
Research Articles

Maintaining and Enhancing Diversity of Sampled

Protein Conformations in Robotics-Inspired Methods

JAYVEE R. ABELLA,1 MARK MOLL,1 and LYDIA E. KAVRAKI1

ABSTRACT

The ability to efficiently sample structurally diverse protein conformations allows one to gain
a high-level view of a protein’s energy landscape. Algorithms from robot motion planning
have been used for conformational sampling, and several of these algorithms promote di-
versity by keeping track of ‘‘coverage’’ in conformational space based on the local sampling
density. However, large proteins present special challenges. In particular, larger systems
require running many concurrent instances of these algorithms, but these algorithms can
quickly become memory intensive because they typically keep previously sampled confor-
mations in memory to maintain coverage estimates. In addition, robotics-inspired algorithms
depend on defining useful perturbation strategies for exploring the conformational space,
which is a difficult task for large proteins because such systems are typically more constrained
and exhibit complex motions. In this article, we introduce two methodologies for maintaining
and enhancing diversity in robotics-inspired conformational sampling. The first method ad-
dresses algorithms based on coverage estimates and leverages the use of a low-dimensional
projection to define a global coverage grid that maintains coverage across concurrent runs of
sampling. The second method is an automatic definition of a perturbation strategy through
readily available flexibility information derived from B-factors, secondary structure, and
rigidity analysis. Our results show a significant increase in the diversity of the conformations
sampled for proteins consisting of up to 500 residues when applied to a specific robotics-
inspired algorithm for conformational sampling. The methodologies presented in this article
may be vital components for the scalability of robotics-inspired approaches.

Keywords: concurrent sampling, perturbation strategies, protein conformational sampling,

robotics-inspired sampling.

1. INTRODUCTION

The function of a protein is related to its three-dimensional structure and its associated structural

changes (Wei et al., 2016). A detailed understanding of protein function and how diseases disrupt

function can eventually lead to treatment or prevention (Carlson, 2002). One typical starting point is to probe

a given protein’s conformational space. This is done through experimental techniques, such as X-ray crys-

tallography, cryo-electron microscopy, or nuclear magnetic resonance (Marion, 2013; Xu et al., 2015;
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Powell, 2016), which can provide necessary structural information that is refined by (or used as constraints

for) computational techniques for conformational sampling, such as molecular dynamics (Paquet and Viktor,

2015). Conformational sampling can provide high-resolution information about a protein’s conformational

space (Maximova et al., 2016). However, molecular dynamics methods have difficulty with rapid exploration

of conformational space. Typical timescales for major biomolecular events are usually on the order of

microseconds or greater, whereas the timesteps of these methods are on the order of femtoseconds. Enhanced

sampling methods can provide an initial exploration of conformational space that can be used to bootstrap

more detailed molecular dynamics simulations.

Algorithms from robot motion planning (Al-Bluwi et al., 2012; Gipson et al., 2012) constitute one such

class of methods for enhanced exploration of the conformational space. For a great introduction to these

kinds of methods, we refer the interested reader to Shehu and Plaku (2016). Robotics-inspired methods

have been used for conformational sampling in a variety of cases, including protein folding (Amato et al.,

2003; Thomas et al., 2007; Tapia et al., 2010), loop sampling (Yao et al., 2008; Shehu and Kavraki, 2012;

Stein and Kortemme, 2013), identifying low-energy transitions between known conformations (Raveh

et al., 2009; Haspel et al., 2010; Al-Bluwi et al., 2013; Gipson et al., 2013), exploring conformational space

(Shehu and Olson, 2010; Jaillet et al., 2011; Gipson et al., 2013; Luo and Haspel, 2013), and improving fit

to experimental data (Devaurs et al., 2016, 2017). These methods are characterized by their geometric

reasoning to bias the exploration to unexplored regions of the space. Thus, the focus of these methods is on

generating a diverse set of conformations.

Robotics-inspired sampling algorithms can be characterized by how they make two critical decisions.

First, each algorithm must make a decision on where to sample in conformational space. These algorithms

often estimate coverage based on the local sampling density to bias exploration toward less densely

sampled regions of the conformational space. This is mainly how several robotics-inspired approaches

promote structural diversity in their exploration. Second, once a selected region has been chosen, each

algorithm must make a decision on how to generate a new conformation. Usually the proposed confor-

mation is generated by perturbing a previously sampled conformation from the selected region and de-

termining whether the proposed conformation is valid (typically by checking the energy or for steric

clashes). In this work, we will use the term perturbation strategy to refer to how the algorithm generates

new conformations from previously sampled ones. So, starting from an initial conformation, a robotics-

inspired algorithm iterates over deciding where to sample, often using coverage estimates (first decision),

then generating a new conformation based on its perturbation strategy (second decision).

Robotics-inspired approaches have seen many initial successes, whereas larger proteins present special

challenges that complicate how these algorithms make the two critical decisions and, hence, hinder their

ability to efficiently generate diverse conformations. First, larger proteins have more residues, or degrees of

freedom, so sampling for such systems takes more time and memory and often requires running these

algorithms concurrently across multiple cores. However, running many concurrent instances of robotics-

inspired algorithms becomes memory intensive because of their frequent storage and use of previously

sampled conformations as described by the first decision. In other words, robotics-inspired methods must be

run for a shorter time as the size of the protein increases. As more concurrent instances are used, the

memory usage rate increases since each instance needs to access all of the previous samples. The naive

solution to this memory issue is to write the conformations to disk and restart conformational sampling at a

randomly selected conformation, but we will demonstrate that this compromises the coverage estimates to

the point where these algorithms lose the ability to promote diversity. So, in addition to the memory issue,

there is also the problem of coordination across the concurrent runs of sampling.

