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Abstract

The string graph for a collection of next-generation reads is a lossless
data representation that is fundamental for de novo assemblers based on
the overlap-layout-consensus paradigm. In this paper, we explore a novel
approach to compute the string graph, based on the FM-index and Burrows-
Wheeler Transform (BWT). We describe a simple algorithm that uses only
the FM-index representation of the collection of reads to construct the string
graph, without accessing the input reads. Our algorithm has been integrated
into the SGA assembler as a standalone module to construct the string graph.

The new integrated assembler has been assessed on a standard bench-
mark, showing that FSG is significantly faster than SGA while maintaining a
moderate use of main memory, and showing practical advantages in running
FSG on multiple threads. Moreover, we have studied the effect of coverage
rates on the running times.
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1 Introduction

De novo sequence assembly continues to be one of the most fundamental prob-
lems in Bioinformatics. Most of the available assemblers (Simpson et al., 2009;
Peng et al., 2012; Bankevich et al., 2012; Chikhi and Rizk, 2013; Salikhov et al.,
2014; Chikhi et al., 2015) are based on the notions of de Bruijn graphs and k-mers
(short k-long substrings of input data). Currently, biological data are produced by
different Next-Generation Sequencing (NGS) technologies which routinely and
cheaply produce a large number of reads whose length varies according to the
specific technology. For example, reads obtained by Illumina technology (which
is the most used) usually have length between 50 and 150 bases (Salzberg et al.,
2012).

To analyze datasets coming from different technologies, hence with a large
variation of read lengths, an approach based on same-length strings is likely to
be limiting, as witnessed by the recent introduction of variable order de Bruijn
graphs (Boucher et al., 2015). The string graph (Myers, 2005) is an alternative
approach that does not need to break the reads into k-mers (as in the de Bruijn
graphs), with the advantage of immediately distinguishing repeats longer than k
but contained in a read—when using a de Bruijn graph, those repeats are resolved
only at later stages. The string graph is the main data representation used by
assemblers based on the overlap-layout-consensus paradigm. Indeed, in a string
graph the vertices are the input reads and the arcs corresponds to overlapping
reads, with the property that contigs are paths of the string graph.



Even without repetitions, analyzing only k-mers instead of the full-length
reads can result in some information loss, since two bases that are k + 1 posi-
tions apart can belong to the same read, but are certainly not part of the same
k-mer. Indeed, differently from de Brujin graphs, any path of a string graph is a
valid assembly of reads. String graphs are more computationally intensive to com-
pute (Simpson and Durbin, 2012), justifying our search for faster algorithms. The
most widely used string graph assembler is SGA (Simpson and Durbin, 2010),
which first constructs the BWT (Burrows and Wheeler, 1994) and the FM-index
of a set of reads, and then uses those data structures to efficiently compute the
arcs of the string graph (connecting overlapping reads). Another string graph
assembler is Fermi (Li, 2012) which implements a variant of the original SGA al-
gorithm (Simpson and Durbin, 2010) that is tailored for SNPs and variant calling.

Several recent papers face the problem of designing efficient algorithmic strate-
gies or data structures for building string graphs. Among those works, we can
find a string graph assembler (Ben-Bassat and Chor, 2014), based on a careful use
of hashing and Bloom filters, with performance comparable with the first SGA
implementation (Simpson and Durbin, 2010). Another important alternative ap-
proach to SGA is Readjoiner (Gonnella and Kurtz, 2012) which is based on an
efficient computation of a subset of exact suffix-prefix matches, and by subse-
quent rounds of suffix sorting, scanning, and filtering, obtains the non-redundant
arcs of the graph.

All currently available assemblers based on string graphs (such as SGA) need
to both (1) query an indexing data structures (such as an FM-index), and (2) access
the original reads to detect prefix-suffix overlaps between the elements. Since the
self-indexing data structures, such as FM-index, represent the whole information
of the original dataset, an interesting problem is to design efficient algorithms
for the construction of string graphs that only require to keep the index, while
discarding the original reads.

Improvements in this direction have both theoretical and practical motivations.
Indeed, detecting prefix-suffix overlaps only by analyzing the (compressed) index
is an almost unexplored problem.

The information contained in the indexing data structure can be analyzed with
different and almost orthogonal approaches. A natural and straightforward goal
that we have explored previously is to minimize the amount of data maintained
in RAM (Bonizzoni et al., 2016). In this paper we will focus instead on reducing
the running time, by introducing a method that is able to build the whole string
graph, via a limited number of sequential scans of the index. This property leads
to the design of an algorithm that can exploit some features of modern processors.
Moreover, since our new algorithm computes the string graph, we have a memory
conscious and time efficient tool that may be directly integrated in a pipeline for
assembling DNA reads.



We propose a new algorithm, called FSG, to compute the string graph of a set
R of reads with O(nm™) worst-case time complexity — n is the number of reads in
R and m is the maximum read length. To the best of our knowledge, it is the first
algorithm that computes a string graph using only the FM-index of the input reads.
The vast literature on BWT and FM-index hints that this approach is amenable to
further research. Our algorithm is based on a characterization of the string graph
given in (Bonizzoni et al., 2016), but we follow a completely different approach.

An important observation is that, to compute the arcs outgoing from each read
r, SGA queries the FM-index for each character of . While this approach works
in linear, i.e., O(nm), time, it can perform several redundant queries, most notably
when the reads share common suffixes (a very common case). Our algorithm
queries the FM-index in a specific order, so that each distinct string is processed
only once, while SGA might process more than once each repeated string.

It is important to notice that our novel algorithm uses a characterization of a
string graph (Bonizzoni et al., 2014) that is different, but equivalent, to the one
in (Myers, 2005). We have implemented FSG and integrated it with the SGA
assembler, by replacing the procedure to construct the string graph. Our imple-
mentation follows the SGA guidelines, that is we use SGA’s read correction step
before computing the overlaps without allowing mismatches (which is also SGA’s
default choice). Indeed, the guidelines to reproduce the assembly of the dataset
NA12878 included in the SGA software package set the -error-rate parameter
to 0, the default value. Therefore, it is fair to compare the performances of the
two tools. Also the assembly phases of SGA can be applied without any modifi-
cation. These facts guarantees that the assemblies produced by our approach and
SGA are the same, except for the unusual case when two reads have two different
overlaps. In that case, SGA considers only the longer overlap, while we retain all
overlaps. While it is trivial to modify our approach to guarantee the the assembly
is the same, we have decided that considering all overlaps is more informative.
We want to point out that the FSG algorithm is relatively simple and could be
useful also for different assembly strategies.

