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ABSTRACT

In many structural bioinformatics problems, there is a broad range of unanswered questions
about protein dynamics and amino acid properties. Proteins are not strictly static objects,
but rather populate ensembles of conformations. One way to understand these particular-
ities is to analyze the information available in experimental databases. The Ramachandran
plot, despite being more than half a century old, remains an utterly useful tool in the study of
protein conformation. Based on its assumptions, we inspected a large data set (11,130
protein structures, amounting to 5,255,768 residues) and discriminated the conformational
preferences of each residue type regarding their secondary structure participation. These
data were studied for phi (¢), psi (1), and side chain chi (y) angles, being presented in non-
Ramachandranian plots. In the largest analysis of protein conformation made so far, we
propose an original plot to depict conformational preferences in relation to different sec-
ondary structure elements. Despite confirming previous observations, our results strongly
support a unique character for each residue type, whereas also reinforcing the observation
that side chains have a major contribution to secondary structure and, by consequence, on
protein conformation. This information can be further used in the development of more
robust methods and computational strategies for structural bioinformatics problems.

Keywords: conformational preferences, structural biology, structure-based conformational
preferences of amino acids, three-dimensional structure of proteins.

1. INTRODUCTION

. N. RAMACHANDRAN (8 OcTOBER 1922 7 AprIL 2001) is considered one of the greatest scientists of the
20th century, often praised for making a lasting impression in the field of structural biology despite his
somewhat far-off, obscure scientific origins (Ramakrishnan, 2001; Sarma, 2001). Among his many research
topics in molecular biophysics, Ramachandran’s probably greatest contribution to structural biology was the
development of a diagram that now bears his name, the Ramachandran plot. Working on the (then) hot topic
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of the collagen structure, Ramachandran proposed the triple, coiled-coil arrangement for the fibrous protein
(Ramachandran et al., 1963). Even though this structure passed the test of time, he got little credit for it, especially
due to controversies over details (Ramakrishnan, 2001; Sarma, 2001). These involved mainly the minimum
possible distance between two nonbonded atoms, and this topic drew him and his team to an effort to prove that the
distances he proposed for collagen were real and observed in other crystallographic structures. This research
eventually led to the Ramachandran plot (Ramachandran et al., 1963), later expanded in a work that defined many
key aspects of protein structure analysis (Ramachandran and Sasisekharan, 1968).

The Ramachandran plot defines limits that are imposed on the polypeptide chain conformation by the
steric hindrance caused by nonbonded atoms. By plotting the angles that are allowed to rotate in a system of
two linked peptide units, the plot is able to predict (or define) energetically forbidden regions for any
dipeptide in a protein. The torsion angles (sometimes called Ramachandran angles) are defined as phi (¢))
and psi (), C; 1—N-C,—C and N-C, —C—N;,1, respectively. The omega () angle, set by the peptide
bond, is practically fixed at 180°, since its partial double-bond character keeps it planar (Pauling et al.,
1951). Similar to the polypeptide backbone, side chains have also dihedral angles, and the number of the so
called chi (y) angles of each side chain depends on the amino acid type.

The Ramachandran plot has been originally proposed based on interatomic distances and angles cal-
culations (Carugo and Carugo, 2013). Afterward, many researchers confirmed its predictions by inspecting
the range of values of ¢/ torsion angle pairs achieved in real crystallographic structures (Kleywegt and
Jones, 1996; Carugo and Carugo, 2013). These works also observed some “‘blurring” of the plot bound-
aries, chiefly explained by case-specific stabilization forces that allow specific plot violation (Carugo and
Carugo, 2013). Still, Ramachandran’s ingenious plot has been under continuous inspection. The most
recent re-evaluation of Ramachandran graphs in light of current crystallographic data (Hollingsworth and
Karplus, 2010) inspected 63, 149 residues and proposed new ways of presenting ¢ X data. In this context,
and considering the continuous expansion of protein data bank (PDB) information in quantity and quality,
in this work we revisited the Ramachandran plot by inspecting >5 million amino acid residues, expanding
its analysis to a unparalleled level, which, in turn, supported the proposal of a new way of presenting amino
acid conformational preferences in relation to different secondary structure elements.