Second, defining useful perturbation strategies becomes complicated for larger proteins because such

systems are typically more constrained and exhibit complex motions. Larger proteins usually have high

correlation among distant residues that results in more intricate movements. Perturbation strategies are then

less likely to capture these movements, and the probability of proposing a valid conformation diminishes

greatly (Vitalis and Pappu, 2009). Therefore, the ability to generate conformations that are highly different

from the starting or reference conformation becomes challenging.

This has led to algorithms that aim at somehow encoding flexibility information into the perturbations

(Shehu and Plaku, 2016). NMA-RRT (normal mode analysis with rapidly-exploring random tree) samples

conformations by using normal mode analysis (Al-Bluwi et al., 2013). KGS (kino-geometric conforma-

tional sampling) uses sampling in the nullspace of the Jacobian of constraints to generate conformations

that satisfy constraints introduced by hydrogen bonds (Pachov and van den Bedem, 2015). PCA-EA
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(principal component analysis with evolutionary algorithms) uses perturbations in a principal component

space defined from wild-type and mutant structures, which are then translated to the original conformational

space by using a combination of reconstruction algorithms (Clausen and Shehu, 2015). Note that defining

perturbation strategies is also a problem outside of robotics-inspired methods as PCA-EA is an evolutionary

algorithm. Our approach instead makes use of informed moves, which may be less computationally expensive

because it does not require the use of reconstruction algorithms, computing Hessians (for NMA-RRT), or

computing Jacobians.

In this article, we introduce two methodologies for maintaining and enhancing diversity in robotics-

inspired conformational sampling. The first method addresses algorithms based on coverage estimates and

leverages the use of a low-dimensional projection to define a global coverage grid that maintains coverage

across concurrent runs of sampling. This global coverage grid keeps statistics about previously generated

samples across different runs, which means that each run no longer needs to access all of the conformations.

This approach solves not only the memory issue associated with robotics-inspired sampling methods that rely

on coverage estimates but also the coordination problem of sampling across multiple cores. Our approach

allows robotics-inspired methods to maintain the ability to efficiently decide where to sample conformations.

The second method is an automatic definition of a perturbation strategy derived from B-factors, secondary

structure, and rigidity analysis. We also use the B-factor information to define the low-dimensional pro-

jection and compare with prior work on defining projections (Novinskaya et al., 2017). This method

enhances diversity by focusing on how our algorithm perturbs conformations by using readily available

flexibility information. Our results show that our methodology leads to a significant increase in the diversity

of the conformations generated as well as the number of conformations generated for proteins consisting of

up to 500 residues when applied to a specific robotics-inspired algorithm for conformational sampling, the

Structured Intuitive Move Selector (SIMS) framework for conformational sampling (Gipson et al., 2013).

The rest of the article is organized as follows. In the next section, we describe our methodologies in

detail, which are implemented into SIMS. In Section 3, we show how our new methodologies result in a

significant improvement in the structural diversity of the sampled conformations. We also provide a

discussion of the relative importance of each methodology. Finally, we conclude with a brief summary and

a discussion of directions for future work.

2. METHODS

2.1. Structured intuitive move selector

We apply our methods within the SIMS framework for conformational sampling (Gipson et al., 2013),

which exemplifies the operation of several robotics-inspired methods through the combined use of the Open

Motion Planning Library (OMPL) (Sxucan et al., 2012) along with Rosetta (Leaver-Fay et al., 2011). In this

section, we provide a high-level overview of SIMS that will introduce the components needed to describe

our new methodologies. A detailed description of SIMS can be found in Gipson et al. (2013).

SIMS makes use of OMPL to determine where to conduct direct exploration through the use of coverage

estimates, which are encoded inside a data structure called the coverage grid. The coverage grid data structure

relies on a projection as input, which is used to map conformations to the coverage grid. The coverage grid

consists of cells from the discretization of the mapped space, and each cell contains pointers to the confor-

mations that are mapped to it. Deciding where to conduct direct exploration at any given iteration is a two-step

process where (1) a cell is chosen and (2) a conformation is chosen within the cell. The probability that a cell is

chosen is proportional to its computed importance value, which is a function of various grid cell statistics such

as the number of conformations mapped to it. Essentially, cells that are less densely populated are chosen more

often than cells that are more densely populated. Finally, a conformation is randomly chosen from the cell.

More details are provided on the coverage grid in Section 2.2 and on the projection in Section 2.3.

SIMS determines how new conformations are generated through a so-called schema. The schema en-

codes how to repeatedly apply small perturbations called moves to previously generated conformations.

SIMS uses an internal coordinate representation, where only dihedral angles are manipulated (bond angles

and bond lengths are kept constant). SIMS’ perturbation strategy, defined in the schema, specifies what type

of moves to use, how they are applied, and how often to apply them. The moves are applied to sets of

residues called fragments, where each move-fragment pair is assigned a weight to reflect how often to

apply the move-fragment pair. The probability that a particular move-fragment pair is chosen at any given
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iteration is proportional to the weight. Ideally, the schema captures which fragments of residues might be

involved in coordinated motion and how flexible they are (through the use of the weights). Previous work

showed that secondary structure can be used to partition the protein into flexible loops, which should be

perturbed more often (given higher weight) than relatively rigid helices and sheets (given lower weight)

(Gipson et al., 2013).

For each type of fragment, different moves can be defined (e.g., loop sampling, random perturbation, energy

minimization). SIMS makes use of Rosetta for implementations of the moves (Leaver-Fay et al., 2011). Once

the move is applied to a fragment, side chain positions are determined by Rosetta’s side chain minimization

protocol (Das and Baker, 2008). Since SIMS uses Rosetta for the move implementations, SIMS’ perturbation

strategy can be easily extended to include advances in Rosetta’s own robotics-inspired approaches to sample

new conformations such as in Stein and Kortemme (2013). More details are provided in Section 2.3 on how a

perturbation strategy in SIMS is constructed.

