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ABSTRACT

In many structural bioinformatics problems, there is a broad range of unanswered questions
about protein dynamics and amino acid properties. Proteins are not strictly static objects,
but rather populate ensembles of conformations. One way to understand these particular-
ities is to analyze the information available in experimental databases. The Ramachandran
plot, despite being more than half a century old, remains an utterly useful tool in the study of
protein conformation. Based on its assumptions, we inspected a large data set (11,130
protein structures, amounting to 5,255,768 residues) and discriminated the conformational
preferences of each residue type regarding their secondary structure participation. These
data were studied for phi (/), psi (w), and side chain chi (v) angles, being presented in non-
Ramachandranian plots. In the largest analysis of protein conformation made so far, we
propose an original plot to depict conformational preferences in relation to different sec-
ondary structure elements. Despite confirming previous observations, our results strongly
support a unique character for each residue type, whereas also reinforcing the observation
that side chains have a major contribution to secondary structure and, by consequence, on
protein conformation. This information can be further used in the development of more
robust methods and computational strategies for structural bioinformatics problems.

Keywords: conformational preferences, structural biology, structure-based conformational

preferences of amino acids, three-dimensional structure of proteins.

1. INTRODUCTION

G . N. Ramachandran (8 October 1922 7 April 2001) is considered one of the greatest scientists of the

20th century, often praised for making a lasting impression in the field of structural biology despite his

somewhat far-off, obscure scientific origins (Ramakrishnan, 2001; Sarma, 2001). Among his many research

topics in molecular biophysics, Ramachandran’s probably greatest contribution to structural biology was the

development of a diagram that now bears his name, the Ramachandran plot. Working on the (then) hot topic
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of the collagen structure, Ramachandran proposed the triple, coiled-coil arrangement for the fibrous protein

(Ramachandran et al., 1963). Even though this structure passed the test of time, he got little credit for it, especially

due to controversies over details (Ramakrishnan, 2001; Sarma, 2001). These involved mainly the minimum

possible distance between two nonbonded atoms, and this topic drew him and his team to an effort to prove that the

distances he proposed for collagen were real and observed in other crystallographic structures. This research

eventually led to the Ramachandran plot (Ramachandran et al., 1963), later expanded in a work that defined many

key aspects of protein structure analysis (Ramachandran and Sasisekharan, 1968).

The Ramachandran plot defines limits that are imposed on the polypeptide chain conformation by the

steric hindrance caused by nonbonded atoms. By plotting the angles that are allowed to rotate in a system of

two linked peptide units, the plot is able to predict (or define) energetically forbidden regions for any

dipeptide in a protein. The torsion angles (sometimes called Ramachandran angles) are defined as phi (/)

and psi (w), Ci 1 - N - Ca - C and N - Ca - C - Ni + 1, respectively. The omega (x) angle, set by the peptide

bond, is practically fixed at 180�, since its partial double-bond character keeps it planar (Pauling et al.,

1951). Similar to the polypeptide backbone, side chains have also dihedral angles, and the number of the so

called chi (v) angles of each side chain depends on the amino acid type.

The Ramachandran plot has been originally proposed based on interatomic distances and angles cal-

culations (Carugo and Carugo, 2013). Afterward, many researchers confirmed its predictions by inspecting

the range of values of /=w torsion angle pairs achieved in real crystallographic structures (Kleywegt and

Jones, 1996; Carugo and Carugo, 2013). These works also observed some ‘‘blurring’’ of the plot bound-

aries, chiefly explained by case-specific stabilization forces that allow specific plot violation (Carugo and

Carugo, 2013). Still, Ramachandran’s ingenious plot has been under continuous inspection. The most

recent re-evaluation of Ramachandran graphs in light of current crystallographic data (Hollingsworth and

Karplus, 2010) inspected 63‚ 149 residues and proposed new ways of presenting / · w data. In this context,

and considering the continuous expansion of protein data bank (PDB) information in quantity and quality,

in this work we revisited the Ramachandran plot by inspecting >5 million amino acid residues, expanding

its analysis to a unparalleled level, which, in turn, supported the proposal of a new way of presenting amino

acid conformational preferences in relation to different secondary structure elements.