Structural bioinformatics deals with problems in which the rules that govern the biochemical processes and
relations are only partially known, making it hard to design efficient computational strategies to tackle them (de
Lima Corréa and Dorn, 2017). Especially in Molecular Docking and Protein Structure Prediction problems, there
is a broad range of unanswered biological questions related to the protein folding process and dynamics. Predicting,
for example, the three-dimensional (3D) structure of proteins requires an understanding of how tertiary structure
depends on the primary amino acid sequence. Researchers are interested in the rules that determine the protein
structure for a given sequence, which is influenced by the intrinsic conformational preference of each amino acid
residue and also the interactions of neighbor amino acid residues (Dorn et al., 2014). An approach (knowledge-
based prediction methods) to that problem is to explore the conformational particularities of local segments of
amino acids in experimental structures solved at atomic resolution and stored in PDB (Borguesan et al., 2015).

Structural data are stored in databases or data banks whose number increases every year, the amount of
data produced urged the necessity for fast and reliable ways of accessing, retrieving, researching, and
understanding these data. In this article, we use high-quality conformational information from the PDB and
explore novel approaches to present some of the fundamental aspects and conformational particularities of
amino acids in proteins that cannot be easily explored by using traditional Ramachandran plots. Under-
standing the factors responsible for this behavior is necessary for protein studies and for the development of
computational methods to tackle problems in structural biology.

2. MATERIALS AND METHODS

The database used in this study was built from a set of protein structures experimentally determined by
X-ray diffraction with resolution <2.5A and stored in PDB until December 2016. Only 3D protein
structures with R-factor of <20% were considered. For proteins with sequence identity >30%, only one of
them was considered and only amino acids with occupancy equal to 1 were used for further analysis. For
each amino acid residue, the dihedral angles (¢, ¥, and y’s) and secondary structure information were
assigned using secondary STRuctural IDEntification (STRIDE) (Frishman and Argos, 1995; Heinig and
Frishman, 2004). This tool was chosen over more traditional tools [such as Dictionary of Secondary



Structure of Proteins (DSSP) (Kabsch and Sander, 1983)] due to its inclusion of dihedral angle potentials
besides the hydrogen-bonding potentials. The data set analyzed in this work was produced using the
Neighbors Influence of Amino acids and Secondary structures (NIAS) (Borguesan et al., 2017) Web-Server
(http://sbeb.inf.ufrgs.br/nias). With this information, we have built a matrix H, s of [-180.0°,
+180.0°x—-180.0°, +180.0°] cells for each amino acid residue (aa) and secondary structure (ss). Each cell
contained the relative frequency of the amino acids and its secondary structure is observed in experi-
mentally determined protein structures. This approach provides a way to identify the existence of con-
formational preferences for [aq, ss] pairs. Each cell (i, j) from matrix H has the number of times that a given
amino acid residue aa in secondary structure ss has a pair of torsion angles (i < ¢ < i+1, j <y <j+1).

Then, for each amino acid residue and secondary structure, the APL,, sz (Eq. 1) was computed, re-
presenting the normalized frequency of each pair of angles. A higher rate associated with a pair ¢ and
indicates that this combination is more common in nature for the amino acid aa on the secondary structure ss.

. . Haa .YS(i’j)
APL,, (i,))= =————. 1
D= )
3. RESULTS

By applying the described filtering settings on the PDB data, 11, 130 structures were selected, amounting to
5,255, 768 residues (Tables 1 and 2). This curated data set was employed in all analyses described here. The
traditional Ramachandran plots obtained did not diverge from the current knowledge on protein conformation.
There are broader limits for each region in comparison with the original Ramachandran plot. Nonetheless,
these regions are in agreement with more recent, large-scale surveys (Kleywegt and Jones, 1996; Hovmoller
et al., 2002). To further explore amino acid conformational features, we plotted ¢ and s preferences for each
residue, discriminating secondary structure preferences (Fig. 1). Side chain dihedral angles were also in-
spected in our work. The preferred conformations for y angles (axes Ca-Cb, Cb-Cg, Cg-Cd, and Cd-Ne/Cd-
Ce) were inspected and plotted in columns (Figs. 2 and 3) (angle description for all y angles is presented in
online Supplementary Material; available at http://sbeb.inf.ufrgs.br/chi). We observed a small number of
experimental data, <1%, with amino acid residues in I (n-helix) and b (isolated bridge) conformational states
(Tables 1 and 2, columns 7 and 9, respectively). Thus, we only consider six conformational states for further
analysis: H (a-helix), G (3'%-helix), E (B-sheet), B (f-bridge), T (turn), and C (coil).