Each proposed conformation is automatically rejected if the computed energy of the proposed confor-

mation is above a user-defined threshold. In this work, we use Rosetta’s ‘‘score12 full’’ all-atom energy

function for our smaller-sized proteins and Rosetta’s ‘‘score3’’ energy function in ‘‘centroid’’ mode for our

larger-sized proteins, although other energy functions could be used as well. Centroid mode computations

in Rosetta are faster because side chains are approximated as a single atom of varying size, which provides

additional computational benefit for larger proteins while still maintaining molecular detail. Energy

thresholds are chosen to filter out conformations with steric clashes and other highly unfavorable inter-

actions. Energy thresholds for this work are set to the value 0 because past experiments tend to show that

conformations with a positive Rosetta score have some degree of steric clashes. One could always lower the

energy threshold or filter out high-energy conformations in a post-processing step to obtain sampled

conformations with lower energy.

2.2. Global coverage grid

The first critical decision that robotics-inspired methods have to make is where to direct the exploration.

Many robotics-inspired methods, such as SIMS, base this decision on the computed coverage estimates.

Coverage estimates measure where the less-densely sampled regions of the conformational space are

located. Based on the coverage estimates, robotics-inspired approaches incorporate a bias toward the

unexplored regions of the space (Shehu and Plaku, 2016). Computing coverage estimates in robotics-

inspired methods becomes complicated for larger systems, so in this section we describe a method that can

maintain their ability to compute coverage.

Conformational sampling generally becomes a harder problem as the size of the considered system

increases. Unless the system is highly stable and only exhibits small-scale movements (like side-chain

rearrangements), more computational resources are needed. Energy computation takes longer so we must

run simulations longer to sample a given number of conformations. The conformational space is also larger

so we may need more conformations to accurately characterize the space. These complications give rise to

the need to run multiple robotics-inspired sampling across many cores. However, keeping all of the

sampled conformations in memory means that the rate of memory usage increases. For the rest of this

article, we will refer to this as the ‘‘memory issue.’’ Although there has been work on parallelizing

robotics-inspired sampling techniques (Plaku et al., 2005; Ichnowski and Alterovitz, 2012; Devaurs et al.,

2013), these approaches do not address the fact that memory use becomes a bottleneck for large proteins.

So in this work, we are addressing the problem of running multiple instances of SIMS concurrently in an

efficient manner that can also handle the memory issue.

Initially, one may consider keeping all of the sampled conformations on disk and running separate,

concurrent instances of SIMS across each computing core. But this means that each core must have access to

all of the sampled conformations because any previously sampled conformation could be perturbed in a given

iteration. This may be expensive if every iteration involves reading and writing to disk. We could also write

all the conformations to disk periodically and restart the exploration from randomly chosen points. However,

as mentioned in Section 1, this results in losing the vital coverage estimates. After a restart, the algorithm is

likely to re-explore parts of conformational space that have been densely sampled in previous runs.

Keeping all of the sampled conformations on disk appears to be unavoidable when running multiple

instances of SIMS for a long time. So to prevent excessive reading and writing to disk, each instance of

SIMS must work with its locally generated set of conformations. The question becomes how each instance
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of SIMS can ‘‘get informed’’ of the work that other instances of SIMS are performing. We solve this by

leveraging SIMS’ use of a low-dimensional projection to keep coverage estimates and implementing a

global coverage grid, whose scope reaches across all the instances of SIMS.

In SIMS, sampled conformations are added to the coverage grid data structure through the use of a

projection (detailed in Section 2.3). The grid contains cells with conformations mapped to them and by

counting how many conformations map into each cell, we can estimate the sampling density or coverage.

Different robotics-inspired techniques such as Expansive Space Trees (Hsu et al., 1999) and Kinodynamic

Motion Planning by Interior-Exterior Cell Exploration (KPIECE) (Sucan and Kavraki, 2009) use this in-

formation to guide the sampling toward less-densely sampled parts of the conformational space. In this work,

we use KPIECE since it has been shown to significantly outperform EST (expansive-spaces tree planner)

(Sucan and Kavraki, 2009).

KPIECE keeps track of various statistics for each grid cell and uses these statistics to compute a heuristic

called importance for each cell. Conformations in cells with higher importance are perturbed more often.

Importance is computed for each cell by using four statistics:

(1) The number of projected conformations mapped into the cell.

(2) The number of times the cell has been chosen for expansion.

(3) The iteration in which the cell had its first conformation mapped to it.

(4) The number of cell neighbors that have conformations mapped to it.

An increase in (1), (2), and (4) produce lower importance whereas a high value for (3) produces greater

importance. Indeed, these are the statistics that are lost when conformations must be written to disk. Fewer

conformations are accounted for in the coverage grid, and the importance heuristic loses the ability to

differentiate cells based on sampling density.

Our method saves global grid cell statistics into a central database along with conformations sampled

from each SIMS instance. In this work, we used an MySQL database to handle the read/write requests from

the multiple SIMS instances, and we created tables to simply hold the conformations and global coverage

grid. When a SIMS instance is started, a subset of conformations is loaded along with ‘‘summarized’’

coverage statistics about the global coverage grid. These ‘‘summarized’’ coverage statistics are an indirect

way of accounting for the sampling done by other SIMS instances. The SIMS instance then proceeds for a

specified amount of time. The SIMS instance maintains its own local coverage grid (using the confor-

mations generated by the run) enriched with the summarized coverage statistics (taken from the global

coverage grid). When an SIMS instance is ready to write conformations, the new conformations are written

to the database, and the global grid cell statistics are then updated. Thus, our method provides the coor-

dination across the SIMS instances that effectively maintains coverage estimates.