Structural bioinformatics deals with problems in which the rules that govern the biochemical processes and

relations are only partially known, making it hard to design efficient computational strategies to tackle them (de

Lima Corrêa and Dorn, 2017). Especially in Molecular Docking and Protein Structure Prediction problems, there

is a broad range of unanswered biological questions related to the protein folding process and dynamics. Predicting,

for example, the three-dimensional (3D) structure of proteins requires an understanding of how tertiary structure

depends on the primary amino acid sequence. Researchers are interested in the rules that determine the protein

structure for a given sequence, which is influenced by the intrinsic conformational preference of each amino acid

residue and also the interactions of neighbor amino acid residues (Dorn et al., 2014). An approach (knowledge-

based prediction methods) to that problem is to explore the conformational particularities of local segments of

amino acids in experimental structures solved at atomic resolution and stored in PDB (Borguesan et al., 2015).

Structural data are stored in databases or data banks whose number increases every year, the amount of

data produced urged the necessity for fast and reliable ways of accessing, retrieving, researching, and

understanding these data. In this article, we use high-quality conformational information from the PDB and

explore novel approaches to present some of the fundamental aspects and conformational particularities of

amino acids in proteins that cannot be easily explored by using traditional Ramachandran plots. Under-

standing the factors responsible for this behavior is necessary for protein studies and for the development of

computational methods to tackle problems in structural biology.

2. MATERIALS AND METHODS

The database used in this study was built from a set of protein structures experimentally determined by

X-ray diffraction with resolution �2:5Å and stored in PDB until December 2016. Only 3D protein

structures with R-factor of £20% were considered. For proteins with sequence identity >30%, only one of

them was considered and only amino acids with occupancy equal to 1 were used for further analysis. For

each amino acid residue, the dihedral angles (/, w, and v’s) and secondary structure information were

assigned using secondary STRuctural IDEntification (STRIDE) (Frishman and Argos, 1995; Heinig and

Frishman, 2004). This tool was chosen over more traditional tools [such as Dictionary of Secondary



Structure of Proteins (DSSP) (Kabsch and Sander, 1983)] due to its inclusion of dihedral angle potentials

besides the hydrogen-bonding potentials. The data set analyzed in this work was produced using the

Neighbors Influence of Amino acids and Secondary structures (NIAS) (Borguesan et al., 2017) Web-Server

(http://sbcb.inf.ufrgs.br/nias). With this information, we have built a matrix Haa‚ ss of [-180.0�,

+180.0� · -180.0�, +180.0�] cells for each amino acid residue (aa) and secondary structure (ss). Each cell

contained the relative frequency of the amino acids and its secondary structure is observed in experi-

mentally determined protein structures. This approach provides a way to identify the existence of con-

formational preferences for [aa, ss] pairs. Each cell (i, j) from matrix H has the number of times that a given

amino acid residue aa in secondary structure ss has a pair of torsion angles (i � / < i + 1‚ j � w < j + 1).

Then, for each amino acid residue and secondary structure, the APLaa‚ ss (Eq. 1) was computed, re-

presenting the normalized frequency of each pair of angles. A higher rate associated with a pair / and w
indicates that this combination is more common in nature for the amino acid aa on the secondary structure ss.

APLaa‚ ss(i‚ j) =
Haa‚ ss(i‚ j)
P

(Haa‚ ss)
: (1)

3. RESULTS

By applying the described filtering settings on the PDB data, 11‚ 130 structures were selected, amounting to

5‚ 255‚ 768 residues (Tables 1 and 2). This curated data set was employed in all analyses described here. The

traditional Ramachandran plots obtained did not diverge from the current knowledge on protein conformation.

There are broader limits for each region in comparison with the original Ramachandran plot. Nonetheless,

these regions are in agreement with more recent, large-scale surveys (Kleywegt and Jones, 1996; Hovmöller

et al., 2002). To further explore amino acid conformational features, we plotted / and w preferences for each

residue, discriminating secondary structure preferences (Fig. 1). Side chain dihedral angles were also in-

spected in our work. The preferred conformations for v angles (axes Ca-Cb, Cb-Cg, Cg-Cd, and Cd-Ne/Cd-

Ce) were inspected and plotted in columns (Figs. 2 and 3) (angle description for all v angles is presented in

online Supplementary Material; available at http://sbcb.inf.ufrgs.br/chi). We observed a small number of

experimental data, <1%, with amino acid residues in I (p-helix) and b (isolated bridge) conformational states

(Tables 1 and 2, columns 7 and 9, respectively). Thus, we only consider six conformational states for further

analysis: H (a-helix), G (310-helix), E (b-sheet), B (b-bridge), T (turn), and C (coil).