We have compared FSG with SGA — a finely tuned implementation that has
performed very nicely in the latest Assemblathon competition (Bradnam et al.,
2013) — where we have used the latter’s default parameter (that is, we compute
overlaps without errors). Our experimental evaluation on a standard benchmark
dataset shows that our approach is 2.3—4.8 times faster than SGA in terms of wall
clock time (1.9-3 times in terms of user time), requiring only 2.2 times more
memory than SGA.



2 Preliminaries

We briefly recall some standard definitions that will be used in the following. Let
Y be a constant-sized alphabet and let S be a string over £. We denote by S[i]
the i-th symbol of S, by £ = |S| the length of S, and by S[i : j] the substring
S[S[i+1]---S[j] of S. The suffix and prefix of S of length k are the substrings
S[€ —k+1: (] (denoted by S[€ — k + 1 :]) and S[1 : k] (denoted by S[: k])
respectively. Given two strings (S;, S ;), we say that S; overlaps S ; iff a nonempty
suffix B of §; is also a prefix of §;, thatis §; = af and S; = By. In that case
we say that that S is the overlap of S; and § ;, denoted as ov; ;, that y is the right
extension of §; with § ;, denoted as rx; ;, and « is the left extension of S ; with §;,
denoted as [x; ;.

In this paper we consider a set R of n strings over X that are terminated by
the sentinel $, which is the smallest character. To simplify the exposition, we
will assume that all input strings have exactly m characters, excluding the $. The
overlap graph of a set R of strings is the directed graph Gy = (R, A) whose vertices
are the strings in R. For each three strings «, 5, and y such that r; = e and r; = By
are two strings, there is the arc (r;, ;) € A. In this case g is called the overlap of
the arc.

Observe that the notion of overlap graph originally given by (Myers, 2005) is
defined by labeling with the right extension rx;; = 7y the arc (r;,r;) € A. The
assembly string related to (r;, ;) is given by r;y. More in general, given a path
= {(ry,r,- - ,r,) in the overlap graph, the assembly string is rirx;» - - , rX,_1,.

The notion of a string graph derives from the observation that in a overlap
graph the label of an arc (r, s) may be equal to the assembly string of a path
(r,...,s): in this case the arc (r, s) is called called redundant and it can be removed
from the overlap graph without loss of information, since all paths resulting in a
valid assembly are still in the graph, even after the removal of such redundant
arcs (r,s). In (Myers, 2005) redundant arcs are those arcs (r, s) labeled by v,
for vy containing as prefix the label of an arc (r,¢). In (Bonizzoni et al., 2017)
we state an equivalent characterization of string graphs (given below) which is a
direct consequence of the fact that an arc (r;, r;) is labeled by the left extension a
and its assembly is ar;. An arc e; = (r;,r;) of Go labeled by « is transitive (or
reducible) if there exists another arc e, = (1, r;) labeled by ¢ where 6 is a suffix
of a. Therefore, we say that e; is non-transitive (or irreducible) if no such arc e,
exists. The string graph of R is obtained from G, by removing all reducible arcs.
This definition allows to use directly the FM-index to compute the labels of the
overlap graph since the labels are obtained by backward extensions on the index.

The Generalized Suffix Array (GSA) (Shi, 1996) of R is the n-long array SA
where each element SA[/] is equal to (k, j) if and only if the k-long suffix r;[|r;| —
k + 1 :] of the string r; is the i-th smallest element in the lexicographic ordered



set of all suffixes of the strings in R. The Longest Common Prefix (LCP) array of
R, is the n-long array L such that L[i] is equal to the length of the longest prefix
shared by the the k;-suffix of r;, and the k;_;-suffix of r;,_,, where SA[i] = (k;, ji;)
and SA[i — 1] = (k;—1, ji—1). Conventionally, L[1] = —1.

The Burrows-Wheeler Transform (BWT) of R is the sequence B such that
Bli] = rj[|r;] — k], if SA[i] = (k,j) and k > 1, or B[i] = $, otherwise. Infor-
mally, B[i] is the symbol that precedes the k-long suffix of a string r; where such
suffix is the i-th smallest suffix in the ordering given by SA.

The i-th smallest (in lexicographic order) suffix is denoted by LS [i], that is
if SA[i] = (k, j) then LS[i] = rj[|r;| — k + 1 :]. Given a string w, all suffixes
of R whose prefix is w appear consecutively in LS. We call w-interval (Bauer
et al., 2013) the maximal interval [b, e] such that w is a prefix of LS [i] for each i,
b < i < e. We denote the w-interval by q(w). The width e — b+ 1 of the w-interval
is equal to the number of occurrences of w in some read of R. Since LS, the BWT
B and SA are closely related, we also say that [b, e] is a w-interval on all those
arrays. Given a w-interval and a character c, the backward c-extension of the w-
interval is the (possibly empty) cw-interval. We recall that the FM-index (Ferrag-
ina and Manzini, 2005) is essentially made of the two functions C and Occ, where
C(c), with ¢ a character, is the number of occurrences in B of characters that are
alphabetically smaller than ¢, while Occ(c, i) is the number of occurrences of ¢ in
the prefix B[: i — 1]. Given a string @ and a character c, the backward c-extension
of q(w) = [b, e] is g(cw) = [C(c) + Occ(c,b) + 1,C(c) + Occ(c, e + 1)] (Ferragina
and Manzini, 2005).

3 The Algorithm

Our algorithm is based on two steps: the first is to compute the overlap graph,
the second is to remove all transitive arcs. Given a string w and R a set of strings
(reads), let RS (w) and R”(w) be respectively the subset of R with suffix (resp. pre-
fix) w. As usual in string graph construction algorithms, we will assume that the
set R is substring free, that is no string is a substring of another one. A funda-
mental observation is that the list of all nonempty overlaps g is a compact rep-
resentation of the overlap graph, since all pairs in RS(8) x RF(B) are arcs of the
overlap graph. Moreover, each arc (r; = a8, r; = By) of the overlap graph can be
represented by the triple (a, 8, y).

Our approach to compute all overlaps between pairs of strings is based on the
notion of potential overlap, which is a nonempty string 8* € X* that is a proper
suffix of an input string r; = @8* (@ # €) and such that there exists an input string
rj = yp*6, with 6 # €, containing 5* as a substring, but not a suffix.

A simple relation between overlaps and potential overlaps is given in Proposi-



tion 1, which is a direct consequence of the definition of potential overlap.
Proposition 1. Let 8 be an overlap. Then all suffixes of B are potential overlaps.

We can now briefly sketch our algorithm which consists of two main parts.
The first part computes all potential overlaps, starting from those of length 1 and
extending the potential overlaps by adding a new leading character. Each poten-
tial overlap is also checked to determine whether it is also an actual overlap, to
compute the set of all overlaps.