Grid cell statistics on the global coverage grid are maintained centrally in a similar manner to how an

individual SIMS instance computes grid cell statistics on a local coverage grid. Each grid cell computes an

importance heuristic that determines how often conformations from that cell are perturbed. In the context of

the global coverage grid, (3) is no longer used to compute importance because there is no meaningful way to

define iteration when multiple cores are sampling simultaneously. However, (1), (2), and (4) are still used.

When an SIMS instance is finished, the new conformations are written to the database and the global grid

cell statistics are updated. This is done by computing the change in (1) and (2) during the course of the

SIMS run. These values are then added to the global values of (1) and (2) in the database. (4) is subse-

quently updated based on the new grid cell statistics. These statistics are global in the sense that all the

instances provide an update when their run is finished.

When an SIMS instance is restarted, the KPIECE sampling strategy is used to select new starting

conformations based on the global coverage grid. In addition, the local coverage grid is initialized to the

current values in the global coverage grid. Although each core is aware of the global coverage statistics,

each core can only perturb conformations that are in memory (i.e., generated since the start of the SIMS

instance). However, when a conformation is generated in a cell, the sampling density is determined not only

by the conformations generated from the SIMS instance but also by the sampling density loaded at the start

of the run (Fig. 1). Thus, the presence of all other sampled conformations is accounted for indirectly.

We now claim that this algorithm also solves the memory issue. Each core will cycle through three steps:

reading conformations and statistics from the database, running an SIMS instance, and finally writing

conformations and updating the global statistics. The frequency in which each core does this process is a

user-defined parameter called the restart frequency. The memory issue is avoided through the use of the
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summarized coverage and a restart frequency that is not too low. That is, we must restart often enough such

that a core will not run out of memory from sampling too many conformations. Interestingly, there is

incentive to restart often as this is the mechanism in which the database is updated with the work that each

SIMS instance has done. On the other hand, saving conformations to a central database and restarting has

some computational overhead associated with it. Our experiments use a restart frequency of 6 per hour

(restart every 10 minutes). We leave it as future work to determine an optimal value for this parameter.

Finally, we note that when an instance syncs with the database, then the information in the coverage grid

could not be as up to date as possible. There could be other instances that have explored parts of con-

formational space that the coverage grid is not yet aware of. Our results in Section 3 indicate that this is not

a cause for concern. Simply having some notion of the work done by other instances is enough to see an

improvement in the diversity of conformations generated using our methodologies. The reason for this is

because the original KPIECE method (Sucan and Kavraki, 2009) is inherently adaptive. If at some point of

execution multiple cores are working in the same region of the conformational space, the global coverage

grid will eventually get ‘‘informed’’ of the work when the cores synchronize with the database. Then when

new SIMS instances are created, these instances are less likely by design to work in the same region again

because of the importance values in the coverage grid.

2.3. Defining a perturbation strategy using flexibility information

The second critical decision that robotics-inspired methods have to make is how to generate new

conformations. In other words, these methods have to define a perturbation strategy to obtain new con-

formations from previously sampled ones. Defining perturbation strategies for larger proteins is more

difficult because of the high correlation among residues, and naive/uninformed strategies will result in high

rejection rates. In this section, we will describe how to generate informed perturbation strategies through

readily available flexibility information. In the context of SIMS, this translates to finding a definition of the

schema. Note that although we focus the construction of the new perturbation strategy on the schema used

in SIMS, the same ideas can also be incorporated into other conformational sampling frameworks. We

show how to automatically generate a schema that biases perturbations toward fragments that are more

flexible by using a combination of B-factors, secondary structure, and rigidity analysis.

The new perturbation strategy incorporates global structure information into the schema. In previous

iterations of SIMS, the default schema made use of only secondary structure information. Alpha helices and

beta sheets were made more stable than loops. However, secondary structure is essentially local infor-

mation because every secondary structure element consists of a few consecutive residues. In general,

helices and sheets are more stable than loops, whereas helices and sheets from different parts of the protein

may have vastly different flexibility (Novinskaya et al., 2017). The old default schema essentially lacked

tertiary structure information describing global flexibility.

FIG. 1. Pictorial representation of the effect that the use of summarized coverage statistics has on a local coverage

grid. Each blue dot represents a previously sampled conformation. Before hitting memory limits, the exploration is

proceeding in some direction depicted by the black arrow. When the exploration restarts, summary coverage statistics

are maintained and depicted in shades of gray. Darker shades indicate more densely sampled areas that the algorithm

can use to reduce sampling redundancy.
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Secondary structure is readily computed or available in the PDB, whereas tertiary structure information

is not available directly from experiments. However, an approximation can be derived from the atom

coordinates using rigidity analysis. This is done with KINARI web, a suite of tools for computing rigidity

and flexibility of biomolecules (Fox et al., 2011). KINARI web uses the pebble game algorithm to compute

clusters of residues that are expected to move together (Lee and Streinu, 2008). A PDB file is inputted into

the web server to get the residue clusters. All default parameters are used in the computation. KINARI

outputs a file that specifies residue clusters. Each cluster consists of a set of residue intervals. We use each

residue interval from each cluster as a separate residue grouping. These residue groupings will be used by

the schema to model parts of the protein that are supposed to move together. We could have chosen to

instead use the cluster of residues (or a set of intervals) as the residue groupings for a simpler rigidity

model, but KINARI may only detect one or two residue clusters. Our definition of the residue groupings

allows for a more fine-grained decomposition of the protein.