To facilitate interpretation, the conformational space populated by each residue type is commented here-

under. Unless otherwise noted, these observations regard the most populated zones for each angle. For these

inspections, expected values for / and w angles were in the interval of / = ( - 70:0�‚ - 60:0�), and

w = ( - 45:0�‚ - 39:0�) for a-helices, / = ( - 75:0�‚ - 74:0�) and w = ( - 5:0�‚ - 4:0�) for 310 helices; for b-

sheets, there is a wider range of reference values ( - 139:0�‚ - 119:0�; - 113:0�‚ - 135:0�), since parallel and

antiparallel sheets, despite being very limited in their preferred conformations, have different distributions

( - 119:0�‚ - 113:0� and - 139:0�‚ - 135:0�‚ respectively) (Richardson, 1981; Bywater and Veryazov, 2015).

Ala (A): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 65:0�‚
- 30:0� < w < - 50:0�. b sheet with /^ - 65:0�‚ 140:0� < w < 150:0�:

Arg (R): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 68:0�,
w^ - 28:0�. b sheet with traditional distribution. Side chain with four v angles. v1 most abundant in the

- 90:0�¡v1¡ - 60� range. v2 abundant in 180:0�. v3 abundant in 180:0�, with secondary, less populated

regions in 60:0� and - 60:0�. v4 has a wide distribution (when compared with the only other v4, from

Lys), with almost forbidden occurrence in the - 60:0� � v4 � 60:0� range, and most populated in 180:0�

and secondarily abundant in ^ - 90:0�.
Asn (N): a-helix with traditional distribution. 310-helix with traditional, but broader, distribution. b-sheet

with deviated / values ( - 90:0� � / � - 130:0�). Side chain with three v angles. v1 most abundant in

the - 90:0� � v1 � - 60:0� range. v2 most abundant in the - 60:0� � v2 � - 30:0�. v3 abundant in 180:0�.
Asp (D): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 70:0�, w^ - 30:0�.

b-sheet with deviated / values (/^ - 100:0�). Side chain with two v angles. v1 most abundant in the

- 90:0� � v1 � - 60:0� range. v2 populates the - 90:0� � v2 � 90:0� range, being most abundant in

^ - 30:0�.
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Cys (C): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 70:0�,
w^ - 30:0�. b-sheet with deviated / values (/^ - 65:0�). Side chain with three v angles. v1 most

abundant in the - 90:0� � v1 � - 60:0� range. v2 most abundant in the - 90:0� � v2 � - 60:0� range. v3

most abundant in ^ - 90:0� and secondarily in ^80:0�.
Gln (Q): a-helix with traditional distribution. 310-helix with deviated w values (w^ - 32:0�). b-sheet with

traditional distribution. Side chain with three v angles. v1 most abundant in the - 90:0� � v1 � - 60:0�

range. v2 abundant in 180:0�. v3 with broad distribution, being abundant in the - 60:0� � v3 � 60:0�

range, and most populated in - 60:0� � v3 � - 30:0�.
Glu (E): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 65:0�,

w^ - 30:0�. b-sheet with traditional distribution, but / has a broader highly populated zone. Side chain

with three v angles. v1 most abundant in the - 90:0� � v1 � - 60:0� range. v2 abundant in 180:0�. v3

populates only the - 90:0� � v3 � 90:0� range, being most abundant in ^0�.
Gly (G): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 70:0�, w^ - 55:0�.

b-sheet with broad distribution (forbidden zones: - 60:0� � / � 45:0�; - 80:0� � w � - 30:0�). Helical

segments are bound by very strict limits, whereas other structures, in special sheets, have broader distri-

butions than expected.