The second part of our algorithm, that is to detect all transitive arcs, starts
from the sets ARC(a = €, €8, X = RP()) (a set for each one of the overlaps ) that
can be immediately obtained from the overlaps 8 computed in the first step, where
in general a set ARC(«a, af3, X) consists of arcs with overlap £, a left extension
that has « as a suffix, and are incoming into a read in X. Observe that ARC(a =
€,a6,X = RP(B)) is the set of the arcs of the overlap graph having overlap f.
During the second part of the algorithm, the transitive arcs of the overlap graph
are removed by iteratively computing arc-sets of increasing extension length ¢
(starting from @ = €) by adding a leading character to the extensions « of length
¢ — 1 (of the sets computed at same previous iteration) and deleting reads from X.
All the computed sets ARC(a, a5, X), where af3 is a read (that is, « is the complete
left extension of the arcs), contains only irreducible arcs. The following definition
formalizes the previously discussed notions.

Definition 1. Let « be a string, let f be a nonempty string, and let X be a sub-
set of RP(B). The arc-set ARC(a, afB, X) is the set {(r1,r2) : aBis a suffix of ry,
Bis a prefix of ry, andry € R,r, € X}. The strings a and B are called the exten-
sion and the overlap of the arc-set. The set X is called the destination set of the
arc-set.

An arc-set ARC(a, a3, X) is terminal if there exists r € R s.t. r = @3, while an
arc-set is basic if @ = € (that is the empty string). Since the arc-set ARC(«, af3, X)
is uniquely determined by strings @, @f, and X, the triple (@, @8, X) wil be used in
our algorithm to encode the arc-set ARC(a, a3, X).

Observe that the string @ in Definition 1 is a suffix of the left extension (label)
of the arcs in ARC(a, a3, X). When the arc-set is terminal then the extension « of
the arc-set is also the label of its arcs.

Moreover, the arc-set ARC(«, a3, X) is correct if X O {r, € REPB) : 1 €
R’ (a) and (r, ry) is irreducible}, that is all irreducible arcs whose overlap is B
and whose (left) extension has a suffix @ are incoming in a read of X.

Observe that our algorithm outputs only correct arc-sets (hence all irreducible
arcs are preserved). Moreover terminal arc-sets, computed by our algorithm, only
contain irreducible arcs (see Lemma 5), hence all transitive arcs are removed.



Definition 2. An arc (ry, r3) is transitive iff there exists an arc (r,, r3) whose exten-
sion is a suffix of the extension of (ry, r3) (Bonizzoni et al., 2016).

Our algorithm is based on an extension of the definition of transitive arc to
arc-sets. We present Algorithm 1 which computes the overlap graph of a set of
input strings (the overlap graph is represented by the set of all overlaps), and
Algorithm 2 which receives the overlaps computed by Algorithm 1 and outputs
the string graph. In our description we assume that, given a string w, we can
compute in constant time (1) the number suff(w) of input strings whose suffix
is w, (2) the number pref(w) of input strings whose prefix is w, (3) the number
substr(w) of occurrences of w in the input strings. Moreover, we assume to be
able to list the set listpref(w) of input strings with prefix w in O(]listpref(w)|) time.
In the next section we will describe how to compute such a data structure.

We recall that Algorithm 1 exploits Proposition 1 to compute all overlaps.
More precisely, given a k-long potential overlap 8*, the (k + 1)-long string ¢S*,
for ¢ € %, is a potential overlap if and only if suff(¢f*) > 0 and substr(c8*) >
suff(¢f*). We construct incrementally all potential overlaps, first by determining
if each string B* consisting of a single character is a potential overlap. Then, start-
ing from the potential overlaps of length 1, we iteratively compute the potential
overlaps of increasing length by prepending each character ¢ € X to each k-long
potential overlap 8* (stored in the list Last), and we determine if ¢8* is an (k + 1)-
long potential overlap: in this case we store the potential overlap in the list New.

The lists Last and New store the potential overlaps computed at the previous
and at the current iteration respectively. By our previous observation, this pro-
cedure computes all potential overlaps. Observe that a potential overlap 8* is an
overlap iff pref(8*) > 0. Since each potential overlap is a suffix of some input
string, there are at most nm distinct suffixes, where m and n are the length and
the number of input strings, respectively. Each query suff(.), pref(-), substr(-) re-
quires O(1) time, thus the time complexity of all of such queries is O(nm). Given
two distinct strings B and 3,, when |8;| = |B,| then no input string can be in
both listpref(B;) and listpref(3,). Since each overlap is at most m long, the overall
time spent in the listpref(-) queries is O(nm). The first phase produces (line 7) the
set of disjoint basic arc-sets ARC (e, €83, R”(B)) for each overlap 3, whose union is
exactly the set of arcs of the overlap graph. Recall that listpref(8) gives the set of
reads with prefix 8, which has been denoted by R”(B).

The following definitions and lemma are fundamental in the design of Algo-
rithm 2, since they allow to restrict the search that determines whether a certain
arc is transitive. We recall that each arc-set ARC(a, a3, X) is actually encoded as
the triple (@, B, X).

Definition 3. Let A = ARC(ay,aypB, X1), B = ARC(y,yB6, X,) be two arc-sets,
such that B is terminal and X, C X,. Then B reduces A and the tuple (ay, ayB, X\
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ri:ccgtaca
roitcgtaca

r3:  tacatgt
T4 catgtgg
st catgtcc

Figure 1: Example of overlap graph on five reads (on the left). Each arc is labeled
with the corresponding left extension. Arcs with the same color have the same
overlap. Dashed arcs are transitive.

X,) is the residual arc-set of A with respect to B, denoted by A \ B.

Based on the previous definition, we say that the arcs of (ay, ayB, X; N X,) are
removed by B, or B removes those arcs.

In Figure 1 and Table 1 an example of arc-sets is presented for a set of five
reads.

Lemma 2. Let (1, ;) be an arc with overlap . Then (ry, ) is transitive if and
only if (i) there exist a,y,0,n € X* such that ry = yaf, r, = 56n, and (ii) there
exists an input read r3 = a6 such that (r3, ry) is an irreducible arc of a nonempty
correct arc-set ARC(a, a6, X) for all X such that r, € X.

Proof. Let r; = @86 be the input string maximizing |§| so that r; = yaf, r, = Bon,
for some strings a,y,d,n € £*. Notice that such r; exists iff (r, r,) is transitive.
If no such input string r; exists, then all arc-sets ARC(«a, @0, -) are empty.

Assume now that such an input string r3 exists, we will prove that the arc
(r3, ry) reduces (ry, r). First we prove that (rs3, ;) is irreducible. Assume to the
contrary that (r3, ;) is transitive, hence there exists an arc (r4, r,) whose extension
is a suffix of @. Since ry is not a substring of r3, this fact contradicts the assumption
that r; maximizes |§|. Consequently (r3, r») is irreducible.

