two platforms under an integrative framework than under a two-stage framework. The

more flexible Bayesian methods are the most adequate to fit such joint hierarchical models.

Two Bayesian hierarchical models have been developed to meta-analyze multiple microarray datasets

(Conlon et al., 2006; Scharpf et al., 2009). Ma et al. (2016) recently developed a full Bayesian hierarchical

model to combine multiple RNA-seq count data. In this article, we will combine the existing models for
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microarray meta-analysis (Conlon et al., 2006; Scharpf et al., 2009) and RNA-seq meta-analysis (Ma et al.,

2016) and propose a Bayesian hierarchical model to jointly analyze the data from the two platforms. To ad-

dress the issue of systematic bias in effect size, we incorporated a normalization algorithm into our full model.

Ramasamy et al. (2008) presented seven key issues when conducting microarray meta-analysis, in-

cluding identifying and extracting experimental data, preprocessing and annotating each dataset,

matching genes across studies, statistical methods for meta-analysis, and final presentation and inter-

pretation. When combining RNA-seq and microarray studies for meta-analysis, most preliminary steps

and data preparation issues will similarly apply. In RNA-seq, preprocessing tools such as fastQC, tophat,

and bedtools are instrumental for alignment and preparing expression counts for downstream analysis,

and lumi and affy are very popular R packages for processing microarray from different array platforms.

Genes can be matched across studies by using standard gene symbols from, for example, BioMart

databases. In the remaining of this article, we assume that data collection, preprocessing, and gene

matching have been carefully done for both platforms and we only focus on downstream meta-analytic

modeling and interpretation.

In recent years, ‘‘Big data’’ research has rapidly become a hot topic that attracted extensive attention

from academia, industry, and policy makers. In the field of genomics, the large amount of transcriptomic

studies on both microarray and RNA-seq platforms has generated petabytes of data that constitute ‘‘Big

data’’ from the perspective of scale and complexity. Our article proposed one analytic method under a

Bayesian framework to jointly model and analyze such high-volume genomic big data and demonstrated

improved biological findings. Bayesian methods have brought substantial benefits to big data research, and

the high-speed computation nowadays has made these methods computationally effective and scalable with

the big data.

This article is organized as follows. Section 2 describes the Bayesian hierarchical model as well as the

embedded normalization algorithm and explains how we perform DE analysis based on Bayesian inference.

In Section 3.1, we use simulation to demonstrate the benefits of our Bayesian model over two-stage

methods after including the normalization algorithm. In Section 3.2, we apply our method to a histological

subtype (invasive lobular carcinoma; ‘‘ILC’’) of breast cancer samples, comparing early-stage versus late-

stage patients as the first example, and comparing PR+ versus PR- as the second example. Final conclusion

and discussion are provided in Section 4.

2. METHODS

2.1. Notation

Throughout the article, we denote the platform indicator by Ck, where Ck = 1 if the kth study is an RNA-

seq study and Ck = 0 if the kth study is a microarray study. ygik is the observed RNA-seq count (Ck = 1) or

microarray intensity (Ck = 0) for gene g and sample i in study k. Here, we assume that the intensity of

microarray is already log transformed for a fair comparison with the log link function used in the RNA-seq

count model. Tik =
PG
g = 1

ygik is the corresponding library size (i.e., the total number of reads) for sample i in

study k for RNA-seq studies, and Xik 2 f0‚ 1g the phenotypic condition of sample i in study k. The

observed data are as follows:

D = f(ygik‚ Tik‚ Xik‚Ck) : g = 1‚ . . . ‚ G; i = 1‚ . . . ‚ Nk; k = 1‚ . . . ‚ Kg‚

where G is the total number of genes, Nk is the sample size of study k, and K is the number of studies in the

meta-analysis, including both platforms. The latent variable of interest dgk 2 f0‚ 1g is the study-specific

indicator of DE for gene g in study k, meaning that the gene g is differentially expressed in study k if dgk = 1

and nondifferentially expressed if dgk = 0.

2.2. Bayesian hierarchical model

Figure 1 provides a graphical representation of the full Bayesian hierarchical model that we propose.

