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Abstract

We present a new algorithm to cluster high dimensional sequence data,
and its application to the field of metagenomics, which aims to reconstruct
individual genomes from a mizture of genomes sampled from an environ-
mental site, without any prior knowledge of reference data (genomes) or
the shape of clusters. Such problems typically cannot be solved directly with
classical approaches seeking to estimate the density of clusters, e.g., using
the shared nearest neighbors rule, due to the prohibitive size of contempo-
rary sequence datasets. We explore here a new method based on combining
the shared nearest neighbor (SNN) rule with the concept of Locality Sen-
sitive Hashing (LSH). The proposed method, called LSH-SNN, works by
randomly splitting the input data into smaller-sized subsets (buckets) and
employing the shared nearest neighbor rule on each of these buckets. Links
can be created among neighbors sharing a sufficient number of elements,
hence allowing clusters to be grown from linked elements. LSH-SNN can
scale up to larger datasets consisting of millions of sequences, while achiev-
ing high accuracy across a variety of sample sizes and complexities.

1 Introduction

Clustering is usually defined as the task of unsupervised learning, where the
class labels of the data items are unknown [4] 21, 29, B5]. Clustering methods
alm to create categories from the data in such a way that similar objects will
be grouped together, while dissimilar objects will be separated into different
groups, referred to as clusters. Important issues in clustering research focus on
the effectiveness and scalability of the methods on data of varying complexities
and arising from various domains [I} 39} [56].

Commonly used methods to cluster high dimensional data are presented in
[37]. K-means is one of the most widely used clustering method due to its low
algorithmic complexity. However, it has been shown in [53] that K-means tends
to produce clusters of relatively uniform sizes and globular shapes, even if the
data structure is endowed with varying cluster sizes or different shapes. This
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bias is known as the uniform effect of the K-means. Moreover, the number
of clusters K has to be specified a priori, which is not trivial when no prior
knowledge is available. To address these problems, methods based on estimating
the density and/or the similarity among instances have been introduced [15] [30].

In [14], the authors presented an effective clustering method based on two
key notions: the similarity between neighboring elements and the density around
instances. This method, Shared Nearest Neighbors (SNN), is a density-based
clustering method and incorporates a suitable similarity measure to cluster data.
After finding the nearest neighbors of each element and computing the similarity
between pairs of points, SNN identifies core points, eliminates noisy elements
and builds clusters around the core elements. This method can yield better
performance compared to other clustering approaches with data of varying den-
sities, and it can automatically handle the number of output clusters. However,
this method has complexity O(n?), where n is the number of instances in the
dataset, arising from the computation of the similarity matrix, which can be
prohibitive when dealing with high dimensional data.

One interesting concept to reduce the burden of computing the similarity ma-
trix is Locality Sensitive Hashing (LSH). This concept was initially introduced to
find approximate near neighbor information in high dimensional space [19] [51].
The key idea is to hash elements into different buckets; then for a query in-
stance x, to use instances stored in buckets containing x as candidates for near
neighbors. This approximation reduces the query time complexity to O(logn)
instead of O(n) (O(n) is the complexity for searching nearest neighbors for one
instance). Therefore, the similarity matrix computation time can be reduced to
O(nlogn).

We propose here to retain the basic principle of LSH by randomly splitting
the dataset into a number of smaller-sized subsets, using a family of hashing
functions, so that similar elements will be hashed together with high probability.
We then look for nearest neighbors of each element in its bucket, and construct
links among elements sharing a significant number of neighbors in order to
output clusters. The proposed method, called LSH-SNN; has the advantage of
reducing the complexity for computing the similarity matrix, while maintaining
the same level of clustering accuracy.

In the present study, we have evaluated the performance of the LSH-SNN
method on metagenomics datasets of various sizes and complexities. We also
have compared the results with another density-based clustering method and the
K-means method implemented in a popular sequence clustering software called
MetaCluster [55]. Many computational tools have been proposed in the liter-
ature to analyze metagenomic sequences generated from micro-organism com-
munities. These tools can be grouped into two main categories: (a) supervised
and (b) unsupervised methods. Supervised methods, often relying on sequence
similarities and alignments of DNA fragments to reference sequences of known
taxonomic origins [59)] include tools such as MEGAN [28] and CARMA [36]. Un-
supervised methods group metagenomic fragments based on intrinsic features,
such as the statistics of I-mer frequencies extracted from fragments. Unsuper-
vised methods, such as MetaCluster [55], AbudanceBin [54] and TOSS [50],
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became attractive due to the lack of reference genomes for the bulk of micro-
organisms.