Moreover, let ARC(a, af6, X) be a generic correct arc-set (at least one such
correct arc-set exists, when X = RP(B6)). Since (r3,r,) is correct, then r, € X
hence ARC(a, a6, X) is nonempty. O

A direct consequence of Lemma 2 is that a nonempty correct terminal arc-
set ARC(a, af36, X) implies that all arcs of the form (yap, 5on), with y,n # € are
transitive.



Arc-set Extension,Overlap Represented arcs

A=(cg, cgtaca, {r;}) cg, taca (r1,13), (12, 13)
B=(ccg, ccgtaca, {r;}) ccg, taca (r1,13)

C=(tcg, tcgtaca, {r;}) tcg, taca (r2, 13)

D=(ta, taca, {ry,s}) ta, ca (r1,r4), (r1, 15), (r2, 1), (ra, 1s)
E=(ta, tacatgt, {ry,rs}) ta, catgt (r3,14), (r3,715)

Table 1: Example of arc-sets corresponding to the overlap graph of Figure 1.
Among the five reported arc-sets, B, C and E are terminal, and only D is not
correct (and non-terminal) since it represents reducible arcs of the overlap graph.
Observe that E reduces D (by Definition 3) and the residual arc-set D\ E represents
an empty set of arcs (all the four reducible arcs are removed).

Algorithm 2 classifies the arcs of the overlap graph into reducible or irre-
ducible by iteratively computing arc-sets of increasing extension length £, starting
from the basic arc-sets ARC(e, €8, R”(3)) of extension length £ = 0 obtained in
the previous phase. By Lemma 2, we compute all correct arc-sets of a given ex-
tension length and we discard (according to Definition 3) all arcs of non-terminal
arc-sets that are removed by terminal arc-sets. The set D is used to store the
reads of the destination sets X of the computed terminal arc-sets. Notice that if
ARC(a, af, X) is terminal, then all of its arcs have the same origin r = @, that is
ARC(a,aB,X) = {(r = ap.By) : By € X}.

The processed arc-sets (that have the same extension length) are partioned
into clusters C(-). We denote with C(«a) the set of the arc-sets ARC(a, -, ) with a
given extension a which are contained in the stack Clusters at a certain point of
the execution of Algorithm 2. Since the arc-sets pushed to Clusters (lines 16, 19)
have an extension ca, then for each « there can be at most a cluster C(«) during
the entire execution of Algorithm 2. Observe that at the first iteration (when the
processed arc-sets are basic and have the same extension €) there is only one
cluster C(e) that is the output of Algorithm 1.

Each cluster C(@) is processed independently from the other ones, and the
set D is used to store the reads of the destination sets X of its terminal arc-sets
ARC(a, af, X). A consequence of Lemma 2 is that, for each one of the computed
terminal arc-sets ARC(«, af3, X), all arcs in C(a) with a destination in X € D and
with an origin different from r = a@f are transitive and can be removed simply by
removing X from all destination sets in the non-terminal arc-sets of C(a). Another
application of Lemma 2 is that, when we find a terminal arc-set, then all of its arcs
are irreducible, that is it is also correct. In fact by Lemma 2, an arc (a*af*, 59),
where 5* (overlap of the arc) is a prefix of 8, is classified as transitive in relation to
the existence of a read r = o that is the origin of an arc (e, 86) with (left) exten-

10



sion a. Since the algorithm considers arc-sets by increasing extension length, all
arcs that have extensions shorter than |@| have been reduced in a previous step of
the algorithm and thus terminal arc-sets computed by previous iterations contain
only irreducible arcs. More precisely, the test at line 8 is true iff the current arc-set
is terminal. In that case, at line 10 all arcs of the arc-set are output as arcs of the
string graph, and at line 11 the reads in the destination set X is added to the set D
that contains the destinations of C(«) that must be removed from the destination
sets of non-terminal arc-sets.

For each cluster C(a), we read twice all arc-sets that are included in C(a).
The first time to determine which arc-sets are terminal and, in that case, to de-
termine the reads (see the set D) that must be removed from all destinations of
the non-terminal arc-sets included in C(@). The second time to compute, from
the non-terminal arc-sets ARC(a, 3, X), the clusters C(ca), for ¢ € X, that will
contain the nonempty arc-sets ARC(ca,3,X \ D) with extension ca consisting
of the arcs that we still have to check if they are transitive or not. Notice that,
in Algorithm 2, the cluster C(«) that is currently analyzed is stored in Current-
Cluster, that is a list of the arc-sets included in the cluster. Terminal arc-sets are
removed from CurrentCluster before computing the extended clusters C(ca) (see
line 12). Moreover, the clusters that still have to be analyzed are stored in the
stack Clusters. We use a stack to guarantee that the clusters are analyzed in the
correct order, that is the cluster C(«) is analyzed after all the clusters C(a[i :])
where a[i :] is a generic suffix of @ — Lemma 3 will show that a generic irre-
ducible arc (ry, ;) with extension @ and overlap 8 belongs exactly to the clusters
C(e),...,C(a[3 :]),C(a[2 :]),C(a). Moreover, r, does not belong to the set D
when considering C(e), ..., C(a[3 :]), C(a[2 :]), hence the arc (ry, r;) is correctly
output by the algorithm when considering the cluster C(«).

Each cluster C(«) is analyzed separately, and each arc-set in any given cluster
is tested to determine if the arc-set is terminal. In that case (see the test condition
at line 8), the arcs having origin in » = af and destination in a read of X are
produced in output (see line 10). All such arcs have label @. Moreover the reads
in the destination set X are added to the set D, initially empty for each cluster,
that will contain the destination sets of all the terminal arc-sets computed at the
current iteration. We will use this information in the next step in order to remove
all the arcs that have « as suffix of the label.

After having analyzed all arc-sets in C(«), those arc-sets are scanned again.
During this second scan, for each arc-set with overlap 8 and destination set X, we
test if there is at least a read in X \ D, that is at least a read of the destination set
has not been reduced. In that case, we split C(«) into the non-empty ca-cluster
(recall that such a cluster is empty iff suff(ca) = 0).

We can now prove that all irreducible arcs are actually output by our algorithm.
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Lemma 3. Let ey be an irreducible arc (ry, r,) with extension a and overlap .
Then e belongs exactly to the |a|+ 1 clusters C(a), C(a[2 :]), C(a[3 :]),...,C(e),
while r, does not belong to the set D when currentCluster is any of C(a[2 :
D,C(@[3 :]),...,C(e). Moreover, ey is output by the algorithm when current-
Cluster is C(a).

Proof. By construction, e; can belong only to the clusters C(a), C(@[2 :]), C((3 :
D,...,C(e).