His (H): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 72:0�‚ w^ - 55:0�.
b-sheet with traditional distribution. Side chain with two v angles. v1 most abundant in the - 90:0� �
v1 � - 60:0� range. v2 most abundant around - 75:0�, with the exception of the occurrences in a-helices,

which populate mostly ^75:0�.
Ile (I): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 65:0�, w^ - 30:0�.

b-sheet with deviated values, - 130:0� � / � - 120:0�, 118:0� � w � 122:0�. Side chain with two v
angles. v1 most abundant in the - 90:0� � v1 � - 60:0� range. v2 abundant in ^150:0�.

Leu (L): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 70:0�,
- 20:0� � w � - 10:0�. b-sheet with deviated values, - 122:0� � / � - 118:0�, 118:0�� w � 122:0�. Side

chain with two v angles. v1 most abundant in the - 90:0� � v1 � - 60:0� range. v2 abundant in ^180:0�.
Lys (K): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 70:0�,

w^ - 25:0�. b-sheet with traditional distribution. Side chain with four v angles. v1 most abundant in the

- 90:0� � v1 � - 60:0� range. v2 and v3 abundant in ^180:0�. v4 abundant in ^180:0�, with secondary,

less populated regions in ^60:0� and ^ - 60:0�.
Met (M): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 72:0�,

w^ - 30:0�. b-sheet with traditional distribution. Side chain with three v angles. v1 most abundant in the

- 90:0� � v1 � - 60:0� range. v2 abundant in ^180:0�. v3 abundant in ^ - 75:0� and secondarily in

^60:0�.
Phe (F): a-helix with deviated w value, w^ - 60:0�. 310-helix deviates from expected with /^ - 50:0�,

and broader w values, - 50:0� � w � 0:0�. b-sheet with deviated values, - 140:0� � / � - 120:0�,
120:0� � w � 150:0�. Side chain with two v angles. v1 most abundant in the - 90:0� � v1 � - 60:0�

range, with the exception of the occurrences in a-helices, which populate mostly ^180:0�. v2 populates

the - 90:0� � v2 � 90:0� range, being most abundant in ^ - 90:0� and ^90:0�.
Pro (P): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 50:0�,

w^ - 40:0�. b-sheet with narrow distribution, - 80:0� � / � - 75:0�, 140:0� � w � 150:0�. Side chain

with a single v angle. v1 populates the ^ - 30:0� region when in a-helices and b-sheets, and the ^30:0�

region when in other structures.

Ser (S): a-helix with narrow distribution. 310-helix deviates from expected with /^ - 50:0�, w^ - 20:0�.
b-sheet with deviated w values (145:0� � w � 152:0�). Side chain with a single v angle. v1 populates the

^60:0� region, and the ^ - 60:0� region when in a-helices and b-sheets.

Thr (T): a-helix with deviated w value, w^ - 55:0�. 310-helix deviates from expected with /^ - 70:0�,
w^ - 20:0�. b-sheet with deviated w values (120:0� � w � 130:0�). Side chain with a single v angle. v1

populates the ^60:0� region, and the ^ - 60:0� region when in a-helices and b-sheets.

Trp (W): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 125:0�,
- 35:0� � w � - 25:0�. b-sheet with deviated / values (115:0� � / � 125:0�). Side chain with two v
angles. v1 most abundant in the - 90:0� � v1 � - 60:0� range, with the exception of the occurrences in

a-helices, which populate mostly ^180:0�. v2 populates the - 120:0� � v2 � 120:0� range, being most

abundant in ^90:0�, with the exception of the occurrences in 310-helices, which populate mostly

^ - 90:0�.



Tyr (Y): a-helix with deviated w value, w^ - 50:0�. 310-helix deviates from expected with /^ - 70:0�,
- 40:0� � w � 0:0�. b-sheet with traditional distribution. Side chain with two v angles. v1 most abundant

in the - 90:0� � v1 � - 60:0� range, with the exception of the occurrences in a-helices, which populate

mostly ^180:0�. v2 populates the - 90:0� � v2 � 90:0� range, being most abundant in ^ - 90:0� and

^90:0�.
Val (V): a-helix with traditional distribution. 310-helix deviates from expected with /^ - 70:0�,

- 35:0� � w � - 30:0�. b-sheet with deviated / values (115� � / � 125:0�). Side chain with a single v
angle. v1 populates the 160� � v1 � 180:0� range, with helices more restricted to ^160:0�.

