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Abstract

The alignment among three or more nucleotides/amino-acids sequences
at the same time is known as Multiple Sequence Alignment (MSA), an
NP-hard optimization problem. The time complexity of finding an op-
timal alignment raises exponentially when the number of sequences to
align increases. In this work, we deal with a multiobjective version of the
MSA problem where the goal is to simultaneously optimize the accuracy
and conservation of the alignment. A parallel version of the Hybrid Mul-
tiobjective Memetic Metaheuristics for Multiple Sequence Alignment is
proposed. In order to evaluate the parallel performance of our proposal,
we have selected a pull of datasets with different number of sequences
(up to 1000 sequences) and study its parallel performance against other
well-known parallel metaheuristics published in the literature, such as
MSAProbs, T-Coffee, Clustal Ω, and MAFFT. The comparative study
reveals that our parallel aligner is around 25 times faster than the sequen-
tial version with 32 cores, obtaining a parallel efficiency around 80%.

1 Introduction

Multiple Sequence Alignment (MSA) is the process of aligning three or more
nucleotides/amino-acids sequences at the same time [1]. The main aim of MSA
is to discover common ancestors among biological sequences. The discovery of
biological relationship among several sequences is vital for inferring phylogenetic
relationships among groups of organisms [4] [7]. Another important goal of MSA
is the determination of biological significance among the given sequences [14],
therefore, we prioritize the conservation within regions throughout the alignment
process. Finally, a proper alignment helps us to detect which regions of a gene
are susceptible to mutation and which can have one residue replaced by another
without changing the function.

The MSA problem is an NP-complete optimization problem; therefore, dif-
ferent heuristic approaches have been developed for solving this problem in an
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efficient amount of time. In the literature, we find three main groups: progres-
sive methods, consistency-based methods, and iterative refinement methods.

The most representative progressive methods are: Clustal W [20], Clustal Ω
[19], PRANK [13], and Kalign [11]. These methods start calculating a distance
matrix from every pair of the given sequences; then, a guide tree is built by
using any hierarchical clustering algorithm, such as Unweighted Pair Group
Method with Arithmetic Mean (UPGMA); finally, the alignment is obtained
by following the guide tree. The main disadvantage of progressive methods
relies on the chance of including an inaccurate gap at the beginning that will
be propagated to final alignment.

The second group includes those methods based on consistency. These ap-
proaches construct a database of local and global alignments between each pair
of sequences that helps to build an accurate multiple alignment among all the
given sequences. Among the most important consistency-based tools are: Tree-
based Consistency Objective Function For alignment Evaluation (T-Coffee) [15],
PROBabilistic CONSistency-based multiple sequence alignment (ProbCons) [3],
and MSAProbs [12].

Finally, we find the iterative refinement tools. The methodology followed by
these tools starts by performing a progressive alignment and then, they iterate
with the aim of correcting any possible inaccurate gap inserted in the progressive
construction stage. The refinement process is repeated until no further improve-
ments are found or until a predefined number of iterations is reached. Among
the most widely-used iterative refinement methods, we find: MUltiple Sequence
Comparison by Log-Expectation (MUSCLE) [5] and Multiple Alignment using
Fast Fourier Transform (MAFFT) [10].

In this paper, we propose the use of Multiobjective Optimization and Evo-
lutionary Computation in order to optimize simultaneously quality and con-
sistency of the final alignment. We have already applied these techniques to
other optimization problems in the Bioinformatics [8] and Telecommunication
fields [17], [16]. A memetic metaheuristic has been chosen for this purpose, the
Shuffled Frog-Leaping optimization Algorithm (SFLA) [6], which is based on the
evolution of memes carried by the interactive individuals, and a global exchange
of information among themselves. The traditional SFLA has been modified for
optimizing multiple objective functions simultaneously and hybridized with a
local search procedure. We refer to it as a Hybrid Multiobjective Memetic
Metaheuristic for the Multiple Sequence Alignment (H4MSA).

Given a set of k non-aligned sequences where the length of the largest se-
quence is L, the time and space complexity for solving the MSA problem is
O(k2kLk) [22]; therefore, to find an optimal alignment of a large number of se-
quences (∼1000 sequences) becomes computationally intractable. Some of the
aforementioned tools allow parallelism: Clustal Ω, T-Coffee, MSAProbs, and
MAFFT; however, it is still a challenge to develop accurate methods that pro-
vide higher parallel efficiencies for aligning very large sets of sequences. The
main contribution of this paper is an efficient parallel version of H4MSA for
aligning very large sets of sequences accurately.