The schema used in SIMS specifies fragments, which consist of groups of residues, and moves, which

define perturbations on the fragments. Each fragment is assigned a weight that describes how frequently the

fragment is chosen to be perturbed. SIMS currently has five major moves that are briefly defined as follows:

(1) Minimization involves a few steps of an energy minimization protocol on the fragment. We use

the ‘‘dfpmin_armijo_nonmonotone’’ protocol (www.rosettacommons.org/docs/latest/rosetta_basics/

structural_concepts/minimization-overview) and run until a tolerance of 0.01.

(2) Loop sampling involves sampling a random loop conformation with the constraint that the endpoints

remain in the same position.

(3) Rigid-body sampling involves rotating and translating one part of a domain relative to another. This

is done by a displacement of one loop endpoint relative to the other.

(4) Random single perturbation involves randomly perturbing a single residue’s dihedral angles within a

given fragment.

(5) Randomize all involves perturbing all the dihedral angles in a given fragment.

In addition to the rigidity analysis, which has been used earlier in robotics-inspired sampling (Thomas

et al., 2007; Luo and Haspel, 2013; Andersson et al., 2016), our method assigns a weight to each fragment

by using B-factors. SIMS relies on a starting conformation that is derived from experiments. These exper-

iments will have some measure of uncertainty, which is usually correlated with flexibility or movement.

For X-ray crystallography experiments, B-factors (also known as temperature factors) describe the dis-

placement of the atomic positions from their mean values (Trueblood et al., 1996). These B-factors can

be easily extracted from a PDB file (coordinates of a protein conformation derived from experiment) to

generate the projection. B-factors can also be generated from prediction tools (Yuan et al., 2005). As a

reminder, the probability that a move-fragment pair is chosen is proportional to its assigned weight. Thus,

using B-factors as the weights naturally biases the fragments that are more flexible.

For a system with n residues, n B-factors corresponding to the alpha carbon atoms in the backbone

are extracted from the PDB file. Then for each factor bi, 1 � i � n, a user-defined range [blow‚ bhigh] of the

B-factors is imposed by using the following transformation.

ti(bi) =
blow‚ if bi < blow

bhigh‚ if bi > bhigh

bi‚ otherwise

0
@ (1)

This transformation is done because we are only interested in the relative flexibility of the fragments to

each other. B-factor data may contain noisy values for fragments that may overly dominate and cause the

method to over sample this region. For our experiments, we usually set blow = 20 and bhigh = 50. Next, the

following transformation is applied to each ti:

f (ti) = exp (ti=a) (2)

This transformation essentially spreads the values farther apart from one another. The amount of

spreading can be controlled by using another user-defined parameter a. The use of an exponential function

here is to space the larger B-factors away even further from the smaller B-factors such that the flexible

residues are sampled more often. All of our experiments use a = 10. The weight of each fragment is then

computed by summing each f (ti) in the fragment.
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Using KINARI, secondary structure information, and B-factors, the schema can be automatically gen-

erated. We propose to generate a schema that consists of three major classes of fragments. The first is a

class containing only a single fragment that is defined over the whole protein. This class is sampled 10% of

the time and is used to occasionally generate structures with a lower energy (minimization) or try disruptive

whole protein perturbations (rigid-body sampling). When this fragment is sampled, minimization is chosen

90% of the time and rigid-body sampling is chosen 10% of the time.

The second major class of fragments is generated by using secondary structures. This class of fragments

constituted the majority of the fragments in previous iterations of SIMS. We place less overall influence on

this class since we only sample this set 40% of the time (compared with 90% previously). The secondary

structure information is extracted from the PDB file. Alpha helices and beta sheets are treated as loops if

they are less than 5 residues in length. A fragment is then defined for each consecutive interval of residues

with the same secondary structure classification. Loops can be perturbed by using loop sampling (10%),

random single perturbation (30%), randomize all (30%), or rigid-body sampling (30%). Helices and sheets

are generally more stable, so we use random single perturbation (50%) or rigid-body sampling (50%). In

previous work, SIMS manually defined loops to be sampled with greater weight than helices and sheets.

Fragments are sampled with a weight computed from the B-factors described earlier.

Finally, the third major class of fragments is generated by using the residue groupings from KINARI. Since

each residue grouping is predicted to move together, a fragment is defined for each interval of residues between

the residue groupings (intervals at the ends are not counted). In other words, the parts of the protein that we wish

to perturb are the residues that lie in between tertiary structures, which we call hinges in this work. Note that

this work uses hinges in a different manner as is used in the rigidity analysis community. When these hinges are

perturbed, the surrounding parts move together as a rigid body. Each fragment is weighted by using B-factors

and can be perturbed by using loop sampling (10%), random single perturbation (35%), randomize all (20%),

or rigid-body sampling (30%). This class of fragments is sampled 50% of the time.

The increased emphasis on tertiary structures is more aligned with the intended use of SIMS for sampling

large backbone motions. All of the percentages given earlier were determined empirically, and further

research may fine tune these values.

Finally, recall that SIMS uses a projection that maps a conformation to the coverage grid. The projection

can be automatically generated by using B-factors. For a system with n residues, the projection will be of

dimension d · 4n, where d is the dimension of the projection. SIMS uses the sine and cosine of each

dihedral angle in the system (two per residue) for a total of 4n degrees of freedom. The sine and cosines are

done to embed the angles to a Euclidean space. We can use the B-factors to define the projection used by

SIMS for the coverage grid. Again, we extract n B-factors corresponding to the alpha carbon atoms in the

backbone. The B-factors are processed to produce f (ti) for each residue. A vector of size 1 · 4n is created

by replicating each B-factor four times consecutively. This operation is done because every four elements

in a single row of the projection correspond to a single residue.

The other d - 1 dimensions are generated randomly. For each extra dimension, we generate a 1 · 4n

random vector, where each element is drawn from a standard normal distribution. Finally, the vectors are

made orthonormal by using the Gram-Schmidt process. The full projection is constructed vertically with

the B-factor row at the top and the other randomly generated rows below to get a d · 4n matrix. Con-

formational sampling using this projection is compared with the automatically generated projection used in

Novinskaya et al. (2017).