Now we will prove that e; belongs to all clusters C(a), C(a[2 :]),C(a[3 :
1),...,C(e), while r, does not belong to the set D when currentCluster is any of
C(a[2 :],C(al3 :]),...,C(e). Notice that e; € C(€). Assume to the contrary
that there exists i > 2 such that e; € C(a[i :]) and r, € D when considering a
cluster C(a[i :]). Since r, € D, by Lemma 2 there exists a nonempty terminal
arc-set ARC(a[i :], a[i :]By, X) s.t. r, = Byd and r, € X. Since it is terminal and
nonempty, such arc-set contains the arc (a[i :]By, r,) with extension «[i :]. Since
ali :] is a suffix of a the arc e, is transitive, which is a contradiction.

In particular, when the algorithm examines C(a[2 :]), then e; € C(a[2 :])
and r, € X \ D. Moreover, e; belongs to the arc-set ARC(e, aB, X \ D) added
to ExtendedClusters[a[1]] at line 16. Clearly, such arc-set is included in C(a).
When the algorithm examines the cluster C(«), the arc-set containing e; satisfies
the condition at line 8, hence such arc is output. O

Corollary 4. The set of arcs computed by the algorithm is a superset of the irre-
ducible arcs of the string graph.

Lemma 5. Let ARC(«, af3, X) be an arc-set inserted into a cluster by Algorithm 2.
Then such an arc-set is correct.

Proof. Let e; be an irreducible arc (7, r,) of ARC(a, a8, X), and let a; be respec-
tively the extension and the overlap 8 of e;. Since ¢; € ARC(«a, af3, X), then a is a
suffix of @, therefore we can apply Lemma 3 which implies that e; € C(@). Since
the only arc-set contained in C(«@) to which e; can belong is ARC(«a, af, X), then
r, € X which completes the proof. O

We can now prove that no transitive arc is ever output.

Lemma 6. Let e, be a transitive arc (ry, ;) with overlap 8. Then the algorithm
does not output e;.

Proof. Since e, is transitive, by Lemma 2 the two reads ry, r, are r; = yaf, r, =
Bon, and there exists an input string r;3 = @f6 such that the arc e, = (r3,r,) with
overlap 3¢ is irreducible. Moreover all correct arc-sets of the form ARC(a, a39, X)
with r, € X are nonempty and terminal.
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Algorithm 1: Compute the overlap graph
Input : The set R of input strings
Output: The set Basics of the basic arc-sets ARC(e, €8, RP(3))
1 Basics < empty list;
2 Last + {c € X | suff(c) > 0 and substr(c) > suff(c)};
3 while Last # @ do
4 New <+ @,

5 foreach 5* € Last do

6 if pref(8*) > 0 then

7 ‘ Append (e, €57, listpref(8*)) to Basics;

8 for c € £ do

9 if suff(¢8*) > 0 and substr(cs*) > suff(¢f*) then
10 ‘ Add ¢f5* to New;

11 Last + New;
12 return Basics;

Assume to the contrary that e; is output by Algorithm 2, and notice that such
arc can be output only when the current cluster is C(«) and the current arc-set is
ARC(ya,yaf, X) with r, € X.

By the construction of our algorithm, since the cluster C(y) is nonempty, also
C(a) is nonempty: let us consider the iteration when the current cluster is C(a).
By Lemma 5 the arc-set ARC(«, @36, X;) is correct, hence it contains the arc e,.
But such arc-set satisfies the condition at line 8, hence r» € D at that iteration.
Consequently, C(@) cannot contain an arc-set with destination set with r;. O

Theorem 7 is a direct consequence of Corollary 4 and Lemma 6.

Theorem 7. Given as input a set of strings R, Algorithm 2 computes exactly the
arcs of the string graph.

4 Computational Complexity and Data representa-
tion

We can now study the time complexity of our algorithm. Previously, we have
shown that Algorithm 1 produces at most O(nm) basic arc-sets, one for each dis-
tinct overlap 5. Moreover, notice that Algorithm 1 requires constant time for each
potential overlap. Since each potential overlap is a suffix of a read, there are O(nm)
potential overlaps, hence the time complexity of Algorithm 1 is O(nm).
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Algorithm 2: Compute the string graph
Input : The set Basics of the basic arc-sets ARC (e, €8, R (3))
Output: The arcs of the string graph of R

1 Clusters < empty stack;

2 Push Basics to Clusters:;

3 while Clusters is not empty do

4 CurrentCluster <— Pop(Clusters);

5 D + @;

6 ExtendedClusters < an array of |X| empty clusters;
7 foreach (a, aB, X) € CurrentCluster do

8 if substr(ap) = pref(ap) = suff(aB) > 0 then

9 foreach x € X do

10 ‘ Output the arc (af, x) with label «;

11 D+ DUX;

12 Remove (@, aB, X) from CurrentCluster;
13 foreach («, aB, X) € CurrentCluster do

14 foreach c € £ do

15 if suff(caB) > 0 then

16 ‘ Append (ca, caB, X \ D) to ExtendedClusters[c];
17 foreach c € X do

18 if ExtendedClusters|c] # @ then

19 ‘ Push ExtendedClusters|c] to Clusters;

A similar argument shows that the number of arc-sets managed by Algorithm 2
is at most O(nm?), since each suffix a8 can be considered for different extensions
a. Moreover, differently from Algorithm 1, the time spent by Algorithm 2 for
each string @f is not constant. More precisely, for each cluster, besides comput-
ing substr(-), pref(-), suff(-), Algorithm 2 computes a union D (line 11) and the
difference X \ D (line 16) — a direct inspection of the pseudocode shows that all
other operations require constant time for each string af3.

The union at line 11 and the difference X \ D at line 16 are computed for each
string suffix @8 where 3 is a potential overlap. Let d(n) be the time complexity
of those two operations on n-element sets (the actual time complexity depends on
the data structure used). Therefore, the time complexity of the entire algorithm is
O(nmd(n)). We point out that a representation based on an n-long bitvector (like
the one we will discuss in the following) implies an O(n) time complexity for each
union and difference.

As a consequence, the time complexity of our algorithm is O(nm(n + m)). On
the other hand, we conjecture that this time complexity is highly pessimistic, since
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usually the number of potential overlaps is smaller than the worst case.

One of the main features of our approach is that we operates only on the (po-
tentially compressed) FM-index of the collection of input reads. To achieve that
goal we cannot use the naive representation of a string w, but we must employ
a BWT-based representation. More precisely, we represent a string w with the
w-interval q(w) = [b,, €,,] and the fact that w is suffix in some read of R with the
w$-interval q(w$) = [b.s,ews] on the BWT, hence using four integers for each
string.

We need to show how to compute efficiently this representation of w as well
as pref(w), suff(w), and substr(w). The following proposition is instrumental and
can be verified by a direct inspection of Algorithms 1 and 2: both algorithms
compute strings by prepending characters, that is they need to obtain the (repre-
sentation of the) string cw from the (representation of the) string w that has been
processed previously.