Circles denote parameters that need to be updated, squares denote observed data or constants, and dashed

circles denote auxiliary parameters. Each dashed rectangle includes all parameters in a single platform

model, and the parameters outside both rectangles are the parameters to be shared across two platforms in

the meta-analysis.
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For each individual study, we accommodate the widely used negative binomial regression model for

RNA-seq and the linear regression model for microarray, respectively, as follows:

ygik*NB(lgik‚ /gk)‚ log (lgik) = log (Tik) + agk + bgkXik‚ for Ck = 1‚

ygik*N(lgik‚ s2
gk)‚ lgik = agk + bgkXik‚ for Ck = 0‚

where lgik = E(ygik) is the mean expression level (mean counts in RNA-seq and mean intensity in micro-

array), /gk is the dispersion parameter for RNA-seq, and s2
gk is the variance parameter for microarray. agk

denotes the baseline expression relative to the library size for RNA-seq, agk denotes the baseline intensity

level for microarray, and bgk denotes the effect size.

We then specify the prior distributions for bgk, allowing the information integration of effect size across

the two platforms:

bg*NK(kgdg‚ R)‚

where bg = (bg1‚ . . . ‚ bgK), dg = (dg1‚ . . . ‚ dgK). The latent variable of interest dgk 2 f0‚ 1g is the study-

specific indicator of DE for gene g in study k, meaning that gene g is differentially expressed in study k if

dgk = 1 and nondifferentially expressed if dgk = 0. kg is the gene-specific grand mean across all studies for

DE genes.

Here, we assume that the effect sizes are independent among the studies a priori (which is reasonable if

there are no overlapping samples across studies), so S is a diagonal matrix with the kth diagonal component

being the variance r2
k . We give different variance r2

(1)‚ k and r2
(0)‚ k for DE and non-DE genes, respectively.

Each variance component is assumed to follow a noninformative Jeffrey’s prior, that is, r2
(1)‚ k*

1
r2

(1)‚ k

,

r2
(0)‚ k*

1
r2

(0)‚ k

.

For the prior of dispersion parameter /gk, we follow from Wu et al. (2013) and assume a log normal prior

with a study-specific mean and variance common to all genes:

log /gk*N(mk‚ j2
k)‚

Observed data 

Baseline

Effect
 Size 

   Dispersion 

RNAseq ( k
=1)

Variance 

Baseline

      Effect
       Size 

Microarray (
k
=0)

Normalizing
    factor 

Normalizing
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ariance
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malizinNo
ctor    f

FIG. 1. A graphical representation of the Bayesian hierarchical model. Circles denote variables to be updated in

MCMC; squares denote constants; and dashed circles denote auxiliary parameters (e.g., for data augmentation). Solid

arrows denote stochastic dependency; heavy dotted arrows denote deterministic dependency. Dashed rectangles denote

the platforms. MCMC, Markov chain Monte Carlo.

650 MA ET AL.



where mk is assumed to follow normal prior N(lm‚ r2
m) with prespecified mean lm = 0 and variance r2

m = 52.

j2
k is assumed to follow a noninformative Jeffrey’s prior, that is, j2

k*
1
j2

k

: Similarly, the variance of the linear

model s2
gk is assumed to follow a noninformative Jeffrey’s prior, that is, s2

gk*
1

s2
gk

.

For the baseline expression agk, agk, as well as the grand mean effect size kg, we assume a normal prior

with prespecified mean and variance:

agk*N la‚ r2
a

� �
‚ agk*N la‚ r2

a

� �
‚ kg*N lk‚ r2

k

� �
‚

where la = 0, r2
a = 52, la = 0, r2

a = 52, lk = 0, r2
k = 52. To complete the hierarchy, we also specify the prior for

the DE indicator dgk: P(dgk = 1) = pk‚ pk*Unif (0‚ 1).

In addition to the informative parameters listed earlier, we introduce one auxiliary parameter xgik

(dashed circle in Fig. 1) into the negative binomial model to help obtain closed-form posterior distribution

for bgk and agk by exploiting conditional conjugacy (Zhou et al., 2012; Polson et al., 2013). The prior for

xgik is specified as follows:

xgik*PG(ygik + / - 1
gk ‚ 0)‚

where PG refers to the Polya-Gamma distribution. The description given earlier fully defines the proposed

Bayesian hierarchical model. The observed data are RNA-seq count or microarray intensity, the library size

for RNA-seq samples, the phenotypic indicator, and the platform indicator fygik‚ Tik‚ Xik‚Fkg. We use

Markov chain Monte Carlo (MCMC) sampling algorithm to sample the posterior distribution of unknown

parameters that need to be updated, including dgk, bgk, agk, agk, /gk, s2
gk, kg, r2

k , mk, j2
k , and xgik. A brief

summary of updating functions and algorithms for each parameter is described in the Supplementary Data.