The rest of this paper is organized as follows: Section [2]surveys related work
on clustering; Section [3|recalls some background on Local Sensitive Hashing and
the Shared Nearest Neighbor methods; Section [] introduces our method based
on the combination of Local Sensitive Hashing and Shared Nearest Neighbors.
Experimental results are illustrated in Section [5} while Section [6] concludes the

paper.

2 Related work

Clustering methods look for similarities within a set of instances without any
need for prior data labeling. Numerous methods have been proposed in litera-
ture to deal with clustering tasks. Existing algorithms can be grouped into five
categories as proposed in [4] and [35]: partitioning methods, hierarchical meth-
ods, density-based methods, grid-based methods, and model-based methods.
Hereafter, we will describe the main characteristics of these methods.

Partitioning methods construct K partitions of the data by grouping in-
stances around the gravity center of each cluster. They can be divided into two
main groups: the centroid methods such as K-means [20], and the medoids ones
[33] such as the K-modes [25] and the K-prototypes algorithms [26]. Partition-
ing methods are simple to implement, however, the number of clusters K should
be specified.

Hierarchical methods build a tree hierarchy, known as dendrogram, to form
clusters in two different manners: agglomerative (bottom-up) and divisive (top-
down). The former starts with singleton clusters and recursively merges them
in a bottom-up strategy, while the latter breaks the dataset into smaller clusters
in a top-down strategy. They use various local criteria to join or split clusters.
Hierarchical methods have the advantage of handling any form of similarity
without requiring the number of clusters to be known in advance. However,
to construct a dendrogram, they suffer from their time and space complexities
which are quadratic with respect to the number of clusters. Hierarchical clus-
tering include methods such as: BIRCH [58], CURE [I8] and CHAMELEON
[31].

Density-based methods generate clusters based on the density of instances
in a region. These methods are related to different concepts defining a point’s
nearest neighbors, such as density, connectivity, and boundary. Density-based
methods are scalable and can find arbitrary shaped clusters; however, they
output border instances, which may be unclustered and considered as outliers.
Existing methods include DBSCAN [I5], OPTICS [3], DENCLUE [23], Jarvis-
Patrick [30], and SNN [13] algorithms. SNN will be described in further detail
in Section

Grid-based methods quantize the space into a finite number of cells that
form a grid structure. Clustering is, then, performed on the grid cells, instead
of the database itself [39]. The main advantage of these methods is their fast
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processing time; however, they output clusters with either vertical or horizontal
boundaries. No diagonal boundary can be detected. This category includes
STING [52], WaveCluster [48], and CLIQUE [2] algorithms, among others.

In model-based clustering, it is assumed that the data are generated from
K probability distributions, and the goal is to find the distribution parameters
[56]. Model-based methods are characterized by a small number of parameters;
however, the computational burden can become significant if the number of
distributions is large. Moreover, it is difficult to estimate the number of clusters.
Many model-based clustering methods are described in the literature, such as
Expectation-Maximization [41], SOM net [32] and AutoClass [10].

None of the above categories can directly cluster large amounts of instances
of arbitrary shapes, and at the same time automatically detect the appropriate
number of clusters. Shared nearest neighbors algorithm from the density-based
clustering category can deal with local density variations and automatically find
clusters of different shapes. However, adapting this technique with massive data
requires extensive storage and time costs, especially for the step of computating
the all-versus-all similarity matrix.

3 Background

In this section, we briefly review some background on local sensitive hashing
(Subsection [3.1)) and shared nearest neighbors algorithms (Subsection [3.2]).

3.1 Local Sensitive Hashing

Local Sensitive Hashing (LSH) was first introduced in [19] as a classical geomet-
ric lemma on random projections, to quickly find similar items in large datasets.
One or many families of hash functions map similar inputs to the same hash
code. This hashing technique produces a splitting of the input space into many
subspaces, called bins or buckets, with a high probability that instances origi-
nally close in their input space will be in the same bin or in adjacent bins within
the LSH framework.