3. RESULTS

Our main objective was to determine the effect our new methodologies had on the diversity of the con-

formations sampled. All of our experiments are run on a single compute node with two Intel E5-2650v2 Ivy

Bridge EP processors for a total of 16 cores, where each core runs an instance of SIMS. All runs are done for

100 minutes and write conformations to disk every 10 minutes (restart frequency is 6 restarts per hour). Energy

thresholds for all the experiments are set to the value 0 because past experiments tend to show that confor-

mations with a positive Rosetta score have some degree of steric clashes. All the projections used are two-

dimensional (2D). In the Discussion section, we call the version of SIMS with the new methods, ‘‘SIMS 2.0,’’

which includes the global coverage grid implementation along with the new perturbation strategy defined in

the schema as described in the previous section. The version without the new methods is called ‘‘naive SIMS.’’
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3.1. Proteins used in experiments

We illustrate the benefits of our new methods on four proteins of varying sizes: cyanovirin-N (CVN)

(Botos et al., 2002), calcium-loaded calmodulin (CaM) (Anthis et al., 2011), ribose-binding protein (RBP)

(Björkman et al., 1994; Björkman and Mowbray, 1998), maltodextrin-binding protein (MBP) (Quiocho

et al., 1997), and a single subunit of GroEL (Skjaerven et al., 2011, 2012). CVN, CaM, RBP, and MBP are

smaller sized proteins that we have previously studied in the context of evaluating random projections

(Novinskaya et al., 2017). The GroEL subunit is a larger and more constrained system consisting of about

500 residues. We also depict the B-factors and the KINARI information onto the structures to give a sense

of how the new method is defining in the schema.

3.1.1. Cyanovirin-N. CVN is a 101-residue bacterial protein (PDB 3EZM) that exhibits antiviral ac-

tivity toward the human immunodeficiency virus. CVN shows large-scale motions from the correlated activity

of three loop regions at residues 24–28, 50–55, and 75–80. These same loop regions are found as flexible from

Figure 2a. From Figure 2b, KINARI classifies two of these loop regions (residues 24–28 and 40–54) as hinges

(which we defined in the previous section as the residues in between residue groupings). When constructing the

schema as described in the previous section, the range of the B-factors is 10–20, instead of the default 20–50.

3.1.2. Calmodulin. CaM is a 144-residue protein (PDB 1CLL) involved with interactions between

calcium ions and other proteins. B-factors show that the flexible parts of the protein are found in residues

5–20, 35–41, 52–57, 67–80, 87–93, 107–116, and 126–129, which are represented in Figure 3a. Note that

the flexible helix at residues 67–80 would have been treated as a more stable part of the structure (and

hence, not perturbed frequently) if only secondary structure information was used. The computed hinges in

Figure 3b are loops located at residues 41–43, 57–62, and 114–116.

3.1.3. Ribose-binding protein. RBP is a 271-residue protein (PDB 1URP, chain A) that consists of

two domains connected by three loop regions located at 91–104, 226–237, and 253–269. The first two

regions are more constrained and have to move in a coordinated way. Interestingly, the B-factor distribution

in Figure 4a shows that the most flexible parts are mainly the alpha helices at the end. The KINARI output

in Figure 4b also predicted that most of the protein move together (residues 3–205 and 211–268), leaving a

single hinge at residues 206–210 that is not part of the three main loop regions. Nevertheless, the B-factors

for the main loop regions, indeed, show greater flexibility than the surrounding two domains.

3.1.4. Maltodextrin-binding protein. MBP is a 370-residue protein (PRB 3MBP) that consists of

two domains on each end terminal. MBP is known to exhibit protein-wide conformational changes between

the open and bound forms that involves movement in nearly all the residues. The B-factor distribution in

Figure 5a shows most flexibility at the extreme ends of the protein, which will allow the schema to focus on

the two domains. However, KINARI predicted that most of the protein is rigid, so there is only a single

major hinge shown in Figure 5b.

FIG. 2. Cyanovirin-N. (a) Colored by B-factors; (b) Colors based on KINARI web output: clusters (white), hinges

(black). The B-factors and hinges reflect the flexibility of the three loop regions at residues 24–28, 50–55, and 75–80.
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3.1.5. GroEL subunit. GroEL (PDB 1XCK) is a molecular chaperone consisting of 14 identical subunits

forming two heptameric rings. We extract out chain A and use this as input to KINARI web. Each sub-

unit consists of 524 residues arranged into three domains (Fig. 6a): equatorial (1–133, 409–524), intermediate

(134–190, 377–408), and apical (191–376). The apical domain has the most movement, facilitated by hinges

located in the intermediate domain (Skjaerven et al., 2011, 2012). The equatorial domain remains mostly stable.

In Figure 6b, notice that the high B-factors correlate to the apical domain, which is known to be the most

flexible part. Figure 6c shows the parts of the subunit from which we treat as hinges. Note how the hinges

are mostly loops located between major helices/sheets in the system. Perturbing these hinges will, in turn,

affect the alpha helices and beta sheets, analogous to a rigid body transform.

3.2. Increased number of generated conformations

In this section, we want to get a sense of how many conformations SIMS 2.0 can produce given a certain

number of cores. With conformational sampling for larger systems, the energy computation becomes more

expensive, so the rate at which conformations are produced becomes vital. Producing more conformations

is more efficient in the sense that the method is rejecting conformations less often. Note that all of the

FIG. 4. Ribose-binding protein. (a) Colored by B-factors; (b) Colors based on KINARI web output: clusters (white),

hinges (black). The hinges computed with KINARI do not correspond to the three loop regions in the center. However,

the B-factors for these loop regions are, indeed, weighted more heavily than the two domains.