To facilitate interpretation, the conformational space populated by each residue type is commented here-
under. Unless otherwise noted, these observations regard the most populated zones for each angle. For these
inspections, expected values for ¢ and y angles were in the interval of ¢=(-70.0°, —60.0°), and
Y=(—45.0°, —=39.0°) for a-helices, ¢p=(-75.0°, —=74.0°) and y=(-5.0°, —4.0°) for 3'° helices; for f-
sheets, there is a wider range of reference values (—139.0°, —119.0°; —113.0°, —135.0°), since parallel and
antiparallel sheets, despite being very limited in their preferred conformations, have different distributions
(—=119.0°, —113.0° and —139.0°, —135.0°, respectively) (Richardson, 1981; Bywater and Veryazov, 2015).

Ala (A): o-helix with traditional distribution. 3'°-helix deviates from expected with ¢~ —65.0°,
-30.0° <y < =50.0°. f sheet with ¢~ —65.0°, 140.0° < yy < 150.0°.

Arg (R): o-helix with traditional distribution. 3'°-helix deviates from expected with ¢~ —68.0°,
W~ —28.0°. f sheet with traditional distribution. Side chain with four y angles. y; most abundant in the
—90.0°,; —60° range. y, abundant in 180.0°. y; abundant in 180.0°, with secondary, less populated
regions in 60.0° and —60.0°. y, has a wide distribution (when compared with the only other y,, from
Lys), with almost forbidden occurrence in the —60.0° < 7, < 60.0° range, and most populated in 180.0°
and secondarily abundant in ~ —90.0°.

Asn (N): o-helix with traditional distribution. 3'%-helix with traditional, but broader, distribution. f-sheet
with deviated ¢ values (—90.0° < ¢ < —130.0°). Side chain with three y angles. y; most abundant in
the —90.0° < y; < —-60.0° range. y, most abundant in the —60.0° < y, < —30.0°. y; abundant in 180.0°.

Asp (D): a-helix with traditional distribution. 3'°-helix deviates from expected with ¢ ~ —70.0°, i ~ —30.0°.
f-sheet with deviated ¢ values (¢~ —100.0°). Side chain with two y angles. y; most abundant in the
-90.0° < y; < —60.0° range. y, populates the —90.0° < y, <90.0° range, being most abundant in
~ -30.0°.
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Cys (C): a-helix with traditional distribution. 3'°-helix deviates from expected with ¢=~ —70.0°,
Y~ —30.0°. B-sheet with deviated ¢ values (¢~ —65.0°). Side chain with three y angles. y; most
abundant in the —90.0° < y; < —60.0° range. y, most abundant in the —90.0° < y, < —60.0° range. y;
most abundant in ~ —90.0° and secondarily in ~80.0°.

Gln (Q): a-helix with traditional distribution. 3'%-helix with deviated y values (i ~ —32.0°). S-sheet with
traditional distribution. Side chain with three y angles. y; most abundant in the —90.0° < y; < —60.0°
range. ¥, abundant in 180.0°. y; with broad distribution, being abundant in the —60.0° < y; < 60.0°
range, and most populated in —60.0° < y; < —30.0°.

Glu (E): o-helix with traditional distribution. 3'%-helix deviates from expected with ¢~ —65.0°,
W~ —30.0°. -sheet with traditional distribution, but ¢ has a broader highly populated zone. Side chain
with three y angles. y; most abundant in the —90.0° < y; < —60.0° range. y, abundant in 180.0°. y;
populates only the —90.0° < y; < 90.0° range, being most abundant in ~0°.

Gly (G): a-helix with traditional distribution. 3'%-helix deviates from expected with ¢ ~ —70.0°, i ~ — 55.0°.
f-sheet with broad distribution (forbidden zones: —60.0° < ¢ < 45.0°; —80.0° <y < —30.0°). Helical
segments are bound by very strict limits, whereas other structures, in special sheets, have broader distri-
butions than expected.