To alleviate the curse of dimensionality, each hash function projects the
data to a lower-dimensional space (h : RY — Z). Different techniques have
been presented in the literature to generate hash functions. These techniques
can be categorized into two families: min-hash [7] and random projections. In
document classification, min-hash is typically used when looking for textually
similar documents by processing items and generating integers from strings of
characters [38]. Random projections, on the other hand, are obtained via sim-
ple probability distributions like p-stable distribution [12], and sign-random-
projection [9].

Dealing with large datasets, LSH is usually used with the nearest neighbors
techniques [8] or for clustering data [0, [7]. To perform k-nearest neighbors,
buckets, and sometimes their adjacent buckets [40], containing the query element
are checked and all the existing instances are ranked according to their distances
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to the query element. To cluster high-dimensional data [22] [34], similar elements
contained in the same bucket can be joined to output clusters in a hierarchical
way [45].

3.2 Shared Nearest Neighbor

SNN (Shared Nearest Neighbor) is a density based clustering approach for find-
ing groups of documents with a strong, coherent topic or theme [4], [14], [17],
[42], [43], [49]. SNN handles clusters of widely differing sizes, densities, shapes,
and having large amounts of noise and outliers. To exploit space density of the
data, SNN uses the concept of similarity based on the shared nearest neighbor
approach. The similarity matrix is sparsifyed by keeping only the k-most near-
est neighbors (knn). The shared nearest neighbor graph is then constructed by
creating links between pairs of instances having each other in their respective
knn lists. The weight of the link can be calculated either as the number of
shared neighbors between two knn lists or using the ordering of these shared
neighbors.

The algorithm determines the type of each instance (core, border or noisy)
by calculating its connectivity; i.e., the number of links coming out of this
instance, which will be compared to noisy and topic thresholds. Noisy instances
are discarded and will never be used in the clustering process. Core instances
form final clusters with their connected elements. This algorithm is configured
by means of four parameters, namely: the number of nearest neighbors, noted
as knn hereafter, the topic threshold, and two other thresholds to add elements
to clusters. Depending on the user-defined parameters, many of the border
instances remain unlabeled because they are not connected to core elements.

4 Our proposal: the LSH-SNN algorithm

In this section, we describe the key idea of our algorithm, called LSH-SNN, and
described in Section We then describe how to tune the different parameters
in Section 2

4.1 Method description

Shared nearest neighbor (SNN) is a relatively effective unsupervised method
to automatically find clusters of different shapes and densities. However, it is
challenged by scalability issues arising on large datasets. For n data items and
knn nearest neighbors, the computational complexity of SNN is O(n?), whereas
its space complexity is O(knn xn). For large number of instances n, SNN can
suffer from important scalability problems.

Our goal is to adapt a suitable framework for clustering large number of
instances using SNN principles. It is motivated by large metagenomic datasets
incurring high computational costs. To help reduce these costs, we consider the
rationale of local sensitive hashing as a framework for the development of the


https://doi.org/10.1101/093898
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/093898; this version posted December 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Shared Nearest Neighbor clustering in a Locality Sensitive Hashing framework

SNN method. In this framework, the n data instances are randomly partitioned
into a number of smaller-sized subsets called buckets, and for each fragment,
we locate its approximate nearest neighbors inside its bucket. This approach,
called LSH-SNN, has an advantage over SNN since it restricts the calculation
of distances for each single fragment inside its bucket, whereas SNN needs to
calculate n distance measures for each fragment before selecting the list of the
nearest neighbors.

LSH-SNN begins with the extraction of features from the sequence fragments
by computing the frequencies of all possible l-mers (substrings of length ) in
each of them (Section [4.1.1)). Nearest neighbors of all sequences are then com-
puted by applying the LSH technique, which involves splitting sequences into
different buckets in such a way that similar sequences end up in the same bucket
with higher probability (Section . Elements stored in buckets containing
a given sequence x are retrieved and ranked according to their distances to x
in order to compute its nearest neighbors list. Shared neighbors are linked ac-
cording to the SNN rule, and connected sequences form output clusters (Section
. Finally, in the case of unclustered fragments, a last step is performed in
order to assign them to the cluster most similar in terms of [-mer distribution

(Section [4.1.4).