Proposition 8. Let w be a string processed by Algorithms I or 2, and such that
\w| > 1. Then the string w[2 :] is processed by the same algorithm before w.

Since each string w considered by the algorithm is a substring of some input
read, we can represent w in constant space by the boundaries (i.e., the first and the
last index) of q(w) and q(w$), instead of using the naive representation with O(|w)|)
space. Consequently, the algorithm operates only on the (potentially compressed)
FM-index of the collection of input reads.

Initially we compute the intervals q(c) and q(c$) for each character ¢ € X
by inspecting the FM-index, hence settling the case when |w| = 1. Furthermore,
the FM-index allows to compute in O(1) time q(cw) and q(cw$) from q(w) and
g(w$) — the backward c-extension of w and w$ — for any character ¢ € X U
{$} (Ferragina and Manzini, 2005).

This representation allows to answer each query pref(w), suff(w) and substr(w)
in O(1) time. In fact, given q(w) = [b,, e,], then substr(w) = e, — b, + 1 and
pref(w) = es, — bs,, + 1 where q($Sw) = [bs,, €s.,] is the result of the backward
$-extension of q(w) — which can be obtained in O(1) time.

Moreover, listpref(w) corresponds to the set of reads appearing in the interval
g($w) of the GSA. Notice that no read can appear twice in such interval, hence a
linear scan of the interval q($w) suffices.

Answering to the query suff(w) requires considering the interval q(w$) =
[bus, €ws] (Which is the reason it is included in the representation of w). In fact
suff(w) = eys — bys + 1.

A further optimization of the representation is possible. Recall that q(w) =
(b, e,] and q(w$) = [bus,e.s]. Notice that b, = b,g, since the sentinel $ is
lexicographically smaller than all characters in X. Hence the two intervals q(w)
and q(w$) can be represented by the three integers b,,, €., €.s.
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Instead of storing directly the three integers b,,, e, €., We use two n(m + 1)-
long bitvectors, requiring 2n(m+ 1)+o(nm) bits and allowing to answer in constant
time to rank and select queries (Clark and Munro, 1996; Jacobson, 1989).

Algorithm 1 mainly has to represent the set of potential overlaps (i.e., the
lists Last and New). At each iteration, the potential overlaps in Last (in New,
resp.) have the same length, hence their corresponding intervals on the BWT are
disjoint. For each potential overlap f € Last (in New, resp.) represented by the
triple (bg, eg, eps), the first bitvector has 1 in position bz and the second bitvector
has 1 in positions egg and eg — since each q(p) is disjoint from all other intervals,
the i-th interval is represented by the i-th 1 in the first bitvector, and the 2i-th and
(2i + 1)-th 1s of the second bitvector.

Algorithm 2 mainly has to represent clusters and, for each cluster, the set
D containing the reads that must be deleted from all destination set of the non-
terminal arc-sets of the cluster. A cluster groups together arc-sets whose overlaps
are either pairwise different or one is the prefix of the other. Thus, the correspond-
ing intervals on the BWT are either disjoint or one contained in the other (i.e.,
partial overlap of the intervals cannot happen).

Moreover, also the destination set of the basic arc-sets can be represented by
a set of pairwise disjoint or contained intervals on the BWT (since listpref(g) of
line 7 corresponds to the reads of the interval q($8) on the GSA). The following
proposition, which can be proved by a similar argument as Lemma 3, describes
the relation between destination sets.

Proposition 9. Let ARC(a, afy, X|), ARC(a, af3,, X,) be two arc-sets belonging
to the cluster C(a) during the execution of Algorithm 2. Then X, N X, # @, or one
of X1, X, is a subset of the other. Moreover, if B is a prefix of 5, then X, C X.

Given a cluster C(a), let v be the longest common prefix of all strings a3 such
that ARC(a, af, X) is an arc-set of the cluster. Then the numbers that represent the
strings @ are all contained in the y-interval: therefore it suffices to consider num-
bers in the interval [b,, e,] instead of the interval [1,n(m + 1)]. A more compact
representation of the data that we have to manage consists of two (e, — b, + 1)-
long vectors V,, V, of integers, and a bitvector B, of length e, — bg, + 1 — where
[bs,, es,] is the $y-interval. Each entry V[i] (V,[i], resp.) is the number of arc-
sets ARC(a, af, ) in C(«) with initial (final, resp.) boundary b, +i. Moreover, the
destination sets that are considered in the cluster are contained in the set of reads
in q($vy), hence the bitvector B, is to encode the set D: in fact B,[i] is 1 iff the
(bs, + i)-th read (in lexicographic order), belongs to D.

Notice that the arc-sets ARC(a, af3, X) in each cluster C(«) are sorted accord-
ing to the lexicographic order of : this fact allows to coordinate the sequential
scan of V; and V, that corresponds to the for loop at lines 13—-16 with a scan of
the list of destination sets (one for each arc-set) that must be updated at line 16.
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Also notice that Vj, V,, and B, are constructed at lines 11-16 and exploited at
lines 13—16, hence the data structures necessary to answer rank and select queries
in constant time must be built once for each cluster just before line 13.

S Experimental Analysis

A C++ implementation of our approach, called FSG (short for Fast String Graph),
has been integrated in the SGA suite and is available at http://fsg.algolab.
eu under the GPLv3 license. Our implementation uses the Intel® Threading
Building Blocks library in order to manage the parallelism. The software is con-
ceptually divided in the two phases illustrated in the previous section, and each
phase has been implemented as a computational pipeline using the pipeline
construct made available by the library.

We have evaluated the performance of FSG with three experiments: the first
experiment compares FSG and SGA on a standard benchmark of 875 million
101bp-long reads sequenced from the NA12878 individual of the International
HapMap and 1000 genomes project (extracted from ftp://ftp-trace.ncbi.
nih.gov/1000genomes/ftp/technical /working/20101201_cg_NA12878/
NA12878.hiseq.wgs.bwa.recal.bam). The second experiment, on an Escherichia
coli dataset, aims at investigating the cause of the speedup obtained by FSG with
respect to SGA. Finally, the third experiment (which is on a synthetic dataset ob-
tained from the Human chromosome 1), studies the effect of coverage on the per-
formance of FSG and SGA. All experiments have been performed on an Ubuntu
14.04 server with four 8-core Intel® Xeon E5-4610v2 2.30GHz CPUs (hyper-
threading was enabled for a total of 16 threads per processor). The server has a
NUMA architecture with 64GiB of RAM for each node (256GiB in total). To
minimize the effects of the architecture on the executions, we used numactl to
preferably allocate memory on the first node where also the threads have been
executed (with 32 threads also the second node was used).