FIG. 3. Calmodulin. (a) Colored by B-factors; (b) Colors based on KINARI web output: clusters (white), hinges

(black). Note that the B-factors reflect the flexibility of the middle alpha helix that SIMS 2.0 could exploit.
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conformations produced are required to be below an energy threshold. We run experiments on a varied

number of cores (1, 4, and 16) to assess the effect that our new methods have on scalability. Table 1 records

the average number of conformations produced.

Table 1 clearly shows that as the number of cores used increases, the difference in the number of

conformations produced by SIMS 2.0 compared with naive SIMS increases. Note that all of the conforma-

tions produced are below the user-defined energy threshold. For a given number of cores, the rate at which

conformations are being produced by SIMS 2.0 is greater than naive SIMS. Hence, the rejection rate of the

proposed conformations is lower in SIMS 2.0. As discussed earlier, high rejection rates in sampling for larger

proteins was an issue preventing the scalability of robotics-inspired approaches (in how conformations are

generated). SIMS 2.0 would make more efficient use of resources when the search requires up to 16 cores.

3.3. Improved conformational space coverage

The results from the previous section say nothing about the diversity of the conformations produced. In

this set of experiments, we fix the number of cores to 16 and assess how well SIMS 2.0 generates diverse

FIG. 5. Maltose-binding protein. (a) Colored by B-factors; (b) Colors based on KINARI web output: clusters (white),

hinges (black). There was only a single major hinge detected by KINARI. However, the B-factor distribution will result

in weighting the two domains highly.

FIG. 6. A single subunit of GroEL. (a) Colored by domain: equatorial (blue), intermediate (white), apical (red);

(b) colored by B-factors; (c) colors based on KINARI web output: clusters (non-black), hinges (black). The B-factors

reflect the flexibility of the apical domain, whereas hinges roughly define regions between major domains.
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conformations. We use Ca RMSD (root mean square distance) to measure distances between conformations

to emphasize the changes in protein backbone.

3.3.1. Nearest neighbor distances. We first measure the closeness of the conformations from each

other. This is done by tracking the distance of each conformation to its nearest neighbor. This is a measure

of how ‘‘spread out’’ the conformations are from each other. If the conformations are all similar to their

neighbor, then the algorithm may not have produced a structurally diverse set of conformations. Another

way to interpret a small value using this measure is that neighboring conformations are more likely to have

been sampled next to each other (one conformation was perturbed to get the other). So if the average

nearest neighbor distance is higher for one method, then the average effect of each perturbation was greater

and, hence, produced a more rapid exploration. From Figure 7, we see that SIMS 2.0, indeed, produces

conformations that are farther apart from each other compared with naive SIMS.

3.3.2. Expansiveness. We now measure the expansiveness of the conformational search. A more

expansive search means that farther parts of the conformational space are sampled given the same starting

point. Figure 8 shows a density plot of the distances of each conformation from the start conformation. The

same start conformation was used for these experiments for a given protein. In addition to producing more

conformations, SIMS 2.0 also produces more conformations that are farther from the start. Therefore, SIMS

2.0 produces a more expansive search than naive SIMS.

3.3.3. Isolating each improvement. These results taken together show that SIMS 2.0 produces more

diverse conformations with the new methods compared with naive SIMS. We now end this section by

investigating which specific method contributed most to the improved expansiveness. We focus the fol-

lowing experiments on the GroEL subunit system. Results for the other proteins were qualitatively similar.

We first ran an experiment with SIMS 2.0, where the global coverage grid did not send summa-

rized coverage estimates when an SIMS run restarted. This run is similar to naive SIMS except with the

new perturbation strategy. Figure 9 shows the effect this had on expansiveness. It appears that since no

Table 1. Number of Conformations Produced (Averaged Over 10 Runs) for Four Different Proteins

1 Core 4 Cores 16 Cores

CVN

SIMS 2.0 28,294 (2203) 122,067 (10,903) 315,989 (17,105)

Naive SIMS 10,710 (1501) 43,136 (3064) 176,813 (6721)

Difference +17,584 +78,931 +139,176

CaM

SIMS 2.0 25,977 (2950) 106,321 (9415) 272,604 (6154)

Naive SIMS 6822 (789) 27,383 (1314) 111,247 (4348)

Difference +19,155 +78,938 +161,357

RBP

SIMS 2.0 13,078 (1385) 50,693 (1689) 164,588 (6032)

Naive SIMS 2183 (177) 8729 (803) 32,125 (1024)

Difference +10,895 +41,964 +132,463

MBP

SIMS 2.0 4721 (194) 19,483 (2836) 60,921 (6846)

Naive SIMS 997 (74) 4747 (1891) 14,699 (2016)

Difference +3724 +14,736 +46,222

GroEL subunit

SIMS 2.0 3026 (162) 11,120 (623) 38,763 (2729)

Naive SIMS 850 (39) 3495 (223) 13,739 (392)

Difference +2176 +7625 +25,024

Standard deviations shown in parentheses. As the number of cores increase, the new version of SIMS produces conformations at a

faster rate.

CaM, calmodulin; CVN, cyanovirin-N; MBP, maltodextrin-binding protein; SIMS, Structured Intuitive Move Selector; RBP, ribose-

binding protein.
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synchronization was occurring, the exploration was not as expansive, which was likely due to the increased

amount of repeated work done among the cores.