The rest of the paper is organized as follows. Section 2 formulates the
Multiple Sequence Alignment problem. A detailed description of the parallel
H4MSA algorithm is presented in Section 3. Section 4 is devoted to compare
the alignment accuracy and parallel efficiency of H4MSA with other parallel
approaches published in the literature. Finally, the conclusions and future works
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are presented in Section 5.

2 Multiple Sequence Alignment Problem

Given a set of sequences S: {s1, s2, . . . sk} of lengths |s1|, |s2|, . . ., |sk| defined
over an alphabet Σ, such as Σnucleotides={A, C, G, T } or Σaminoacids={A, C,
D, E, F , G, H , I, K, L, M , N , P , Q, R, S, T , V , W , Y }.

A multiple sequence alignment of S is defined as S′: {s′
1
, s′

2
, . . ., s′k}, where

the length of the k sequences is exactly the same. Note that, S′ is defined over
the same alphabet as S (Σ) with an additional gap symbol (−); so, S′ is defined
over the alphabet Σ ∪ {−}.

In this way, a multiple alignment is obtained by adding gaps to the sequences
of S so that their lengths become the same. It can be seen as a matrix represen-
tation where the rows are sequences and the columns represent aligned symbols.
Each column of an alignment must contain at least one symbol of Σ, in other
words, a column with all gaps is not allowed. An example of multiple sequence
alignment may be:

• Unaligned Sequences (input):

s1: IHNFPICPI (9)

s2: KPRFVNSDIHNSPGIFPICPI (21)

s3: KPRFVNSDIHNVNRYFPGICPI (22)

s4: KPRFVNSDIHNFPGICPI (18)

• Aligned Sequences (output):

s
′
1: --------IHN----FP-I---CPI (25)

s
′
2: KPRFVNSDIHN----SPGIFPICPI (25)

s
′
3: KPRFVNSDIHNVNRYFPGI---CPI (25)

s
′
4: KPRFVNSDIHN----FPGI---CPI (25)

To find an accurate alignment, we propose the use of multiobjective opti-
mization. Therefore, we search the best solution (alignment) that simultane-
ously maximizes the weighted sum-of-pairs function with affine gap penalties
(WSP, f1) [9] and the number of Totally Conserved (f2) columns score [5], [21].

On the one hand, the weighted sum of pairs with affine gaps (WSP, f1) needs
to maximize the following equation:

WSP (S′) =

AL
∑

l=1

SP (l)−

k
∑

i=1

AGP (s′i) (1)

In equation 1, AL is the alignment length, SP (l) is the sum-of-pairs score
of the lth column, which is defined as:

SP (l) =

k−1
∑

i=1

k
∑

j=i

Wi,j × δ(s′i,l, s
′

j,l) (2)
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Note that in equation 2, δ is the substitution matrix used, either Pointed
Accepted Mutation (PAM) or Block Substitution Matrix (BLOSUM); and Wi,j

refers to the sequence weight between sequence si and sj . To compute the
weight between two sequences we use the following equation:

Wi,j = 1−
LD(si, sj)

max(|si|, |sj |)
(3)

The Levenshtein Distance (LD) between two non-aligned sequences is the
minimum number of insertions, deletions or substitutions required to change
one sequence into the other.

In equation 1, AGP (s′i) is the affine gap penalty score of sequence s′i:

AGP (s′i) = (go ×#gaps) + (ge ×#spaces) (4)

where go is the weight to open the gap and ge is the weight to extend the gap
with one more space. In this work, we have used the BLOSUM62 substitution
matrix, go=6, and ge=0.85.

On the other hand, the number of Totally Conserved (f2) columns score
refers to the number of columns that are completely aligned with exactly the
same compound. This objective function needs to be maximized to ensure more
conserved regions within the alignment.

The maximum number of columns (alignment length) was limited to:

maxLength =

⌈

3

2
∗max(|s1|, |s2|, . . . , |sk|)

⌉

(5)

The choice of 1.5 as a scaling factor allowed the alignment to be 50% longer
than the longest sequence in the set. This choice was based on the observation
that solutions to common alignment problems rarely contained more than 50%
gaps.

3 Parallel H4MSA

The Shuffled Frog-Leaping optimization Algorithm (SFLA) is a memetic meta-
heuristic developed by Eusuff and Lansey [6]. The search procedure begins with
a random population of frogs (solutions) in a swamp.