4.1.1 [-mer frequency calculation

Sequence similarities are typically identified by comparing occurence patterns of
relatively short DNA substrings of length [ between the sequences [50, 55]. Two
broad scenarii can be used to assess [-mer-based similarities: abundance-based
methods make use of relatively large | values (I > 20) in order to ensure the
uniqueness of most I-mers [50], while composition-based methods rely on smaller
l values. Since DNA is a combination of four different types of nucleotides
(A,T,G,C), there are at most 4! I-mer combinations forming the feature vector.
The frequency of each l[-mer combination is normalized by dividing the number
of occurrences by the fragment length.

Because of nucleotide base complementarities, the size of the feature vector
can be reduced by half, i.e., for a DNA sequence x of length s, the feature vector
is given by:

x = (W1, w2y -« .y Win)

where w; = f;, fi is the frequency occurrence of a given [-mer combination
and m represents the size of the vector (or number of descriptive attributes),
m = 4'/2 if | is odd, and (4! + 4Y/2)/2 if even.

4.1.2 LSH

For convenience, we briefly recall some notations. Let X be the collection of n
sequences of m-dimensional features, and let x € X denote an input sequence.
Let k be the number of projections. For each i € [k], h;(x) is given by: h;(x) =
sign(x.v;), where v; is vector whose components are randomly generated from
a Gaussian distribution, for example A(0,1). This scalar projection gives one


https://doi.org/10.1101/093898
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/093898; this version posted December 15, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Shared Nearest Neighbor clustering in a Locality Sensitive Hashing framework

hash value for x. The hash code for x is then obtained by a concatenation of
the k hash values, g(x) = (h1(x), h2(x),...,hx(x)). LSH prepares r copies of
g(.) to improve the hashing discriminative power [IT], 51] (to avoid confusion,
k (in lower case) is the number of sampled bits, while K (in upper case) is the
number of output clusters).

The feature vectors are first normalized with zero mean and unit
variance. Each input sequence x is then indexed by a hash code
9(x) = (hi(x), ha(x),..., hg(x)) defining its bucket identity, and the
hash code of all sequences in X constitutes a hash table. This projection
produces a new k-dimensional space (k << m). Since the number of elements
per bucket is typically much smaller than n, we need to ensure that similar
sequences share the same bucket with higher probability while minimizing
random effects. To achieve this, r hash functions g¢i,¢s,...,9, are sampled
independently, each generating a distinct hash table. For each sequence x, we
then identify g1 (x), g2(%x),..., g-(x) indexing the r buckets where x mapped
in each projection.

Note that any hash function may be applied in this step [44] when distances
are measured as angles between point pairs. In this work, we demonstrate results
based on the random hash functions generated from a Gaussian distribution.

The projection of the data items into different buckets can be summarized
as follows:

Algorithm 1 Computation of hash function

Input: Set of DNA sequences X of size n, number of projections r
Output: Set of Matrices of hash code T corresponding to X;
X = (X-mean(X))/std(X);
k =log(n); > k is the number of projections or axis
fori=1to rdo
Create a m-by-k matrix A where rows are identical and generated from
a Gaussian distribution (N(0,1));
6: end for

o

For hashing the dataset, the time complexity is O(m x k X r) per sequence,
since each sequence of dimension m will be processed by k hash functions
repeated r times. Therefore for n sequences the time complexity of LSH is
O(n x m x k x r). For fixed l-mer (and hence of m) and r values, LSH has a
complexity of O(n x log(n)).

4.1.3 SNN

Once the space has been partitioned k X r times, a simple k-nearest neighbor
classifier may be considered to find the nearest neighbors of a sequence x inside
its bucket (i.e., having the same hash code) for all partitions. The union of r
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subsets of nearest neighbors for a given sequence is treated as its neighborhood
list. Since the nearest neighbor lists are generated from sparsely populated
buckets, the computational cost and runtime are improved.

Once the sets of nearest neighbors have been defined, the SNN algorithm
follows two steps: computing link strengths and sequence labeling. A link is
created between two sequences x; and x5 if they have each other in their respec-
tive neighborhood lists, and it can be scored according to the sum of positions
of shared instances between these two lists, namely:

link(x1,x2) = Z(knn +1—p1)+ (knn+1—pa), (1)

where p; and p, are the positions of a shared neighbor in the lists of x; and
x2. The knn lists are then transformed into a graph where sequences (nodes)
are connected via link strengths. For each sequence x in the graph, the sum
of its total links (conn,) is computed in order to enable the selection of a
subset of representative sequences according to a connectivity-based criterion
(conn > topic threshold).