2.3. Normalization algorithm

Previous comparative studies on RNA-seq and microarray data found a systematic difference in logFC

between the two platforms (Wang et al., 2014; Robinson et al., 2015), where RNA-seq always has a larger

absolute logFC than microarray. To adjust for this inherent cross-platform bias in our full model, we hereby

introduce a simple normalization algorithm:

Step 1. The logFCs are first computed from each study. We then choose genes with absolute logFC greater

than a prespecified threshold in at least half of the studies as our candidate gene list for calculating

the normalization factors. The threshold can be based on quantiles or values of biological signif-

icance (e.g., twofold change), and in the examples given next, the selection of threshold based on

effect size is quite robust. The selected set is denoted as G.

Step 2. Using one RNA-seq data as the reference, a simple linear model is used to test for the difference in

absolute logFC between a test study k (k = 1‚ 2‚ . . . ‚ K - 1) and the reference study:

abs( log FC)gk = pk + �gk‚

where g 2 G, abs( log FC)gk is the observed absolute logFC of gene g in the kth study, and pk denotes the

platform effect of the kth study.

Step 3. If the difference between platforms is significant (i.e., p-value for the coefficient pk is smaller than
0:05

(K - 1)
after Bonferroni correction), the normalization factor fk is calculated as the median difference

of logFC between two platforms in the gene set G; otherwise, no normalization is required (i.e.,

fk = 0).

Step 4. Lastly, the normalization factor is incorporated into the Bayesian model while updating the grand

mean effect size parameter kg. More specifically, the new study-specific effect size becomes

b 0gk = bgk + fk and then, kg is sampled by using the new b 0gk. Details of this modification in the

MCMC algorithm can be referred to in the Supplementary Data.

Remarks:

� Normalization works by adding constant normalization factor to the effect size estimates of micro-

array, which is usually underestimated due to inefficient hybridization. The new estimates become

more commensurate to that of RNA-seq while updating the grand mean.
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� A normalization algorithm can be potentially incorporated into a two-stage effect size model. The

effectiveness of normalization in such a scenario needs to be further explored and is beyond the scope

of this article. Note that the normalization is infeasible for the two-stage Fisher’s method since it

involves the combination of p-values.
� For the ILC example in our application, there is only one RNA-seq study, so we will just use that study

as the reference. In the case when there are multiple RNA-seq studies present, we will choose the study

with the largest sample size, whose logFC estimates are more reliable (with smaller variability).

2.4. Evidence for necessity of normalization

We give three examples to show the necessity of performing normalization and demonstrate our

normalization algorithm, using three publicly available datasets (GSE11045, GSE5350, GSE65365)

from previous studies (Marioni et al., 2008; Su et al., 2011; Robinson et al., 2015). Each study consists

of the same samples measured by both RNA-seq and microarray from humans, rats, and yeast, re-

spectively. We first selected a list of candidate genes by using an absolute logFC threshold of 0.5 in all

three studies. In Figure 2, we showed the boxplots of logFC in the two platforms separately for

upregulated and downregulated genes selected. As we can see, RNA-seq has a significantly larger

absolute logFC than microarray in Marioni and Su’s data for both upregulated and downregulated genes

(p < 0:05), whereas no significant difference is found between the two platforms in Storey’s data

(p > 0:05). Thus, in this case, we will need to perform normalization for Marioni and Su’s data, but not

for Storey’s data.

2.5. Inference for differential expression

In the Bayesian literature, Newton et al. (2004) proposed a direct approach to control FDR and defined a

Bayesian false discovery rate as follows:

BFDR(t) =
PG

g = 1 Pg(H0jD)dg(t)PG
g = 1 dg(t)

‚

where Pg(H0jD) is the posterior probability of gene g being non-DE (H0) given data (D) and

dg(t) = IfPg(H0jD) < tg as the indicator of claiming DE genes. t is a tuning parameter to control the

Bayesian false discovery rate (BFDR) at a certain a level. The Bayesian false discovery rate BFDR will be

used to address the multiplicity issue for the Bayesian method throughout this article so that it is com-

parable to the FDR control from the frequentist two-stage methods.