We have run SGA with its default parameters, that is SGA has computed ex-
act overlaps after having corrected the input reads. We could not compare FSG
with Fermi, since Fermi does not split its steps in a way that allows to isolate
the running time of the string graph construction—most notably, it includes reads
correction and scaffolding. Since the string graphs computed by FSG and SGA
are essentially the same, we have not focused our analysis on the quality of the
resulting assemblies, but we give a brief analysis hinting that it is not possible to
determine which assemblies are better (see Table 2).

For genome assembly purposes, only overlaps whose length is larger than a
user-defined threshold are considered. The value of the minimum overlap length
threshold that empirically showed the best results in terms of genome assembly
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SGA FSG

N. Contigs (> Obp) 15,322,517 14,904,770
N. Contigs (= 5000bp) 136,717 136,693

Tot. Contig Length (> Obp) 4,154,574,477 4,111,303,910
Tot. Contig Length (> 5000bp) 1,173,041,496 1,173,000, 932

Tot. Length (> 25000bp) 26,665,111 26,674, 888
N50 4,700 4,700
N75 2,393 2,393

Table 2: Quality of the assemblies computed by FSG and SGA.

quality is around the 75% of the read length (Simpson and Durbin, 2012). In order
to assess how graph size affects performance, different values of minimum over-
lap length (called 7) between reads have been used (clearly, the lower this value,
the larger the graph). The minimum overlap lengths used in this experimental as-
sessment are 55, 65, 75, and 85, hence the chosen values test the approaches also
on larger-than-normal (7 = 55) and smaller-than-normal (7 = 85) string graphs.

Another aspect that we wanted to measure is the scalability of FSG for a differ-
ent number of threads. We have run the programs with 1, 4, 8, 16, and 32 threads.
In all cases, we have measured the elapsed (wall-clock) time and the total CPU
time (the time a CPU has been working).

In terms of memory, SGA does not maintain the computed string graph in
memory, hence its peak memory usage is only dependent on the input size and
in these experiments was always about 63GiB. Also the peak memory usage of
our approach was approximately equal to 138GiB for all the configurations. As
a consequence, the memory usage of our approach is practically only dependent
on the input size since it compactly stores the arc-sets of the first phase and the
stack maintaining the clusters to be processed in the second phase does not grow
to have more than |X| - (im — 7) elements.

Table 3 summarizes the running times of both approaches on the different
configurations of the parameters. Notice that FSG approach is from 2.3 to 4.8
times faster than SGA in terms of wall-clock time and from 1.9 to 3 times in
terms of CPU time. On the other hand, FSG uses approximately 2.2 times the
memory used by SGA — on the executions with at most 8 threads.

While FSG is noticeably faster than SGA on all instances, there are some other
interesting observations. The combined analysis of the CPU time and the wall-
clock time on at most 8 threads (which is the number of physical cores of each
CPU on our server) suggests that FSG is more CPU efficient than SGA and is able
to better distribute the workload across the threads. The latter value of 8 threads
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Min. no. of Wall time [min] Work time [min]

overlap threads FSG SGA £9  FSG SGA £6

55 1 1,485 4,486 0.331 1,483 4,480 0.331
4 474 1,961 0.242 1,828 4,673 0.391
8 318 1,527 0209 2,203 4,936 0.446
16 278 1,295 0.215 3,430 5915 0.580
32 328 1,007 0326 7,094 5,881 1.206
65 1 1,174 3,238 0.363 1,171 3,234 0.363
4 416 1,165 0.358 1,606 3,392 0473
8 271 863 0315 1,842 3,596 0.512
16 255 729 0.351 3,091 4,469 0.692
32 316 579 0.546 6,600 4,444 1.505
75 1 1,065 2,877 037 1,063 2,868 0.371
4 379 915 0415 1,473 2,903 0.507
8 251 748 0.336 1,708 3,232 0.528
16 246 561 0.439 2890 3,975 0.727
32 306 455 0.674 6,368 4,062 1.568
85 1 1,000 2,592 0.386 999 2,588 0.386
4 360 833 0432 1392 2,715 0.513
8 238 623 0.383 1,595 3,053 0.523
16 229 502 0.457 2,686 3,653 0.735
32 298 407 0.733 6,117 3,735 1.638

Table 3: Comparison of FSG and SGA, for different minimum overlap lengths and
numbers of threads. The wall-clock time is the time used to compute the string
graph. The CPU time is the overall execution time over all CPUs actually used.

seems to be a sweet spot for the parallel version of FSG.

On a larger number of threads, and in particular the fact that the elapsed time
of FSG on 32 threads is larger than that on 16 threads suggests that, in its current
form, FSG might not be suitable for a large number of threads. However, since
the current implementation of FSG is almost a proof of concept, future improve-
ments to its codebase and a better analysis of the race conditions of our tool will
likely lead to better performances with a large number of threads. Furthermore,
notice that also the SGA algorithm, which is (almost) embarrassingly parallel and
has a stable implementation, does not achieve a speed-up better than 6.4 with 32
threads. As such, a factor that likely contributes to a poor scaling behaviour of
both FSG and SGA could be also the NUMA architecture of the server used for
the experimental analysis, which makes different-unit memory accesses more ex-
pensive (in our case, the processors in each unit can manage at most 16 logical
threads, and only 8 on physical cores).

Notice that, FSG uses more memory than SGA. The reason is that genome
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assemblers have to correctly manage reads extracted from both strands of the
genome. In our case, this fact has been addressed by adding each reverse-and-
complement read to the set of strings on which the FM-index has been built, hence
immediately doubling the size of the FM-index. Moreover, FSG needs some ad-
ditional data structures to correctly maintain potential overlaps and arc-sets, as
described in Section 4. The main goal of FSG is to improve the running time, and
not necessarily to decrease memory usage.

We also wanted to estimate the effect of the optimizations discussed in Sec-
tion 4, by measuring the number of backward extensions performed. We have
instrumented FSG and SGA to count the number of accesses to the FM-index
(which can happen only when computing a backward extension) and we have run
both program on the NA12878 dataset with r = 85: FSG has made 877 - 10°
accesses, while SGA has made 947 - 10° accesses, i.e., SGA has made 8% more
backward extensions than FSG. This result confirms that clustering together arc-
sets and avoiding unnecessary backward extensions actually improves on SGA’s
strategy. On the other hand, such difference on the number of backward exten-
sions is unable to fully explain the different running times of FSG and SGA —
Table 3 shows that, on this specific instance, SGA needs 2.5x the time used by
SGA. Therefore we have designed a second experiment to investigate the main
causes of the different performances of FSG and SGA.

In our second experiment, we have run both FSG and SGA on the Escherichia
coli dataset downloaded fromhttp://www.ebi.ac.uk/ena/data/view/CP009789
under valgrind (Nethercote and Seward, 2007) to measure the instruction and
memory access patterns. Since running a program under valgrind increases the
running time by two orders of magnitude, it was not feasible to use the same
dataset as the first experiment, but we had to use a much smaller one. The results
of this experiment are summarized in Table 4.