The algorithm [2] inset summarizes the SNN method. To check the nearest
neighbors of a sequence x, n’ distances need to be evaluated, where n’ is the
number of elements sharing the same hash code as x. Since we have n sequences,
the time complexity for computing the nearest neighbor elements is O(n x n' x
m + C(knn)), where C'(knn) is a relatively small factor enabling the selection
of knn near neighbors for each sequence [30]. To estimate the link between two
sequences having each other in their respective knn list, two columns of size knn
are selected and evaluated. The cost of this process amounts to O(n x knn x
knn). Therefore, the total complexity of the algorithm becomes O(n x m X k X
r+nxmxn +nxknnxknn).

This algorithm is able to handle clusters of different densities. However, it
can leave a large number of non-noisy sequences unclustered. To alleviate this
problem, we define a new step to relabel unclustered sequences.

4.1.4 Relabeling

A relabeling step was thus developed to reduce the number of unclustered se-
quences. It identifies a subset of frequencies characteristic of each cluster and
contributing most to the classifier’s accuracy, and discards other less relevant
features. Each unclustered sequence is then added to the cluster most closely
related with respect to the subset of frequencies.

Relabeling proceeds by computing the mean of each cluster and dividing it by
the mean of the other clusters. Discriminant [-mer frequencies; i.e., those which
most differentiate this cluster from others, are selected. For a given sequence,
we compute its distance to the mean of each cluster by using the subset of
discriminant frequencies and assign it to the nearest cluster. If two clusters are
almost equally close to a given sequence, we keep the latter unlabeled in order
to avoid increasing the number of misclassified instances.

The implementation of this part of the algorithm is presented as pseudo code
in the algorithm [3] inset.
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Algorithm 2 Computation of SNN

Input: Set of DNA sequences X of size n, set of matrices of hash code T
corresponding to r projections of X, the number of nearest neighbors knn,
strong, topic and merge thresholds;

Output: Number of clusters K, predicted set of labels Y corresponding to X

1: fori=1tondo

2 for j=1to r do

3 Select Z; the bucket indexing by the same hash code of x;, Tj;;
4 Compute the distances of x; to each element in Zj;

5: Select the knn nearest neighbors elements and add them to Ny;;
6 end for

7: end for

8 fori=1tondo

9 for j =1 to r x knn do
10: Select an element x; from Ny,;

11: if x; € Ny, then

12: for each element in Ny, N Ny, do

13: Compute links(i, j) using

14: end for

15: end if

16: if links(i,j) > strong then

17: Increment conny, and conny;

18: end if

19: end for
20: end for

21: Set K to zero;
22: Set Y to zero;
23: fori=1ton do

24: if conny, > topic then

25: if g; is not labeled then
26: Increment K;

27: Set g; to K;

28: end if

29: for j =1to r x knn do
30: if links(i,j) > merge then
31: Set YNy, ; O Ui
32: end if

33: end for

34: end if

35: end for
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Algorithm 3 Relabeling of unclustered sequences

Input: Set of DNA sequences X of size n, number of projections r, Number of
clusters K, predicted set of labels Y corresponding to X;

Output: predicted set of labels Y;

1: fori=1to Kdo
2 Compute the mean of cluster i;
3 Choose significant frequencies;
4: end for

5. fori=1ton do
6 if g, is not labeled then

7 Compute the distance of x; to each cluster;

8 Label x; with the cluster having the nearest distance to x;;
9 end if

10: end for

Relabeling requires n x K operations, hence a complexity of O(n x K). The
overall complexity of the algorithm depends on the complexity of the hashing
functions and the SNN classifier used. Since [-mer and r have fixed values for all
experiments, the total complexity is O(n xlog(n)+n xn’+n xlog(n’) xlog(n’)).

4.2 Parameters in LSH-SNN

This section discusses the configuration of the LSH and SNN parameters, which
impact the method’s performance both in terms of runtime and clustering qual-
ity. Parameters were determined by grid search and focused on optimizing the
V-measure (see Section [5.3)).