The population of frogs is divided into isolated communities (memeplexes)
that will evolve independently, allowing different directions within the search
space. At each community, the frogs evolve by sharing their ideas with their
neighbour frogs. In this way, those frogs with better ideas will share more ideas
than those frogs with poor ideas.

In addition, the best frogs of each community will share their ideas with other
frogs in different communities. After a number of iterations, the communities
of frogs are forced to mix and new communities are formed through a shuffling
process in order to accelerate the convergence of the algorithm.

The chromosome representation of a solution in H4MSA is different from
the traditional binary representation (’1’ indicates gap symbol and ’0’ indicates
a residue). For example, the binary representation of the alignment shown in
Section 2 will be:

s
′
1: 1111111100011110010111000
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s
′
2: 0000000000011110000000000

s
′
3: 0000000000000000000111000

s
′
4: 0000000000011110000111000

In H4MSA, a solution only stores the number of groups of gaps followed by
the information of each group: position of the first gap and number of successive
gaps (negative value). The chromosome representation of the example alignment
will be:

s′
1
: 4, (1,-7), (12,-3), (18), (20,-2)

s′2: 1, (12,-3)

s′
3
: 1, (20,-2)

s′4: 2, (12,-3), (20,-2)

Given a set of k unaligned sequences (S), m memeplexes (number of com-
munities) with n frogs per memeplex, a fixed number of evolutionary steps (N),
and a stopping criterion, the procedure of H4MSA is:

1. Generate and evaluate m× n random alignments/frogs.

2. Sort the m× n frogs by alignment quality (f1) and conservation (f2). In
this work, we have used the Fast Non-Dominated Sorting procedure [2].

3. Divide the m × n frogs into m memeplexes, such the first best frog goes
to the first memeplex (Y1), the second best frog to the second memeplex
(Y2), the mth best frog to the mth memeplex (Ym), the m+ 1th best frog
to Y1, and so on.

4. For each memeplex (Yi)

(a) Select the local worst (Xlw) and local best frog (Xlb) of the memeplex.

(b) Xlw learns from Xlb, that is to say, Xlw replaces a portion of its
alignment with information obtained from Xlb, generating a new frog
(Xnew). For example, we select the following portion of the local best
alignment:

Xlb:

s
′
1: ---------IHN----FP-I--- CPI (26)

s
′
2: KPRFVN-SDIHN----SPGIFPI CPI (26)

s
′
3: KPRFV-NSDIHNVNRYFPGI--- CPI (26)

s
′
4: KPRFV-NSDIHN----FPGI--- CPI (26)

Xlw :

s
′
1: ----IHNFPI------- CPI-------- (28)

s
′
2: K--PRFVNSDI-HNS---PGI-FPI CPI (28)

s
′
3: KP-RFVNSD--IHNVNRYFPGI--- CPI (28)

s
′
4: KP-RFVNSD--IHN---FPGI- CPI--- (28)
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and the resultant new frog (Xnew) is constructed by taking into ac-
count both portions, filling with gaps until the length of all the se-
quences is exactly the same:

Xnew :

s
′
4: ----IHNFPI------- -------- CPI (28)

s
′
1: K--PRFVNSDI-HNS---PGI-FPI CPI (28)

s
′
3: KP-RFVNSD--IHNVNRYFPGI--- CPI (28)

s
′
2: KP-RFVNSD--IHN---FPGI- --- CPI (28)

(c) Apply the following mutation process to Xnew:

i. Move a block : randomly select a block of gaps/compounds and
move it one position towards the left or right.

99K (right)

s
′
1: ---- IHNFPI---------------CPI (28)

s
′
2: K -- PRFVNSDI-HNS---PGI-FPICPI (28)

s
′
3: KP - RFVNSD--IHNVNRYFPGI---CPI (28)

s
′
4: KP - RFVNSD--IHN---FPGI----CPI (28)

H

s
′
1: I ---- HNFPI---------------CPI (28)

s
′
2: KP -- RFVNSDI-HNS---PGI-FPICPI (28)

s
′
3: KPR - FVNSD--IHNVNRYFPGI---CPI (28)

s
′
4: KPR - FVNSD--IHN---FPGI----CPI (28)

ii. Merge two groups : randomly select one of the sequences, choose
a group of gaps/compounds, and merge it with the closest group.

s
′
1: I- -- -HNFPI- - -------------CPI (28)

s
′
2: KP -- RFVNSDI - HNS---PGI-FPICPI (28)L99

s
′
3: KP R- FVNSD-- I HNVNRYFPGI---CPI (28)

s
′
4: KP R- FVNSD-- I HN---FPGI----CPI (28)