4. DISCUSSION

In this work, we performed the most encompassing scan of the PDB to date, aiming to analyze and

update the Ramachandran plot with experimental data. This led to a data set that is larger than similar

studies (Table 3). There have been many efforts to redesign the Ramachandran plot, that is, plot the same or

similar data onto different planes, spaces, or forms. These attempts aim to convey more information using

the same rationale from the original plot, either with only / · w information or with the addition of extra

data, such as hydrogen bonding constraints. These alternative graphs include mirrored, wrapped, and geo-

style Ramachandran plots [as reviewed in Hollingsworth (Hollingsworth and Karplus, 2010), and Carugo

(Carugo and Carugo, 2013)]. Current efforts apply the Ramachandran strategy to larger structures, such as

in the proteomic Ramachandran plot (Carugo and Carugo, 2013), or refine the original Ramachandran

model by adding hydrogen bonding constraints (Porter and Rose, 2011). Despite being extremely useful,

most of these attempts to redraw the Ramachandran plot lack residue-specific resolution, something that

impairs more in-depth description of protein structural variations.

The pervasive textbook statement that secondary structure does not depend on amino acid sequence (due

to hydrogen bonds being formed by the backbone only) overtly simplifies our understanding of protein

conformational preferences. Since the late 1970s (at least), it is recognized that different side chains make

residues behave differently regarding their / and w angle preferences (Chou and Fasman, 1974; Williams

et al., 1987; Street and Mayo, 1999). Apart from single-residue plots, these conformational preferences

seemed to have remained largely overlooked. Here, we present stripe charts for / and w angles, colored by

population, separated by secondary structure types for each amino acid. We also add side chain torsional

angles (chi-v), which contribute to depict conformational preferences.

Table 3. Details for Data Sets Employed in Previous, Similar Works Exploring the Ramachandran Plot

References Year N �proteins N.�residues Resolution (Å) Type R factor

Beck et al. 2008 188 989‚ 001 NA X ray, NMR NA

Carugo and Carugo 2013 2725 NA NA NA NA

Dahl et al. 2008 6702 NA � 2:50 X ray < 1:00

Gromiha et al. 2002 162 NA NA NA NA

Hintze et al. 2016 8000 983‚ 574 � 2:00 X ray

Ho et al. 2003 500 97‚ 368 < 1:8 X ray NA

Hollingsworth and Karplus 2010 NA 72‚ 376 < - 1:20 X ray NA

Hooft et al. 1997 295 60‚ 000 < 2:8 X ray < 0:25

Hovmöller et al. 2002 1042 137‚ 384 � 2:00 X ray � 0:20

Hooft et al. 2005 2020 NA � 2:0 X ray � 0:30

Keskin et al. 2004 1646 NA 0:54 � res � 3:00 X ray, NMR NA

Kleywegt and Jones 1996 403 81‚ 782 � 2:00 X ray NA

Kolaskar and Sawant 1996 221 51‚ 998 NA X ray NA

Oldfield and Hubbard 1994 83 18‚ 503 � 2:00 X ray NA

Pal and Chakrabarti 2002 353 63‚ 949 � 2:00 X ray � 0:20

Tanty and Delsuc 2011 500 110‚ 018 NA X ray NA

Ting et al. 2010 3038 180‚ 847 � 1:70 X ray � 0:25

Xia and Xie 2002 7342 NA NA X ray NA

Zhou et al. 2011 850 86‚ 229 � 1:70 X ray � 0:25

NA, not available; NMR, nuclear magnetic resonance.



Classical exceptions to the general ‘‘Ramachandranian’’ behavior are confirmed here, with Gly popu-

lating wide ranges of torsional angles and Pro being much more restricted. There is a clear trend for w
values of nonhelical structures to populate a similar, more restrict angle range, whereas for /, b-sheets have

the most dissimilar distributions. Of all secondary structures, we confirm that helices have the narrowest

ranges of / and w values. b-sheets, in contrast, populate a broader range of values than originally expected.