For a fair comparison with the other frequentist meta-analysis methods (e.g., Fisher’s method), we adopt

a union-intersection hypothesis (a.k.a. conjunction hypothesis) setting by following Li et al. (2011):

H0 :
T
fbk = 0g versus Ha :

S
fbk 6¼ 0g, that is, reject the null when the gene is differentially expressed in at

least one study, where bk is the effect size of study k, 1 � k � K. Correspondingly, we define a null set

O0 = bg :
PK
k = 1

I(bgk 6¼ 0) = 0

� �
and the respective DE set O1 = bg :

PK
k = 1

I(bgk 6¼ 0) > 0

� �
. To control BFDR

at the gene level, we introduce a Bayesian equivalent q-value. From the Bayesian posterior, we can

calculate the probability of each gene falling in the null space: P̂g(H0jD) = P̂(bg 2 O0jD) =

PT

t = 1

Ifd(t)
g = 0g

T
,

where d(t)
g = (d(t)

g1‚ . . . ‚ d(t)
gK) is the vector of DE indicators at the tth MCMC iteration, T is the total number of

MCMC samples, and 0 is a K-dimensional zero vector. We then define the Bayesian q-value of gene g as

qg = min
t�P̂g(H0jD)

BFDR(t). This qg will be treated similarly as the q-value in the frequentist approach.

2.6. Methods for comparison

Since no other cross-platform meta-analysis methods for integrating microarray and RNA-seq have been

proposed, we will compare our method with three widely used two-stage methods in this article: Fisher’s

method with edgeR (for RNA-seq) and limma (for microarray) used in single-study DE analysis, the

fixed effect model (FEM), and the random effect model (REM) (Fisher, 1925; Choi et al., 2003) with

652 MA ET AL.



single-study logFC and variance estimated by DESeq2 (for RNA-seq) and limma (for microarray). The

meta-analyzed p-values are then adjusted for multiple comparison by the Benjamini-Hochberg procedure

(Benjamini and Hochberg, 1995).

3. RESULTS

3.1. Simulation

3.1.1. Simulation setting. In this section, we provide one simulation example to show the benefits of

the Bayesian integrative method over the other two-stage methods, especially after the inclusion of the

normalization algorithm. To mimic the real data, we randomly picked up 2000 genes from the TCGA-

BRCA study (which includes both RNA-seq and microarray data) and used the estimated baseline ex-

pression (i.e., a and a) of these genes to simulate four studies, including two RNA-seq studies and two

microarray studies. For RNA-seq, the library sizes for all samples were sampled from 0.4 to 0.8 million
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FIG. 2. Boxplot of logFC from either microarray or RNA-seq in three public studies, separately for upregulated or

downregulated genes. p-Values from the linear model are attached to each plot. logFC, log fold change; RNA-seq, RNA

sequencing.
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reads so the average counts range roughly from 200 to 400. The average intensity after log transformation is

around 5 for microarray. We assumed the first 400 genes as DE genes, and the rest 1600 genes as non-DE

genes. For DE genes, we fixed the effect size of RNA-seq studies to be –1.25, the effect size of microarray

studies to be –1 considering the systematic fold change difference between the two platforms. For non-DE

genes, the effect size is 0. The variance of microarray s2 is assumed to be 1, and the log dispersion log / is

sampled from Unif ( - 2‚ - 1).

3.1.2. Simulation results. We compared our Bayesian method with and without the normalization

scheme (BayesNorm and Bayes, respectively) with the three two-stage meta-analysis methods: Fisher’s

method, FEM, and REM. For a fair comparison, we assessed the power by plotting the number of detected

true positives against the top number of declared DE genes in each method. As we can see from Figure 3,

the full Bayesian model with the normalization algorithm detected more true DE genes than any of the

other four methods among the declared DE genes. In addition, the BayesNorm method was also more

accurate than the other methods (ROC and PR curves shown in the Supplementary Data). Note that even

though both our method and the FEM/REM methods were effect size based, the integrative model was

more powerful than the two-stage methods since two-stage approaches involve data reduction and theo-

retically lose efficiency.

3.2. Application

3.2.1. Data description. We applied the proposed model to two real datasets of ILC breast cancer.

ILC is the second most frequently diagnosed histological subtype of invasive breast cancer, consisting

of *10%–15% of all cases. As opposed to the most frequent invasive ductal carcinoma, ILC is less studied

in its molecular mechanism, thus providing limited insight into the biological characteristics of the disease.