His (H): a-helix with traditional distribution. 3'°-helix deviates from expected with ¢ ~ —72.0°, i) ~ — 55.0°.
f-sheet with traditional distribution. Side chain with two y angles. 7, most abundant in the —90.0° <
71 < —60.0° range. y, most abundant around —75.0°, with the exception of the occurrences in a-helices,
which populate mostly ~75.0°.

Ie (I): a-helix with traditional distribution. 3'°-helix deviates from expected with ¢ ~ —65.0°, i ~ —30.0°.
[-sheet with deviated values, —130.0° < ¢ < —120.0°, 118.0° < < 122.0°. Side chain with two y
angles. y; most abundant in the —90.0° < y; < —60.0° range. y, abundant in ~150.0°.

Leu (L): o-helix with traditional distribution. 3'%-helix deviates from expected with ¢~ —70.0°,
—-20.0° < < —10.0°. f-sheet with deviated values, —122.0° < ¢ < —118.0°, 118.0° <y < 122.0°. Side
chain with two y angles. y; most abundant in the —90.0° < y; < —60.0° range. y, abundant in ~180.0°.

Lys (K): a-helix with traditional distribution. 3'°-helix deviates from expected with ¢~ —70.0°,
W~ —25.0°. f-sheet with traditional distribution. Side chain with four y angles. y; most abundant in the
-90.0° < y; < —60.0° range. y, and y; abundant in ~180.0°. y, abundant in ~180.0°, with secondary,
less populated regions in ~60.0° and ~ —60.0°.

Met (M): o-helix with traditional distribution. 3'"-helix deviates from expected with ¢~ —72.0°,
W~ —30.0°. f-sheet with traditional distribution. Side chain with three y angles. y; most abundant in the
-90.0° < y; £ —60.0° range. y, abundant in ~180.0°. y; abundant in ~ —75.0° and secondarily in
~60.0°.

Phe (F): a-helix with deviated  value, i ~ —60.0°. 3'%helix deviates from expected with ¢~ —50.0°,
and broader  values, —50.0° < < 0.0°. f-sheet with deviated values, —140.0° < ¢ < —120.0°,
120.0° < < 150.0°. Side chain with two y angles. y, most abundant in the —90.0° < 3, < —60.0°
range, with the exception of the occurrences in a-helices, which populate mostly ~180.0°. y, populates
the —90.0° <y, <90.0° range, being most abundant in ~ —90.0° and ~90.0°.

Pro (P): a-helix with traditional distribution. 3'-helix deviates from expected with ¢~ —50.0°,
i~ —40.0°. -sheet with narrow distribution, —80.0° < ¢ < —75.0°, 140.0° < < 150.0°. Side chain
with a single y angle. y; populates the ~ —30.0° region when in a-helices and fS-sheets, and the ~30.0°
region when in other structures.

Ser (S): a-helix with narrow distribution. 3!%-helix deviates from expected with ¢~ —50.0°, i ~ —20.0°.
f-sheet with deviated y values (145.0° < < 152.0°). Side chain with a single y angle. y, populates the
~60.0° region, and the ~ —60.0° region when in o-helices and f-sheets.

Thr (T): a-helix with deviated  value,  ~ —55.0°. 3'%helix deviates from expected with ¢~ —70.0°,
W~ —20.0°. p-sheet with deviated y values (120.0° < < 130.0°). Side chain with a single y angle. ¥,
populates the ~60.0° region, and the ~ —60.0° region when in o-helices and fS-sheets.

Trp (W): o-helix with traditional distribution. 3'%-helix deviates from expected with ¢ =~ —125.0°,
-35.0° < < =25.0°. f-sheet with deviated ¢ values (115.0° < ¢ < 125.0°). Side chain with two y
angles. y; most abundant in the —90.0° < y; < —60.0° range, with the exception of the occurrences in
o-helices, which populate mostly ~180.0°. y, populates the —120.0° < y, < 120.0° range, being most
abundant in ~90.0°, with the exception of the occurrences in 3'"-helices, which populate mostly
~ -90.0°.



Tyr (Y): a-helix with deviated y value, ¥~ —50.0°. 3'%-helix deviates from expected with ¢~ —70.0°,
—40.0° <y <0.0°. p-sheet with traditional distribution. Side chain with two y angles. y; most abundant
in the —90.0° < y; £ —60.0° range, with the exception of the occurrences in a-helices, which populate
mostly ~180.0°. y, populates the —90.0° < y, < 90.0° range, being most abundant in ~ -90.0° and
~90.0°.