H

s
′
1: I----HNFP I-- -------------CPI (28)

s
′
2: KPRFVNSDI --- HNS---PGI-FPICPI (28)L99

s
′
3: KPR-FVNSD --I HNVNRYFPGI---CPI (28)

s
′
4: KPR-FVNSD --I HN---FPGI----CPI (28)

iii. Divide a group: randomly select one of the sequences, choose a
group of gaps/compounds, and divided it into two new groups
of approximately the same size.

s
′
1: I----HNFP I- --------------CPI (28)

s
′
2: KPRFVNSDI -- -HNS---PGI-FPICPI (28)

s
′
3: KPR-FVNSD -- IHNVNRYFPGI---CPI (28)L99

s
′
4: KPR-FVNSD -- IHN---FPGI----CPI (28)

H

s
′
1: I----HNF P I - --------------CPI (28)
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s
′
2: KPRFVNSD I - - -HNS---PGI-FPICPI (28)

s
′
3: KPR-FVNS - D - IHNVNRYFPGI---CPI (28)L99

s
′
4: KPR-FVNS D - - IHN---FPGI----CPI (28)

iv. Compact Alignment : delete those columns with all gaps.

s
′
4: I----HNFPI - --------------CPI (28)

s
′
1: KPRFVNSDI- - -HNS---PGI-FPICPI (28)

s
′
3: KPR-FVNS-D - IHNVNRYFPGI---CPI (28)

s
′
2: KPR-FVNSD- - IHN---FPGI----CPI (28)

H

s
′
4: I----HNFPI--------------CPI (27)

s
′
1: KPRFVNSDI--HNS---PGI-FPICPI (27)

s
′
3: KPR-FVNS-DIHNVNRYFPGI---CPI (27)

s
′
2: KPR-FVNSD-IHN---FPGI----CPI (27)

(d) Evaluate Xnew, if Xnew is better than Xlw, then go to Step 4(j).

(e) Select the global best frog (Xgb).

(f) Xlw learns from Xgb, generating a new frog (Xnew).

(g) Apply the mutation process to Xnew.

(h) Evaluate Xnew, if Xnew is better than Xlw, then go to Step 4(j).

(i) Apply a Local Search to Xlw and evaluate the new alignment pro-
duced. In our local search procedure, we use the fast and accurate
Kalign2 [11] with the aim of re-aligning a portion of the input align-
ment. In the following, we present a step-by-step procedure of the
local search:

i. Compute a random position of the alignment and a random size
in the range [5-25%] of the alignment length:

s
′
1: I----H NFPI-- ------------CPI (27)

s
′
2: KPRFVN SDI--H NS---PGI-FPICPI (27)

s
′
3: KPR-FV NS-DIH NVNRYFPGI---CPI (27)

s
′
4: KPR-FV NSD-IH N---FPGI----CPI (27)

ii. Remove all gaps in the selected portion:

Portion s
′
1: NFPI-- NFPI

Portion s
′
2: SDI--H ◮ SDIH

Portion s
′
3: NS-DIH NSDIH

Portion s
′
4: NSD-IH NSDIH

iii. Re-align the portion with Kalign2 [11] method.

Input: Output:

NFPI NFPI-

SDIH ◮ Kalign2 ◮ -SDIH
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NSDIH NSDIH

NSDIH NSDIH

iv. The new portion re-aligned by Kalign2 replaces the old portion:

s
′
1: I----H NFPI- ------------CPI (26)

s
′
2: KPRFVN -SDIH NS---PGI-FPICPI (26)

s
′
3: KPR-FV NSDIH NVNRYFPGI---CPI (26)

s
′
4: KPR-FV NSDIH N---FPGI----CPI (26)

(j) Replace Xlw by Xnew and update the set of non-dominated solutions
with Xnew.

(k) If the maximum number of evolutionary steps (N) has not been
reached, then go to Step 4(a). Otherwise, continue with the next
memeplex.

5. Merge the frogs from the m memeplexes.

6. If the stopping criterion is satisfied, output the set of non-dominated so-
lutions; otherwise, go to Step 2.

As we can see, the output of H4MSA is a set of non-dominated solutions,
that is, a set of solutions that represents a trade-off between alignment quality
(f1) and consistency (f2). A detailed description of the H4MSA algorithms
appears in [18].