In general, ILC cases usually express estrogen receptors (ER) but show no over-expression for HER2

protein (Ciriello et al., 2015). Here, we collected one RNA-seq dataset from the TCGA-BRCA study

(Network et al., 2012), one microarray dataset from METABRIC (Curtis et al., 2012), one microarray

FIG. 3. Power comparison of different methods in simulation. All genes are ordered by the significance levels; the

number of true positives among the top declared DE genes are compared. Triangle is the Bayesian method with

normalization algorithm added; star is without the normalization algorithm; circle is Fisher’s method; and + and x are

fixed effect model and random effect model, respectively. DE, differential expression.
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dataset from Sotiriou study (Metzger-Filho et al., 2013), and a combination of four microarray datasets from the

GEO repository (GSE2109, GSE21653, GSE5460, GSE5764). Here, the four Gene Expression Omnibus (GEO)

studies contained four microarray datasets using Affymetrix U133 Plus 2.0, all of which are of a small sample

size. As a result, we obtained the raw data (CEL files) for simultaneous preprocessing and directly merged all

qualified samples as the fourth study. All ILC samples used in the analysis are restricted to ER+ only. A

summary of the ILC studies used in this article can be found in the Supplementary Data.

In the first example, we aim at identifying biomarkers that are differentially expressed between early-

and late-stage ILC breast cancer. To avoid confusing or erroneous tumor staging, we regarded pathological

stages 0 and 1 as early stages and stages 3 and 4 as late stages and excluded the intermediate stage 2.

Taking the stage information into account, we collected 69 (Nearly = 16‚ Nlate = 53), 57 (Nearly = 50‚ Nlate = 7),

57 (Nearly = 29‚ Nlate = 28), and 15 (Nearly = 5‚ Nlate = 10) samples from the four ILC studies, respectively. We

first preprocessed the TCGA RNA-seq study by filtering out genes with mean counts less than 1. After

merging and gene matching, 14,621 genes were retained for ILC stage analysis.

In the second example, we aim at identifying biomarkers that are differentially expressed between

progesterone-receptor-positive (PR+) and progesterone-receptor-negative (PR-) ILC breast cancer. Taking

the PR information into account, we collected 162 (NPR + = 144‚ NPR - = 18), 130 (NPR + = 80‚ NPR - = 50),

130 (NPR + = 93‚ NPR - = 37), and 43 (NPR + = 33‚ NPR - = 10) samples from the four studies, respectively. We

similarly preprocessed the TCGA RNA-seq study by filtering out genes with mean counts less than 1. After

merging and gene matching, 14,636 genes were used for ILC PR analysis.

3.2.2. ILC stage example. As described in Section 2.3, for stage data, we first took genes with an

absolute logFC greater than 0.2 in at least three studies and used them to calculate the normalization factor.

In Figure 4A, we noticed a significant difference in logFC between the TCGA RNA-seq study and the first

two microarray studies p < 0:05
3

� �
for ILC stage data. On the other hand, there was no significant differ-

ence in logFC between the RNA-seq study and the third microarray on p > 0:05
3

� �
. As a result, we per-

formed embedded normalization on the first two microarray studies but not the third one while applying

BayesNorm. The normalization factor was calculated as the median absolute difference of logFC (where

RNA-seq always has a larger absolute logFC than microarray) for those selected genes.

We applied five approaches (Bayes, BayesNorm, Fisher, FEM, and REM) to the ILC stage example. As

shown in Table 1, the Bayesian method without normalization detected 267 DE genes at q < 0.05. With

normalization, there were 279 DE genes detected. Both Bayesian models were more powerful than the two-

stage methods. We selected three representative genes that benefited from normalization (Table 2). The

logFC and standard error (in the parentheses) obtained from DESeq2 or limma are shown for all four

studies. Without normalization, these genes are only marginally significant. After normalization, the sig-

nificance level has been increased, showing the necessity of normalization. ‘‘GLYATL2’’ is a gene coding

for transferase that produces N-acyl glycines in humans, and it has been found to be differentially expressed

across different breast cancer subtypes (Milioli et al., 2015). ‘‘FOSB’’ is an oncogene belonging to the FOS

family and it has been implicated as a regulator of cell proliferation, differentiation, and transformation.