Next, we focus on the projection defined by B-factors. We ran two additional experiments. The first is

SIMS 2.0 using a random projection (randomProj) (Gipson et al., 2013). The second is SIMS 2.0 using a

projection constructed from secondary structure (ssProj) as mentioned in Novinskaya et al. (2017). The

results in Figure 9 imply that the projection definition is not vital to the exploration. The exploration using a

random projection only appears to be marginally worse than the one from SIMS 2.0. In addition, the

projection using secondary structure information does not provide much improvement over the runs using a

random projection. This is likely due to the fact that we are using a linear, 2D projection to represent a

complex, high-dimensional conformational space. Thus, even though we use B-factors to incorporate

flexibility into the projection definition, this translates to a relatively small improvement in how coverage is

computed since the space is so simplified and much information is lost in the projection operation.

Finally, we focus on the schema improvement. We ran an experiment with SIMS 2.0 by using a schema

defined using only secondary structure information. The new schema appears to contribute the greatest
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FIG. 7. Density of nearest neighbor distances (averaged over 10 runs) for CVN (a), CaM (b), RBP (c), MBP (d), and

GroEL subunit (e). SIMS 2.0 produces more conformations that are farther apart from each other. CaM, calmodulin;

CVN, cyanovirin-N; MBP, maltodextrin-binding protein; RBP, ribose-binding protein.
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since the density curve with a naive schema is most similar to the one corresponding to naive SIMS even

though the other improvements are included. The density curve with a naive schema also implies that the

improvement in the number of conformations produced was also due to the new schema, since the height of

the density curve of naive schema is lower than the one from SIMS 2.0. This demonstrates how important

the schema is to the exploration because it essentially encodes how SIMS 2.0 explores the space.

a b

c d

e

FIG. 8. Density of distances to start conformation (averaged over 10 runs) for CVN (a), CaM (b), RBP (c), MBP (d),

and GroEL subunit (e). SIMS 2.0 produces more conformations that are farther from the start conformation.

FIG. 9. Density of distances to start conformation (average over 10 runs) for the GroEL subunit. (Top) woSync (blue)

corresponds to the runs where the synchronization of coverage statistics was turned off. Since the distribution shifted to

the left, the exploration was less expansive than SIMS 2.0. (Middle) randomProj (green) corresponds to the runs where

a random projection was used. ssProj (purple) corresponds to the runs where secondary structure information was used

to construct the projection. Since the distributions barely shifted, the definition of the projection does not appear to have

much impact on the expansiveness. (Bottom) The new schema appears to have the greatest impact since the run that

uses a schema with only secondary structure information (Naive Schema, red) has a density curve that is most similar to

naive SIMS (old, gray). SIMS, Structured Intuitive Move Selector.
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4. DISCUSSION

We have shown that with the addition of the global coverage grid and a perturbation strategy enriched

with flexibility information, SIMS 2.0 can more efficiently generate conformations that are also distributed

more diversely as compared with naive SIMS. All of the comparisons done were under the same computing

budget, and the conformations generated were all under the same energy threshold. These new method-

ologies present promising steps toward making robotics-inspired conformational sampling better suited for

larger proteins. Although the example proteins ranged from about 100 to 500 residues, additional work may

be required for proteins that are greater than 500 residues in length. Since our results show that the

construction of the perturbation strategy contributed most to the improvement in structural diversity, we

may have to adjust the parameters in the schema construction to handle even larger systems. For example,

the KINARI results for RBP and MBP did not provide any significant decompositions of the protein that the

schema could exploit, and perhaps adjusting the parameters in the KINARI software could provide a better

set of residue groupings. Our results also show that for a given number of cores, SIMS 2.0 produces

conformations at a faster rate than naive SIMS. This points to the additional benefit of adding flexibility

information to the perturbation strategy. Our experiments only went up to 16 cores to represent more

modest computational resources such as a high-end desktop. However, more work is needed to characterize

how SIMS 2.0 performs in a large-scale setting with hundreds of cores.

5. CONCLUSION

Robotics-inspired approaches rely heavily on two critical decisions: where to focus sampling in the

conformational space and how to sample new conformations. As the protein size increases, robotics-inspired

methods that run across multiple cores become memory intensive, coverage estimation becomes more ex-

pensive to maintain, and the definition of a useful perturbation strategy becomes difficult. In this article, we

introduced two methodologies to maintain and enhance the diversity of conformations sampled and im-

plemented these in SIMS. First, we proposed to maintain a global coverage grid that eliminates the memory

bottleneck for large proteins and enables efficient conformational sampling across multiple cores. Next, we

presented a perturbation strategy by using flexibility information from B-factors, secondary structure, and

rigidity analysis.

For SIMS, our results show a significant improvement in the diversity of the conformations generated with our

methods for proteins consisting of up to 500 residues. We also showed that our methods increased the number of

conformations generated at a faster rate as the number of cores increased. We demonstrated that the new

perturbation strategy provided the most dramatic change in diversity in terms of expansiveness (as measured in

terms of distance from the start conformation). Our methods solve both the memory problem associated with

SIMS and the coordination problem of sampling across multiple cores. Our new perturbation strategy is also a

practically free way to obtain informed moves that improve structural diversity over a simple, naive strategy.

For future work, we plan to apply these ideas to other robotics-inspired conformational sampling

frameworks. The ideas introduced in Section 2.2 apply to robotics-inspired methods that keep track of

coverage, whereas the ideas in Section 2.3 apply more generally to robotics-inspired methods. Also, we will

work on improving SIMS 2.0 through a variety of directions. We can combine our global coverage grid

with other existing perturbation strategies. Further, we will also begin to investigate new ways to keep track

of coverage. Our experiments showed that the currently used projection definition does not greatly affect

the expansiveness of the exploration, so we have begun to look at non-linear projections. This work also

showed that the most significant improvement in terms of diversity came from the new perturbation

strategy. We will investigate the benefits of a dynamically changing perturbation strategy that perturbs

conformations differently as a function of the currently chosen conformation.
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