In this work, we propose a parallel scheme of H4MSA for a shared-memory
architecture. After studying the computational requirements of H4MSA, we
can see that a large amount of time is spent in the initial generation of the
population and in the evolving process of each memeplex; therefore, we focus
on parallelizing these tasks.

On the one hand, in the generation of the initial population (Step 1), the
m × n random alignments are divided among the available threads. So, if the
number of threads is equal to M , each thread will be in charge of generating
and evaluating m×n

M
random alignments (frogs). In Figure 1, we can see an

illustrative comparison between the sequential and parallel procedure.
The second and third steps of H4MSA are carried out only by one thread,

because the sorting and division process consumes insignificant runtime in com-
parison with other tasks.

In the fourth step, H4MSA performs m independent evolutionary processes
of N iterations. As we can see, the tasks carried out within each iteration of the
evolutionary process are computationally expensive: learning process, mutation
process, and local search procedure. This loop has been parallelized, but we
have defined a critical section when the Xlw is replaced by the Xnew and the
set of non-dominated solutions is updated (Step 4(j)).

In the evolving process loop, the workload of each iteration may be differ-
ent for each thread; therefore, the distribution of iterations is not static, that
is, each thread is in charge of performing the consecutive N

M
iterations of the

evolutionary process, assuming M available threads. On the contrary, in this
approach, we use a dynamic distribution scheduling of the N iterations among
the threads during runtime.
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(a) Sequential

(b) Parallel

Figure 1: Sequential vs. Parallel generation of the initial population in H4MSA.

Since H4MSA has been implemented in OpenMP, we have parallelized the
evolving of each memeplex by using the dynamic schedule. This schedule uses
an internal work queue with the loop iterations to each thread. When a thread is
finished, it retrieves the next loop iteration from the top of the work queue. The
number of iterations performed by each thread is decided during the execution
of the algorithm; so, threads may do different number of iterations. In Figure 2,
we show the advantages of using a dynamic distribution of the iterations among
threads when the workload of iterations is different. As we can see, 51.51% of
efficiency is achieved with an static schedule; however, the efficiency increases
up to 94.45% when the distribution of the iterations is dynamic.

4 Experimental Results

In this section we present a comparative study between our parallel approach
(H4MSA) and other multi-threaded MSA approaches published in the literature.

We have compared the multithreaded version of H4MSA with those multiple
sequence alignment approaches that allow being run in multi-core environments:

• MSAProbs (version 0.9.7) [12]. It is a parallel and accurate approach for
MSA. It allows the use of the -num_threads flag to specify the number of
threads.

• T-Coffee (version 11.00.8) [15]. It is a widely used MSA approach in the
field. The steps of T-Coffee are multi-threaded by using the -multi_core
flag, specifying the number of cores to use by the -n_core flag.

• Clustal Ω (version 1.2.1) [19]. It is the latest addition to the Clustal
family. It offers a significant increase in scalability over previous versions,
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(a) Sequential

(b) Parallel (static scheduling)

(c) Parallel (dynamic scheduling)

Figure 2: Static vs. dynamic distribution of iterations.

allowing a large number of sequences to be aligned. It also make use of
multiple processors by using the --threads flag.

• MAFFT (version 7.215) [10]. It is a method for rapid multiple sequence
alignment based on fast Fourier transform. From version 6.8, MAFFT
switches to the multi-core version by simply specifying the number of
threads with the --thread flag.

The aforementioned approaches were run by using the default parameter
configuration.

In H4MSA we found three main parameters: number of memeplexes (m),
number of frogs at each memeplex (n), and the number of evolutionary steps
(N). In this comparative study, we have used: m=4 (4 memeplexes), n=32 (32
frogs per memeplex), and N=10 (10 evolutionary steps). The stopping criterion
is based on the number of fitness evaluations: 50000 evaluations.

The datasets used in this experiments were taken from the HOMFAM bench-
mark suite [19]. As we can see in Table 1, we have chosen datasets with different
number of sequences, from 88 sequences to 1056 sequences, in order to evaluate
the performance of the approaches when the number of sequences increases.