LSH has two parameters, k and r, to be tuned: (a) The number of sampled
bits k£ determines the number of instances inside the buckets, which on average is
expected to be equal to 5. The total number of buckets is limited to max(n, 2k).
If k takes a small value with respect to the number of sequences, then we would
end up with a large number of sequences per bucket and the time-consumption
of the SNN part will be very high. On the other hand, if £ = n, we would get on
average one sequence per bucket and there will be no knn lists to be constructed.
In the present study, we set k to log(n). (b) The number of projections r is
the second parameter. For r = 1, two close elements could end up in distinct
buckets because of the random nature of the hashing. By increasing the number
of projections, we increase the probability that these two elements are mapped
to the same bucket in at least one projection. The number of projections r
should thus be increased to stabilize the results. On the other hand, for large
values of r, distant elements may be mapped to the same bucket, provoking
the 7 x knn lists to grow and ultimately leading to the same drawbacks as the
initial SNN method. In the present study, L was empirically set between 300
and 1200, depending on the size of the dataset.

10
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Regarding SNN, four parameters influence the outcomes: knn, topic, merge
and strong thresholds. (a) The size of the near neighbor list knn depends
on the number of elements per bucket. To construct knn lists containing a
sufficiently large number of closely related sequences consistent with the shared
neighbors criterion, we need to choose a large number of nearest neighbors.
However, increasing knn may add more distant sequences to the same cluster,
thus increasing the computational cost. Decreasing knn, on the other hand
will result in many smaller-sized clusters. A simple and pragmatic approach
is to set knn = v/n’ or knn = log(n’), where n/ = 5¢- In our experiments,
we fixed knn to log(n’). (b) The topic threshold determines the proportion of
most highly connected links (i.e., having highest connectivity) to be selected
as representatives. This threshold ranged from 0.04 to 0.06 in our experiments.
(¢) The merge threshold represents the percentage of links to be used in the
cluster merging process, and was fixed to 0.02 in our experiments. (d) The
strong threshold is used to reduce the number of unlabeled sequences (singleton
clusters) and to choose representative elements. In our experiments, we set this
parameter to 0.1.

5 Experiments

In this section, we detail the experimental setup. We first describe the datasets
(Section [5.1)) and provide a short reminder about the methods we compare our
algorithm with (Section [5.2). We then detail the metrics used to evaluate the
performance of our method (Section , and finally present and discuss the

results (Section [5.4)).

5.1 Datasets

We have used synthetic datasets of increasing sizes and complexities composed
of 600 base-pair length reads (DNA fragments). The mean coverage of the
datasets was fixed to 1X and 10X for two distinct series, which means that, on
average, a given position in the genome is covered by 1 or 10 different reads
respectively. The number of reads derived from each species is equal to 5 000
for 1X datasets and to 50 000 reads for 10X datasets [16].

To evaluate the performance of the various clustering modules on the bench-
mark datasets, we compared class memberships of elements (reads) in each
dataset to the memberships induced by the clustering. Class membership of
elements is trivial to define for datasets used in the composition-based clus-
tering experiments, simply consisting in the genomes the read were sampled
from, and the cardinality of the class set matching the samples richness. For
all the synthetic datasets, the read generation process was performed using the
mason software [24] with default error model parameters for Illumina reads (ma-
son can insert position specific sequence modifications according to empirically
calibrated and sequencing platform dependent error models).
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5.2 Benchmark methods

The proposed method is compared with MetaCluster [55], a popular compo-
sitional binning software based on the K-means algorithm with the Spearman
footrule distance, which operates on relative rankings of the [-mer frequen-
cies [55].

The main advantage of this approach is its simplicity, which underlies its
ability to handle datasets featuring a relatively large number of species. How-
ever, its behavior is sensitive to the random choice of initial cluster centers, and
it may fail to output clusters when data are of non-globular shapes. Moreover,
the number of clusters should be specified by users, which is not trivial when
no prior knowledge is available [46].

The complexity of the K-means method is O(n x m x K x Times), where n is
the number of instances, m is the dimension of data, K is the number of clusters
and Times is the number of iterations for convergence. As l-mer is fixed for all
experiments, the overall complexity of MetaCluster becomes O(n x K x Times).

We also compare our algorithm to the Jarvis-Patrick method (JP) [30], com-
bined with the LSH indexing in a way similar to the LSH-SNN coupling pre-
viously described. JP also relies on the near neighbors similarity concept, but
simply merges elements in the same cluster if they have a sufficient number of
shared neighbors, i.e., the number of shared elements between two neighbors is
greater than a user-predefined threshold kt, which we fixed to (r* kpp)2/2. The
complexity of LSH-JP is O(n X k x r+n x n' +mn x kpp x kpp).