Our initial conjecture was that the better efficiency achieved by FSG originated
from operating only on the FM-index of the input reads and by the order on which
extension operations (i.e., considering a new string c« after « has been processed)
are performed. These two characteristics of our algorithm allow to eliminate the
redundant queries to the index which, instead, are performed by SGA. In fact, FSG
considers each string that is longer than the threshold at most once, while SGA po-
tentially reconsiders the same string once for each read in which the string occurs.
A consequence of our conjecture should have been fewer memory accesses and
cache misses. Unfortunately the results we have obtained on memory accesses are
inconclusive: the number of memory accesses made by SGA are almost twice as
many as those made by FSG. On the other hand, the number of cache misses that
result in RAM accesses hints that SGA is much more efficient in that regard. We
have estimated the total time spent in memory accesses using the values suggested
by Valgrind: 1 cycle for each cache access, 10 cycles for each level 1 cache miss,
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SGA FSG S04

FSG
Instruction read 1,271,545 743,807 1.710
Instruction cache level 1 miss read 2,187 15 142.642
Instruction RAM miss read 0.048 0.034 1.412
Data read 358,461 199,845 1.794
D level 1 miss read 13,491 6,206 2.174
Data RAM miss read 146 725 0.202
Data write 143 90 1.589
D level 1 miss write 647 562 1.151
Data RAM miss write 7 273 0.028
Total time for memory accesses (cycles) 180,446 168,706 1.070
Conditional branches executed 159,912 106,167 1.506
Conditional branches mispredicted 10,292 4,989 2.063
Indirect branches executed 10,044 4,977 2.018
Indirect branches mispredicted 1,472 317 4.644

Table 4: Comparing FSG and SGA on the Escherichia coli dataset using valgrind.
Numbers are expressed in millions.

and 100 cycles for each cache miss that results in a RAM access. Overall, FSG
is more efficient than SGA, but definitely less than 10% more efficient: hence this
reason alone cannot justify the difference in running times of the two programs.

The fact that FSG consists of several linear scans suggests that it should be able
to better exploit the superscalar features of modern CPUs. In fact, our analysis of
branch mispredictions confirms this fact: the ratio of the total number of branch
predictions made by FSG is about 75% of those made by SGA, and the total
number of branch mispredictions made by FSG is less than 50% of those made by
SGA.

We have compared the string graphs produced by FSG and SGA, since their
respective notions of string graphs are slightly difterent. More precisely, FSG
keeps multiple arcs with distinct labels between the same pairs of vertices, while
SGA retains only the arc having the shortest label. When the minimum overlap
length is 65bp, the string graph computed by FSG had ~ 3.5% more arcs than the
one computed by SGA, but the impact on the actual assembly is not relevant (see
Table 2).

A third experiment has been performed with the goal of studying the scalabil-
ity of FSG on larger coverage values. We have extracted random reads from the
human chromosome 1, with different average coverage values and different read
lengths. Since the goal of this experiment is analyzing the running time and mem-
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Coverage

Read length Threads Program 4 8 16 32 64 128 256
101 8 FSG 2 3 6 11 22 36 36
101 8 SGA 1 2 3 6 13 17 17
101 16 FSG 2 3 6 12 22 36 36
101 16 SGA 1 2 4 7 13 18 18
101 32 FSG 3 4 7 13 23 36 36
101 32 SGA 2 3 5 8 14 19 19
101 64 FSG 57 9 15 26 38 38
101 64 SGA 55 7 10 16 21 21
250 8 FSG 1 3 5 10 18 39 78
250 8 SGA 11 1 3 5 10 19
250 16 FSG 2 3 6 10 19 40 78
250 16 SGA 11 2 3 6 11 20
250 32 FSG 34 7 11 20 41 78
250 32 SGA 23 3 4 7 12 21
250 64 FSG 5 6 9 14 22 43 80
250 64 SGA 55 5 7 9 14 23

Table 5: Comparing FSG and SGA on different coverage values and different
number of threads: Peak memory usage (in Gigabytes)

ory usage, while we are not interested into the accuracy of the predictions, the
reads do not contain errors (i.e., they are substrings extracted from the reference
genome). The results of these experiments are reported in Tables 5 and 6. The
comparison between FSG and SGA confirms the results of the first experiment,
and shows that for large coverage values, FSG becomes even faster than SGA but
uses an increasing amount of memory.

6 Conclusions and future work

We present FSG: a tool implementing a new algorithm for constructing a string
graph that works directly querying a FM-index representing a collection of reads,
instead of processing the input reads. Our main goal is to provide a simpler and
fast algorithm to construct string graphs, so that its implementation can be easily
integrated into an assembly pipeline that analyzes the paths of the string graph
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Coverage

Read length Threads Program 4 8 16 32 64 128 256
101 8 FSG 4 7 13 19 38 59 59
101 8 SGA 5 10 20 40 89 148 145
101 16 FSG 3 6 10 17 34 55 57
101 16 SGA 4 8 16 32 68 116 115
101 32 FSG 4 8 12 21 41 64 65
101 32 SGA 4 8 16 32 68 111 120
101 64 FSG 7 24 44 85 174 265 286
101 64 SGA 37 14 27 57 92 92
250 8 FSG 8§ 10 15 24 37 77 171
250 8 SGA 4 9 20 43 86 191 416
250 16 FSG 5 8 11 18 30 64 139
250 16 SGA 3 7 15 32 68 144 309
250 32 FSG 7 11 17 24 37 72 141
250 32 SGA 37 14 29 62 135 298
250 64 FSG 5 9 19 42 90 184 421
250 64 SGA 2 5 10 22 46 95 209

Table 6: Comparing FSG and SGA on different coverage values and different
number of threads: Running times (in hours)

to produce the final assembly. Indeed, FSG could be used for related purposes,
such as transcriptome assembly (Lacroix et al., 2008; Beretta et al., 2014), and
haplotype assembly (Bonizzoni et al., 2003), and variant detection via aligning
paths of the string graph against a reference genome. These topics are some of the
research directions that we plan to investigate.

More precisely, our algorithm uses string queries that are efficiently imple-
mented using the information provided by the index and takes advantage of a lex-
icographic based-ordering of string queries that allows to reduce the total number
of such queries to build the string graph. Since FSG reduces the total number of
queries and does not process the input to compute the transitive reduction as done
by SGA, the current state-of-art tool for computing the string graph, we are able
to show that FSG is significantly faster than SGA over genomic data. It would
be interesting to test our implementation to compute the string graph for a large
collection of strings with different characteristics than genomic reads, such as for
example when the alphabet is of larger size or the input data consists of strings of
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variable length.
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