Ribosome environment simulations (using density functional theory) support these observations, showing

that helical energy wells are deep and well defined, whereas b-sheets are energetically unfavorable, having

shallower, wider energy wells (Bywater and Veryazov, 2015). In addition, when compared with helices,

b-sheets are more complex, more flexible, and especially more prone to discordant and inaccurate ob-

servations (Parisien and Major, 2005; Fujiwara et al., 2012). Variations of the same kind in helices are

much more restricted (Richardson and Richardson, 1988; Ho et al., 2003; Engel and DeGrado, 2004).

Side chain conformational preferences are less frequently explored in the literature than ‘‘traditional’’

/ · w plots. Most notably, side chains have been studied with regard to their effect on the protein backbone

and ways to classify their variation (Dahl et al., 2008). Here, we observed some preferences that may group

some amino acids, but these clusters are not as clearly separated as observed for previous, theoretical

inspections (such as Dahl et al. 2008; Carrascoza et al. 2014). For the v1 angle, Ser adopts a gauche+
orientation when in a-helix, whereas Thr adopts gauche+ for a-helix and b-sheet, probably due to an

additional -CH3 group in the latter when compared with the former. It is interesting to note that Ser is the

most likely residue to adopt a nonallowed conformation when taking part in a protein structure, whereas

Thr is the fourth more likely to do so (Pal and Chakrabarti, 2002). The v1 behavior observed here may be

able to justify some of this propensity. In Val, v1 is near-trans for helices and trans for all other secondary

structures. v1 in Phe, Tyr, and Trp is trans when in a-helix, a configuration that may be favored due to

differences in hydrophobicity for main chain and side chain in these residues, which leads to repulsion.

Phe and Tyr have v2 in + 90:0� when in a-helices, whereas all other secondary structures are found

in + 90:0� and - 90:0�. A similar behavior is observed for His, despite having a broader distribution. For

Trp, a-helix and b-sheet are in + 90:0, with this restriction reflecting the increased rigidity of the residue

double-ring when compared with single-ringed side chains. Asp and Asn have similar v2 and v3 distri-

butions (although Asp distribution being narrower than Asn). Such similarity points to their charges,

despite opposite, being the driving force for side chain orientation, since their molecular length is com-

parable. It is interesting to note that Asn was the sole residue to have a major deviation when comparing

experimental and predicted preferences for b-sheet formation, something that was explained as a greater

contribution of hydrogen bonding over other properties in this specific residue (Street and Mayo, 1999).

Residue-level Ramachandran maps for Asn and Asp are considered more complex than those for other

amino acids (Hovmöller et al., 2002), and here we also observe that v2 and v3 behave in a similar manner

in Glu and Gln. v3 shows no other clear pattern. The differences in v4 between Lys and Arg (the only

residues with this angle) are probably due to the difference in their chemical components. Although in Lys

a C atom takes part in v4, in Arg an N atom takes part in this angle.

The complexity of protein conformational preferences becomes more evident when one considers the multi-

dimensional representation of Ramachandran plots, adding residue preferences and including v angles to the /
and w combinations (Fig. 4; Supplementary Material available at http://sbcb.inf.ufrgs.br/chi). These Ra-

machandran cubes are very different among themselves, pointing to each residue acting as an almost exclusive

piece in the protein puzzle. Such Ramachandran plot variations have also been observed for single-residue or

small peptide density functional theory calculations (Porter and Rose, 2011; Carrascoza et al., 2014). Comparing

molecular dynamics simulations of pentapeptides, large proteins, and PDB structures, it has been shown that many

factors overcome the ‘‘intrinsic’’ properties of the amino acids. Such factors include packing constraints, sol-

vation, hydrogen bonding potential, and the tendency that amino acids have to form specific structures (Beck et al.,

2008; Porter and Rose, 2011; Penner et al., 2014). With the current exception of selenocysteine and pyrrolysine

(Rother and Krzycki, 2010), which are taxon-specific, the same 20 amino acids are found in all organisms. In fact,

there seems to be a need for even more types of residues, as observable from post-translational modifications.

The amount of naturally occurring amino acids (i.e., amino acids for which there are corresponding

tRNAs) is restrained by the genetic code, despite the fact that some amino acids have up to six codons

coding for them, whereas some have only one, with no detrimental effect for the organism (Vella, 2003).