5.3 Performance evaluation

To evaluate the performance of our method, we considered the following metrics
described in the literature: Homogeneity, Completeness, V-measure, F-measure
and the Adjusted Rand Index.

Homogeneity evaluates the class distribution within each cluster. It is high
when each cluster contains only elements of a single class. Completeness, on the
other hand, examines the distribution of cluster assignments within each class.
It is high when elements of a single class are assigned to a single cluster. Let C
be the number of species in a dataset of n sequences and K be the number of
output clusters. These two measures are given by [47]:

K C nij ni

SIS B lor g :

Yy 2)
77'1/

C K ni,j TLZ’J
Dj=1 Qi1 08 SK ni;

ZK Ef=1 i, lo Zf:l nig '
n g

=1 n

Homogeneity =1 —

Completeness =1 —

(3)

The V-measure is defined as the harmonic mean of homogeneity and com-
pleteness. It is calculated as:

2 x homogeneity x completeness

(4)

V — measure = -
homogeneity + completeness
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The clustering accuracy, F-measure, is defined as:

c
T
F— => - s J
measure Z o Hl?XF(%J) (5)
j=1
and,
2 X Nig X Rig
F(i.5) = —mg ey - (6)
ng nj

where n; is the cardinality of cluster Cj.
The Adjusted Rand Index [27], [57] computes a similarity measure between
the computed and the ideal clusterings as:

SIS () - [SE () S (9] /()
HEE ) +2i, ()] - [Z ) =i (9] /16)

These measures take values between 0 and 1; higher values correspond to better
clustering accuracy.

ARI =

5.4 Discussion

After tuning the parameters described in Section [4.2] we evaluated the perfor-
mance of LSH-SNN as well as two other clustering algorithms, LSH-JP and K-
means (MetaCluster) on the different datasets (note that MetaCluster requires
the number of component genomes to be given as input for each dataset). Clus-
tering accuracy was quantified using different measures, shown in Table [I] which
also displays the rank of each method and highlights (in bold letters) the best
value for each evaluation criterion. The percentage of unclustered sequences
(singleton elements) varied between 20% and 30% for LSH-SNN, 60% and 90%
for LSH-JP, and between 2% and 4% for MetaCluster. These figures underly
the lower Adjusted Rand Index and F-measure values achieved by LSH-JP. On
the other hand, the relabeling step in the LSH-SNN algorithm specifically aims
at reducing the number of unclustered sequences.

It can be seen that the behavior of the three algorithms remains almost the
same on the MC5-600-1X and MC5-600-10X datasets, which is to be expected
as these were generated from the same species with just ten times redundancy
for the second dataset.

Table [1] illustrates that LSH-SNN outperforms LSH-JP and MetaCluster in
terms of the homogeneity and V-measure metrics, the latter being the har-
monic mean between homogeneity and completeness. LSH-SNN also slightly
outperforms the other methods on the F-measure in four out of seven datasets,
and consistently yields the best performance on all the datasets in terms of
the Adjusted Rand Index metric. The latter result suggests that LSH-SNN has
improved clustering accuracy on the datasets analyzed.

The LSH-SNN algorithm is implemented in the C4++ programming language,
and uses the OpenMP application programming interface to support multipro-
cessing. Experiments were conducted on a Linux x86_64 server endowed with
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multi-core CPUs and 2 TB of RAM. The LSH-SNN and LSH-JP computations
were parallelized on 48 cores, while MetaCluster execution (which requires the
number of clusters to be specified as an input parameter) distributed the com-
putation across different threads according to the number of target clusters.
Overall, these results demonstrate that LSH-SNN achieves accurate binning
for DNA sequences as short as 600 bp, as compared to LSH-JP and MetaCluster
and despite the latter using the correct number of clusters (genomes) as an input

parameter.
Table 1: Performance on synthetic datasets
Datasets Metrics LSH-SNN  LSH-JP  MetaCluster

MC5-600-1X  Homogeneity 0.502(2)  0.614(1) _ 0.302(3)
Completeness 0.504(2) 0.499(3) 0.618(1)

V-measure 0.503(2) 0.551(1) 0.406(3)

F-measure 0.642(1)  0.469(3)  0.574(2)