Val (V): a-helix with traditional distribution. 3'"-helix deviates from expected with ¢~ —70.0°,
-35.0° <y < =30.0°. f-sheet with deviated ¢ values (115° < ¢ < 125.0°). Side chain with a single y
angle. y; populates the 160° < y; < 180.0° range, with helices more restricted to ~160.0°.

4. DISCUSSION

In this work, we performed the most encompassing scan of the PDB to date, aiming to analyze and
update the Ramachandran plot with experimental data. This led to a data set that is larger than similar
studies (Table 3). There have been many efforts to redesign the Ramachandran plot, that is, plot the same or
similar data onto different planes, spaces, or forms. These attempts aim to convey more information using
the same rationale from the original plot, either with only ¢ X/ information or with the addition of extra
data, such as hydrogen bonding constraints. These alternative graphs include mirrored, wrapped, and geo-
style Ramachandran plots [as reviewed in Hollingsworth (Hollingsworth and Karplus, 2010), and Carugo
(Carugo and Carugo, 2013)]. Current efforts apply the Ramachandran strategy to larger structures, such as
in the proteomic Ramachandran plot (Carugo and Carugo, 2013), or refine the original Ramachandran
model by adding hydrogen bonding constraints (Porter and Rose, 2011). Despite being extremely useful,
most of these attempts to redraw the Ramachandran plot lack residue-specific resolution, something that
impairs more in-depth description of protein structural variations.

The pervasive textbook statement that secondary structure does not depend on amino acid sequence (due
to hydrogen bonds being formed by the backbone only) overtly simplifies our understanding of protein
conformational preferences. Since the late 1970s (at least), it is recognized that different side chains make
residues behave differently regarding their ¢ and i/ angle preferences (Chou and Fasman, 1974; Williams
et al., 1987; Street and Mayo, 1999). Apart from single-residue plots, these conformational preferences
seemed to have remained largely overlooked. Here, we present stripe charts for ¢ and y angles, colored by
population, separated by secondary structure types for each amino acid. We also add side chain torsional
angles (chi-y), which contribute to depict conformational preferences.

TABLE 3. DETAILS FOR DATA SETS EMPLOYED IN PREVIOUS, SIMILAR WORKS EXPLORING THE RAMACHANDRAN PLOT

References Year N °proteins  N.°residues Resolution (A° ) Type R factor
Beck et al. 2008 188 989, 001 NA Xray, NMR NA
Carugo and Carugo 2013 2725 NA NA NA NA
Dahl et al. 2008 6702 NA <250 X ray < 1.00
Gromiha et al. 2002 162 NA NA NA NA
Hintze et al. 2016 8000 983,574 <2.00 X ray

Ho et al. 2003 500 97, 368 <18 X ray NA
Hollingsworth and Karplus 2010 NA 72,376 < -1.20 X ray NA
Hooft et al. 1997 295 60, 000 <28 X ray <0.25
Hovmoller et al. 2002 1042 137,384 <2.00 X ray <0.20
Hooft et al. 2005 2020 NA <20 X ray <0.30
Keskin et al. 2004 1646 NA 0.54 <res <3.00 Xray, NMR NA
Kleywegt and Jones 1996 403 81,782 <2.00 X ray NA
Kolaskar and Sawant 1996 221 51,998 NA X ray NA
Oldfield and Hubbard 1994 83 18, 503 <2.00 X ray NA
Pal and Chakrabarti 2002 353 63,949 <2.00 X ray <0.20
Tanty and Delsuc 2011 500 110,018 NA X ray NA
Ting et al. 2010 3038 180, 847 <1.70 X ray <0.25
Xia and Xie 2002 7342 NA NA X ray NA
Zhou et al. 2011 850 86,229 <1.70 X ray <0.25

NA, not available; NMR, nuclear magnetic resonance.