Previous studies found that this gene was downregulated in poorly differentiated breast carcinomas (Milde-

Langosch et al., 2003). ‘‘KCNQ5’’ gene is a member of the KCNQ potassium channel gene family that

yields currents that activate slowly with depolarization, and recent review papers have regarded them as

potential biomarkers for various types of cancer, including breast cancer, glioblastoma and colorectal

cancer (Lastraioli et al., 2015).

For the 279 DE genes detected by BayesNorm at q < 0.05, we further performed a single-platform DE

analysis by using the Bayesian model and compared the significance levels of the two platforms. Overall,

RNA-seq is more significant than microarray in this dataset, as shown in Figure 5A. Further, we found that

for genes with lower RPKM (i.e., lowly expressed genes), RNA-seq is even more significant than mi-

croarray. This is consistent with the features of the two technologies: RNA-seq has a wider detection range

and delivers low background signals, whereas microarray has a detection limit in the lower end.

To associate the detected biomarkers with the biological functions, we further performed pathway

enrichment analysis by using Fisher’s exact test. For a fair comparison, we used the top 500 genes identified

from BayesNorm and Fisher’s method for ILC data (FEM and REM are excluded due to too weak signals).

For Fisher’s method, this roughly corresponded to a q-value cutoff at 0.15. In Figure 6A, controlling FDR

at 0.05, we identified 37 significant GO pathways from the BayesNorm method, whereas no significant

pathways were identified from the Fisher’s method. Intriguingly, we identified many cell fate and lineage
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pathways to be differentially activated on comparing early- and late-stage ILC tumors (see pathway

enrichment q-values and odds ratios in Table 3). Genes include members of the HOX and NKX gene

family, SOX genes, EYA1, and others. This finding implies that early- and late-stage ILC tumors might

have different precursors, or that significant changes in differentiation pathways contribute to progression

of the disease.

3.2.3. ILC PR example. For ILC PR data, we took genes with an absolute logFC greater than 0.2 in

at least three studies and used them to calculate the normalization factor. In Figure 4B, we noticed a

significant difference in logFC between the TCGA RNA-seq study and the first two microarray studies

p < 0:05
3

� �
for ILC stage data. On the other hand, there was no significant difference in logFC between the

RNA-seq study and the third microarray study p > 0:05
3

� �
. As a result, we only performed normalization for

the first two microarray studies, with normalization factor calculated from the median absolute difference

of logFC for those selected genes.

As shown in Table 1, the Bayesian method with normalization detected 549 DE genes at q < 0.05

whereas Fisher’s method only detected 262. We also selected two representative genes with an increased

significance level after normalization (Table 4) and among them, for example, PTPRD is a tumor sup-

pressor that is frequently inactivated in human cancers and has been identified to predict for poor prognosis

in breast cancer (Veeriah et al., 2009). For the 549 DE genes detected by BayesNorm at q < 0.05, we further

performed a single-platform DE analysis by using the Bayesian model and compared the significance levels

of the two platforms. As shown in Figure 5B, similar to that in the stage example, RNA-seq is more

significant than microarray for genes with lower RPKM. For the PR example, there are 30 GO pathways

identified by the Bayesian method and 6 GO pathways identified by Fisher’s method at an FDR cutoff of

0.05 (Fig. 6B). As shown in Table 5, our pathway analysis showed a significant enrichment of genes

involved in proteolysis and regulation of peptidase activity. These include many members of the serpin

family, such as SERPINB5, SERPINA3, and SERPINA1. These proteins are inhibitors of serine proteases,

and they are known to mediate breast cancer cell invasion and metastases; some of the genes have been

shown to be strong predictive biomarkers (Duffy et al., 2014).

Table 2. Invasive Lobular Carcinoma Stage: Three Example Genes That Show the Necessity

of Applying Normalization

Gene logFC.seq1 (SE) logFC.array1 (SE) logFC.array2 (SE) logFC.array3 (SE) q.Bayes q.BayesNorm

GLYATL2 0.78 (0.28) 0.13 (0.17) 0.14 (0.24) -0.68 (0.60) 0.02 0.002

FOSB -0.85 (0.28) -0.63 (0.44) -0.08 (0.25) -0.64 (0.52) 0.07 0.02

KCNQ5 0.82 (0.28) 0.05 (0.05) 0.56 (0.24) 0.05 (0.18) 0.07 0.04

Normalized Normalized No Norm.

logFC, log fold change.