Davis (1999) and Wong (2005) developed proposals in which the genetic code coevolved with the bio-

chemical pathways needed to synthesize the different amino acids. These propositions place Asp, Asn, Glu,

and Gln, which are residues that behave similarly in the analyses presented here, earlier in the evolution of



the genetic code, whereas hydrophobic residues (Phe, Tyr, and Phe) would be the last to emerge (Griffiths,

2007). It is tempting to propose that, given the universality of amino acid composition in proteins, evolution

had enough time to tinker with the system as to keep only neutral or beneficial residues in the making of

proteins. Thus, redundant pieces in the puzzle would have been shunned earlier in evolutionary terms, being

supplanted by unique, not totally interchangeable amino acids. This is in accordance with the observation that

the genetic code is almost maximally optimized in its current state (Koonin and Novozhilovn, 2009). In this

context, divergence in the canonical Ramachandran plot for each amino acid in each type of secondary

structure is nothing but expected.

The contribution of residue neighborhood, that is, the residues that come before and after the residue

position of interest, for the amino acid conformation has been extensively demonstrated (Kabat and Wu,

1973; Crasto and Feng, 2001; Hovmöller et al., 2002; Xia and Xie, 2002; Ting et al., 2010; Borguesan

et al., 2015; Hollingsworth et al., 2016). In this work, we show that side chains also have clear preferences

when taking part into different secondary structures, and not only the main chain, as previously observed

(Hovmöller et al., 2002). A similar observation has been made recently (Hintze et al., 2016). Here, we

expand this analysis, establishing a catalog of possible side chain angle preferences and their relation to

secondary structure formation, explicitly depicting the information implicitly available in rotamer libraries.

This information is especially interesting when one considers its application for structural modeling.

The construction of protein models is currently based on two strategies: the template-based modeling and

the template-free modeling (Dorn et al., 2014). The knowledge about amino acid preferences for main

chain and side chain dihedral angles constitute a requisite for proper template-based modeling. In this

FIG. 4. Multidimensional Ramachandran cube plots. The dark red color represents the most densely occupied regions

of the plot. Similar cubes for all residues in the combinations Phi · Psi · Chi1 (a)/Chi2 (b)/Chi3 (c)/Chi4 (d) for each

secondary structure type are available at http://sbcb.inf.ufrgs.br/chi



context, use of side chain rotamer libraries (Shapovalov and Dunbrack, 2011; Towse et al., 2016; Hintze

et al., 2016) may be greatly improved by taking the data presented here into account. The knowledge on

such preferences, however, is not restricted to template-based modeling. Considering that the PDB may not

harbor all possible templates anytime soon (Brylinski, 2015), the experimentally derived information

presented here may help in selecting the most native-like models among multiple protein decoys generated

by template-free modeling (Mishra et al., 2016). The application of structural models is not restricted to the

acquisition of the models themselves, since these structures greatly favor function activity prediction

pipelines, which can include docking of small ligands and protein protein docking. The proper prediction

of protein backbone and side chain conformations also enhances our ability to design and propose more

adequate protein mutants or synthetic peptides with biotechnological applications, even in large scale,

reducing time and costs of valuable in vitro experimentation (Hakansson, 2002; Nazari-Robati et al., 2013).

5. CONCLUSIONS

The Ramachandran plot remains an utterly valuable tool to depict and understand protein structure. The

current work improves upon previous observations, confirming in detail that residues behave very differ-

ently when taking part in diverse types of secondary structures. This variation is especially true for side

chain behavior. Further developments in protein modeling and engineering must take into account the

residue-level specificity of torsional angles to reliably depict natural proteins.

The observed protagonist, that is, the particularities of each amino acid residue when participating in

different secondary structures, can be used to answer some important questions about protein dynamics. In

protein structure prediction, this information can be employed, for example, to reduce the protein con-

formational search space and improve the robustness of prediction methods. In the field of computational

protein design, this knowledge may be used to guide the design process, by offering reliable information on

the statistical distribution of the amino acid residues, the natural preferences of amino acids to participate in

segments of secondary structures, etc. Prediction of local structural properties of a protein molecule should

be easier when computational protein design methods consider structural template information.
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