Classical exceptions to the general ‘‘Ramachandranian™ behavior are confirmed here, with Gly popu-
lating wide ranges of torsional angles and Pro being much more restricted. There is a clear trend for
values of nonhelical structures to populate a similar, more restrict angle range, whereas for ¢, fi-sheets have
the most dissimilar distributions. Of all secondary structures, we confirm that helices have the narrowest
ranges of ¢ and y values. -sheets, in contrast, populate a broader range of values than originally expected.
Ribosome environment simulations (using density functional theory) support these observations, showing
that helical energy wells are deep and well defined, whereas f-sheets are energetically unfavorable, having
shallower, wider energy wells (Bywater and Veryazov, 2015). In addition, when compared with helices,
f-sheets are more complex, more flexible, and especially more prone to discordant and inaccurate ob-
servations (Parisien and Major, 2005; Fujiwara et al., 2012). Variations of the same kind in helices are
much more restricted (Richardson and Richardson, 1988; Ho et al., 2003; Engel and DeGrado, 2004).

Side chain conformational preferences are less frequently explored in the literature than ‘“‘traditional”’
¢ X plots. Most notably, side chains have been studied with regard to their effect on the protein backbone
and ways to classify their variation (Dahl et al., 2008). Here, we observed some preferences that may group
some amino acids, but these clusters are not as clearly separated as observed for previous, theoretical
inspections (such as Dahl et al. 2008; Carrascoza et al. 2014). For the y; angle, Ser adopts a gauche+
orientation when in o-helix, whereas Thr adopts gauche+ for a-helix and f-sheet, probably due to an
additional -CHj; group in the latter when compared with the former. It is interesting to note that Ser is the
most likely residue to adopt a nonallowed conformation when taking part in a protein structure, whereas
Thr is the fourth more likely to do so (Pal and Chakrabarti, 2002). The y, behavior observed here may be
able to justify some of this propensity. In Val, y, is near-trans for helices and trans for all other secondary
structures. y; in Phe, Tyr, and Trp is trans when in o-helix, a configuration that may be favored due to
differences in hydrophobicity for main chain and side chain in these residues, which leads to repulsion.

Phe and Tyr have y, in +90.0° when in o-helices, whereas all other secondary structures are found
in +90.0° and —90.0°. A similar behavior is observed for His, despite having a broader distribution. For
Trp, a-helix and f-sheet are in +90.0, with this restriction reflecting the increased rigidity of the residue
double-ring when compared with single-ringed side chains. Asp and Asn have similar y, and y; distri-
butions (although Asp distribution being narrower than Asn). Such similarity points to their charges,
despite opposite, being the driving force for side chain orientation, since their molecular length is com-
parable. It is interesting to note that Asn was the sole residue to have a major deviation when comparing
experimental and predicted preferences for ff-sheet formation, something that was explained as a greater
contribution of hydrogen bonding over other properties in this specific residue (Street and Mayo, 1999).
Residue-level Ramachandran maps for Asn and Asp are considered more complex than those for other
amino acids (Hovmoller et al., 2002), and here we also observe that y, and y; behave in a similar manner
in Glu and GIn. y; shows no other clear pattern. The differences in y, between Lys and Arg (the only
residues with this angle) are probably due to the difference in their chemical components. Although in Lys
a C atom takes part in y4, in Arg an N atom takes part in this angle.

The complexity of protein conformational preferences becomes more evident when one considers the multi-
dimensional representation of Ramachandran plots, adding residue preferences and including y angles to the ¢
and y combinations (Fig. 4; Supplementary Material available at http:/sbcb.inf.ufrgs.br/chi). These Ra-
machandran cubes are very different among themselves, pointing to each residue acting as an almost exclusive
piece in the protein puzzle. Such Ramachandran plot variations have also been observed for single-residue or
small peptide density functional theory calculations (Porter and Rose, 2011; Carrascoza et al., 2014). Comparing
molecular dynamics simulations of pentapeptides, large proteins, and PDB structures, it has been shown that many
factors overcome the ““intrinsic” properties of the amino acids. Such factors include packing constraints, sol-
vation, hydrogen bonding potential, and the tendency that amino acids have to form specific structures (Beck et al.,
2008; Porter and Rose, 2011; Penner et al., 2014). With the current exception of selenocysteine and pyrrolysine
(Rother and Krzycki, 2010), which are taxon-specific, the same 20 amino acids are found in all organisms. In fact,
there seems to be a need for even more types of residues, as observable from post-translational modifications.