Table 1. Number of Differential Expression Genes Detected by Five Approaches at Varying Cutoff

Example Method q < 0.01 q < 0.05 q < 0.1

ILC stage Bayes 167 267 365

BayesNorm 161 279 400

Fisher 19 57 195

FEM 0 18 45

REM 0 0 0

ILC-PR Bayes 283 543 822

BayesNorm 286 549 825

Fisher 45 262 890

FEM 0 1 176

REM 0 1 44

FEM, fixed effect model; ILC, invasive lobular carcinoma; REM, random effect model.
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4. DISCUSSION AND CONCLUSION

In this article, we proposed a Bayesian hierarchical model to meta-analyze gene expression data gen-

erated from two popular transcriptome profiling platforms: microarray and RNA-seq. Within each platform,

we adopted a negative binomial model for RNA-seq and a linear model for microarray and we allowed the

information integration of effect sizes across platforms among DE genes. An additional normalization

algorithm was embedded in the Bayesian model to correct for the systematic cross-platform bias in effect

sizes, as shown in previous studies and in the examples provided in our article. To the best of our

knowledge, the proposed model is the first cross-platform joint model for integrating microarray and RNA-

seq transcriptomic data. Through simulation, we found that normalization was necessary and had increased

the detection power of biomarkers. The application to ILC breast cancer data showed the advantage of our
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FIG. 5. (A) ILC stage: Comparison of significance of RNA-seq versus microarray in BayesNorm detected DE genes.

(B) ILC PR: Comparison of significance of RNA-seq versus microarray in BayesNorm detected DE genes. y-axis is the

negative log q-value, that is, -log10(q), from the single platform DE analysis. White is for RNA-seq, and black is for

microarray. In the figure on the left, we included all DE genes; whereas on the right, we focused only on the genes with

lower RPKM (bottom 25%).
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model in identifying DE genes compared with the two-stage methods, such as Fisher’s method or the FEM/

REMs, and identified DE genes were validated by functional annotation (pathway) analysis.

During the analysis, we found that RNA-seq was more powerful than microarray for lowly expressed

genes. Similar findings have been shown in previous comparative studies (Sultan et al., 2008; Su et al.,

2011; Wang et al., 2014). Using a comprehensive study design with 15 chemical treatments, Wang et al.

(2014) showed that the concordance between two platforms dropped to below 40% for genes with below

median expression, and a direct comparison to quantitative polymerase chain reaction (qPCR) results

indicated a better performance of RNA-seq in detecting differential gene expression at low expression

levels than microarray. These results are consistent with the pros and cons of the two technologies, where

RNA-seq has a wider detection range and delivers low background signals; whereas, on the other hand,

microarray has a detection limit in the lower end. Though no advantage of microarray has been found in our

application examples, we expect that microarray would be more powerful than RNA-seq in detecting DE

genes with short lengths, considering the transcript length bias of RNA-seq.

Many studies have previously reported the systematic difference in logFC between the two platforms

(Wang et al., 2014; Robinson et al., 2015). In this article, we reproduced the results by using the same
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FIG. 6. (A) ILC stage: GO enrichment analysis results using the top 500 genes from the two methods. (B) ILC PR:

GO enrichment analysis results from the top 500 genes from the two methods. Manhattan plot of GO pathways enriched

by the top 500 DE genes from each method. X axis refers to the GO pathways sorted by GO IDs, Y axis refers to the

-log10 ( p-values) from the Fisher’s exact test, and the highlighted points are the GO pathways with FDR <0.05.

Table 3. Invasive Lobular Carcinoma Stage: Selected top Pathways Enriched

with BayesNorm Using GO, KEGG, and Reactome Databases

Pathway name BayesNorm q-value (odds ratio) Fisher q-value (odds ratio)

GO:0007267: cell-cell signaling 6e-5 (2.21) 1 (1.43)

GO:0010817: regulation of hormone levels 3e-4 (2.74) 1 (1.28)

GO:0048665: neuron fate specification 0.02 (8.72) 1 (0)

GO:0048663: neuron fate commitment 0.03 (3.87) 1 (1.16)

KEGG Neuroactive ligand-receptor interaction 0.01 (2.91) 0.68 (1.62)

KEGG Steroid hormone biosynthesis 0.05 (4.21) 1 (0.94)

Reactome GPCR ligand binding 1e-3 (2.76) 1 (1.06)
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datasets and suggested that this difference was quite universal. More specifically, RNA-seq tend to have

consistently larger absolute values of logFC than microarray under the same set of DE genes. Thus, to

adjust for the difference, we introduced a simple normalization algorithm into the Bayesian model by

taking the median difference of absolute logFC of representative genes between the two platforms as a

constant normalization factor. Other normalization algorithms such as using adaptive normalization factor

(e.g., varies according to expression levels, etc.) can also apply. In the ILC data application, the normal-

ization algorithm increased the significance levels of some DE genes that were otherwise underpowered

due to the logFC difference.