Adjusted Rand Index  0.645(1) 0.296(3) 0.405(2)

MC10-600-1X __ Homogeneity 0.512(1)  0.499(2) 0.415(3)
Completeness 0.721(1)  0.704(2) 0.632(3)

V-measure 0.598(1) 0.584(2) 0.501(3)

F-measure 0.561(1)  0.461(3) 0.522(2)

Adjusted Rand Index  0.504(1) 0.312(3) 0.417(2)

MC25-600-1X  Homogeneity 0.516(1) 0.335(3) 0.443(2)
Completeness 0.548(3) 0.629(1) 0.614(2)

V-measure 0.531(1) 0 .437(3) 0.515(2)

F-measure 0.320(2) 0.304(3) 0.476(1)

Adjusted Rand Index  0.349(1)  0.178(3) 0.244(2)

MC50-600-1X  Homogeneity 0.492(1) 0.353(3) 0.389(2)
Completeness 0.674(2) 0.713(1) 0.594(3)

V-measure 0.569(1) 0.471(2) 0.471(2)

F-measure 0.309(2) 0.253(3) 0.372(1)

Adjusted Rand Index  0.332(1)  0.141(3)  0.167(2)

MC100-600-1X _ Homogeneity 0.492(1) 0.176(3) _ 0.249(2)
Completeness 0.674(2) 0.704(1) 0.567(3)

V-measure 0.569(1)  0.282(2)  0.346(2)

F-measure 0.309(2) 0.141(3) 0.227(1)

Adjusted Rand Index  0.332(1) 0.085(2) 0.018(3)

MC5-600-10X __ Homogeneity 0.437(1) 0.260(3) _ 0.207(2)
Completeness 0.609(2) 0.136(3) 0.617(1)

V-measure 0.508(1)  0.181(3) 0.402(2)

F-measure 0.656(1)  0.032(3) 0.573(2)

Adjusted Rand Index ~ 0.393(1)  0.003(3)  0.144(2)

MC10-600-10X _ Homogeneity 0.421(2)  0.779(1) _ 0.405(3)
Completeness 0.666(1) 0.586(2) 0.422(3)

V-measure 0.516(2)  0.669(1)  0.413(3)

F-measure 0.457(1) 0.196(3) 0.379(2)

Adjusted Rand Index  0.364(1)  0.003(3) 0.315(2)

The name of the datasets are MCx-y-zX where x corresponds to the number of species, y is
the read length and z indicates the mean coverage.
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6 Conclusion

We have proposed an unsupervised composition-based method for binning large
volumes of sequences, without any prior knowledge of their reference genomes
or the number of distinct genotypes present in the analyzed sample. LSH-
SNN is based on two essential steps: the hashing/indexing of the data space
and the creation of links between sequences in order to output clusters. After
computing the l-mer distribution of each sequence, LSH partitions the input
space into buckets containing smaller subsets of sequences whose connectivity is
evaluated based on the SNN rule. A third step was added to reduce the number
of singletons or unclustered sequences.

The LSH-SNN algorithm can scale to datasets containing millions of se-
quences and does not require the number of output clusters to be predetermined.
While the presented algorithm makes use of the SNN rule, we envision that the
LSH concept could be combined with other clustering methods facing large data
volumes, or used on its own as exemplified in [5], where a MinHash LSH scheme
was used to compute similarities between long noisy reads generated with a new
single-molecule real-time (SMRT') sequencing technology.

The LSH-SNN algorithm was evaluated on seven synthetic metagenomic
datasets of different sizes and complexities (i.e., harbouring different numbers
of organisms / genotypes). We observed that LSH-SNN performs comparably or
better on these datasets than the two other clustering algorithms tested (LSH-
JP and MetaCluster). We should note however that, even though LSH-SNN
significantly increases the size of the datasets that can be handled as compared
to what can be achieved with the SNN method alone, its complexity does not
compare favourably with Lloyd’s heuristic underlying most K-means clustering
engines. Therefore, the latter is probably more suited to the analysis of larger
datasets containing billions of sequences, which are already generated nowa-
days from complex metagenomics samples (e.g., from soil). Alternatively, the
LSH-SNN approach could be applied to cluster the contigs (sets of overlapping
sequences) resulting from a preliminary (meta)genome assembly step, instead
of being applied to raw (unassembled) reads.
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