The amount of naturally occurring amino acids (i.e., amino acids for which there are corresponding
tRNAs) is restrained by the genetic code, despite the fact that some amino acids have up to six codons
coding for them, whereas some have only one, with no detrimental effect for the organism (Vella, 2003).
Davis (1999) and Wong (2005) developed proposals in which the genetic code coevolved with the bio-
chemical pathways needed to synthesize the different amino acids. These propositions place Asp, Asn, Glu,
and Gln, which are residues that behave similarly in the analyses presented here, earlier in the evolution of
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FIG. 4. Multidimensional Ramachandran cube plots. The dark red color represents the most densely occupied regions
of the plot. Similar cubes for all residues in the combinations Phi X Psix Chi; (a)/Chi, (b)/Chi; (c)/Chiy (d) for each
secondary structure type are available at http://sbcb.inf.ufrgs.br/chi

the genetic code, whereas hydrophobic residues (Phe, Tyr, and Phe) would be the last to emerge (Griffiths,
2007). It is tempting to propose that, given the universality of amino acid composition in proteins, evolution
had enough time to tinker with the system as to keep only neutral or beneficial residues in the making of
proteins. Thus, redundant pieces in the puzzle would have been shunned earlier in evolutionary terms, being
supplanted by unique, not totally interchangeable amino acids. This is in accordance with the observation that
the genetic code is almost maximally optimized in its current state (Koonin and Novozhilovn, 2009). In this
context, divergence in the canonical Ramachandran plot for each amino acid in each type of secondary
structure is nothing but expected.

The contribution of residue neighborhood, that is, the residues that come before and after the residue
position of interest, for the amino acid conformation has been extensively demonstrated (Kabat and Wu,
1973; Crasto and Feng, 2001; Hovmdller et al., 2002; Xia and Xie, 2002; Ting et al., 2010; Borguesan
et al., 2015; Hollingsworth et al., 2016). In this work, we show that side chains also have clear preferences
when taking part into different secondary structures, and not only the main chain, as previously observed
(Hovmoller et al., 2002). A similar observation has been made recently (Hintze et al., 2016). Here, we
expand this analysis, establishing a catalog of possible side chain angle preferences and their relation to
secondary structure formation, explicitly depicting the information implicitly available in rotamer libraries.
This information is especially interesting when one considers its application for structural modeling.

The construction of protein models is currently based on two strategies: the template-based modeling and
the template-free modeling (Dorn et al., 2014). The knowledge about amino acid preferences for main
chain and side chain dihedral angles constitute a requisite for proper template-based modeling. In this



context, use of side chain rotamer libraries (Shapovalov and Dunbrack, 2011; Towse et al., 2016; Hintze
et al., 2016) may be greatly improved by taking the data presented here into account. The knowledge on
such preferences, however, is not restricted to template-based modeling. Considering that the PDB may not
harbor all possible templates anytime soon (Brylinski, 2015), the experimentally derived information
presented here may help in selecting the most native-like models among multiple protein decoys generated
by template-free modeling (Mishra et al., 2016). The application of structural models is not restricted to the
acquisition of the models themselves, since these structures greatly favor function activity prediction
pipelines, which can include docking of small ligands and protein protein docking. The proper prediction
of protein backbone and side chain conformations also enhances our ability to design and propose more
adequate protein mutants or synthetic peptides with biotechnological applications, even in large scale,
reducing time and costs of valuable in vitro experimentation (Hakansson, 2002; Nazari-Robati et al., 2013).

S. CONCLUSIONS

The Ramachandran plot remains an utterly valuable tool to depict and understand protein structure. The
current work improves upon previous observations, confirming in detail that residues behave very differ-
ently when taking part in diverse types of secondary structures. This variation is especially true for side
chain behavior. Further developments in protein modeling and engineering must take into account the
residue-level specificity of torsional angles to reliably depict natural proteins.

The observed protagonist, that is, the particularities of each amino acid residue when participating in
different secondary structures, can be used to answer some important questions about protein dynamics. In
protein structure prediction, this information can be employed, for example, to reduce the protein con-
formational search space and improve the robustness of prediction methods. In the field of computational
protein design, this knowledge may be used to guide the design process, by offering reliable information on
the statistical distribution of the amino acid residues, the natural preferences of amino acids to participate in
segments of secondary structures, etc. Prediction of local structural properties of a protein molecule should
be easier when computational protein design methods consider structural template information.
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