Compared with other methods, the Bayesian method has a few benefits. First, it is relatively flexible to

incorporate the normalization algorithm under the Bayesian framework. Since the Bayesian estimation is

sampling based (MCMC), the normalization factor can be directly put into the updating functions; second,

our Bayesian model includes a latent DE indicator, an individual effect size parameter, and the overall

effect size parameter. With this setting, the underpowered study/platform will be down-weighted auto-

matically for some genes in a sense that its individual effect size will less likely contribute to the overall

effect size. Such an analysis that allows heterogeneity is relatively hard to achieve in a two-stage scenario.

Third, under the Bayesian method, we can allow the information of dispersion parameters to be shared

across genes, which is fairly important in the entity of dispersion estimation.

There exist different ‘‘platforms’’ for both microarray and RNA-seq technologies. For example, in

microarray, data can be generated from Illumina platform, Affymetrix platform, etc.; whereas in RNA-seq,

the most popular platform is Ilumina, which generates 95% of all sequencing data stored in the GEO

repository. Each platform has its own technical characteristics and protocol for handling and processing

data. While combining microarray and RNA-seq, our Bayesian model only considers a single platform

from each technology. It can be readily extended to accommodate the multi-platform scenarios by in-

cluding random effects or one more layers to explain for accounting for the cross-platform difference

within each technology.

Since the advent of next-generation sequencing technology, RNA-seq has gradually become a standard

experimental technique in measuring RNA expression levels while taking the place of traditional micro-

array technology. However, the large availability of historical microarray datasets in the GEO repository

gives us a good reason of utilizing microarray, in addition to RNA-seq in the DE analysis. Some of our

findings in comparing the two platforms were consistent, with the results reported from the third phase of

MicroArray Quality Control (MAQC) project (a.k.a. SEQC) initiated by FDA (Consortium et al., 2014;

Wang et al., 2014).

One limitation of our current method is that the normalization factors were estimated a priori and

inserted into the Bayesian full model. Joint estimation of these parameters inside the model could be

Table 4. Invasive Lobular Carcinoma PR: Three Example Genes

That Show the Necessity of Applying Normalization

Gene logFC.seq1 (SE) logFC.array1 (SE) logFC.array2 (SE) logFC.array3 (SE) q.Bayes q.BayesNorm

PTPRD -0.44 (0.21) -0.07 (0.06) -0.02 (0.14) -0.10 (0.20) 0.05 0.02

SULF2 -0.49 (0.17) -0.25 (0.10) -0.01 (0.10) -0.51 (0.29) 0.05 0.02

Normalized Normalized No Norm.

Table 5. Invasive Lobular Carcinoma PR: Selected Top Pathways Enriched

with BayesNorm Using GO, KEGG, and Reactome Databases

Pathway name

BayesNorm q-value

(odds ratio)

Fisher q-value

(odds ratio)

GO:0010466: negative regulation of peptidase activity 1.e-4 (3.78) 1 (1.40)

GO:0010951: negative regulation of endopeptidase activity 5e-4 (3.53) 1 (1.46)

GO:0052547: regulation of peptidase activity 5e-4 (2.80) 1 (1.09)

GO:0045861: negative regulation of proteolysis 7e-4 (2.82) 1 (1.36)

GO:0052548: regulation of endopeptidase activity 8e-4 (2.73) 1 (1.16)

KEGG Drug metabolism—other enzymes 0.04 (7.14) 1 (2.64)
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considered a potential extension in the future. Second, our model failed to take gene lengths into account,

which could be considered one potential factor that will affect the detection power of different platforms.

Our core MCMC updating algorithms were written in C++, and Rcpp was used to integrate the C++ codes

into R. An R package, CBM (‘‘Cross-platform Bayesian Model’’), is publicly available to perform the

analysis on the author’s website (http://tsenglab.biostat.pitt.edu/software.htm).
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