In order to extract useful conclusions with a certain level of statistical con-
fidence, 30 independent runs were performed for each approach involved, and
the average runtime was used. The architecture selected for conducting these
experiments was a 2-processor AMD OpteronTM Processor 6376 of 16 cores at
2.3GHz and 12MB Cache running Scientific Linux 6.1.
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Table 1: Selected HOMFAM datasets

Dataset #Seqs. Max. Length Min. Length

seatoxin 88 50 34
hip 162 73 54
cyt3 379 127 52
rnasemam 492 140 62
TNF 551 154 33
profilin 682 161 32
ricin 740 241 44
trfl 830 367 18
ltn 1056 267 24

Table 2: Average conservation score in 30 independent runs

Dataset H4MSA MSAProbs T-Coffee Clustal Ω MAFFT

seatoxin 704 688 686 681 689
hip 605 590 595 592 594
cyt3 485 347 357 367 389
rnasemam 572 547 550 546 550
TNF 527 462 466 463 467
profilin 604 543 554 541 551
ricin 576 472 493 477 485
trfl 588 537 542 544 546
ltn 584 485 501 499 501

For measuring the performance of the parallel approaches, we have used
two well-known metrics: speedup and efficiency. Amdahl’s Law states that the
performance improvement to be gained from using some faster mode of execution
is limited by the fraction of the time the faster mode can be used. Therefore,
Amdahl’s Law defines the speedup that can be gained by using a particular
feature. In a more formal way, let TM be the runtime for an algorithm using
M threads and T1 the runtime of the sequential version, the speedup reports
us how much faster an algorithm will run as opposed to the sequential version.
The efficiency is computed dividing the obtained speedup with M threads by
the number of threads used (M).

In order to determine the accuracy of each MSA method, we have evaluated
the level of conservation with the BLOSUM62 substitution matrix. Therefore,
the alignment obtained by each approach for each data set was scored by using
the +evaluate blosum62mt action provided by T-Coffee. Note that, a higher
score implies better alignment accuracy.

On the one hand, in Table 2, we present the conservation score obtained by
H4MSA, MSAProbs, T-Coffee, Clustal Ω, and MAFFT. In Figure 3, we present
a visual comparison among the five approaches in terms of conservation score.
As we can see in Figure 3, the alignment accuracies obtained by H4MSA in all
the datasets tested are better than the well-known approaches. In addition, if
we focus on the largest dataset (ltn, 1056 sequences), we observe an average
conservation improvement around 14.98%. Therefore, we can conclude that
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Table 3: Runtime spent by the sequential version of each aligner (in seconds)

#Seqs. H4MSA MSAProbs T-Coffee Clustal Ω MAFFT

seatoxin 88 11 5.3 16 0.2 0.7
hip 162 45 55 182 0.7 4.1
cyt3 379 445 1385 4470 6.3 221
rnasemam 492 566 2095 5460 4.5 104
TNF 551 741 4654 10111 7.5 144
profilin 682 1165 6574 22007 9.4 432
ricin 740 2293 19522 59963 20 766
trfl 830 4146 24713 50496 32 1297
ltn 1056 5787 45554 140579 41 3982

Table 4: Speedup and Efficiency (%) obtained by the multi-threaded MSA
approaches.

H4MSA MSAProbs T-Coffee Clustal Ω MAFFT

#Cores S E S E S E S E S E

2 1.96 98.21 1.91 95.46 1.65 82.26 1.10 54.79 1.61 80.44
4 3.71 92.82 3.55 88.66 2.42 60.52 1.18 29.49 2.53 63.32
8 6.87 85.88 6.43 80.36 3.09 38.59 1.23 15.39 3.58 44.76
16 12.82 80.13 10.92 68.28 3.67 22.96 1.29 8.04 4.03 25.18
32 24.98 78.12 17.38 54.33 4.58 14.30 1.32 4.14 4.30 13.42

S: Average speedup in the nine datasets of HOMFAM.
E: Average efficiency (%) in the nine datasets of HOMFAM.
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(a) seatoxin (88) (b) hip (162) (c) cyt3 (379)

(d) rnasemam (492) (e) TNF (551) (f) profilin (682)

(g) ricin (740) (h) trfl (830) (i) ltn (1056)

Figure 3: Comparison among H4MSA, MSAProbs, T-Coffee, Clustal Ω, and
MAFFT in terms of average Conservation Score. Note that, the number of
sequences appears between brackets for each dataset.

H4MSA is able to obtain accurate alignments.

On the other hand, we compare the parallel performance of the approaches
under study. In Table 3 and Table 4, we present the sequential runtime of
each method and the parallel speedup and efficiency obtained with different
number of cores (2, 4, 8, 16, and 32 cores); respectively. As we can see, the
parallel performance of Clustal Ω, T-Coffee, and MAFFT is very poor when the
number of cores increases. We can also observe that MSAProbs presents a nice
parallel performance with 2, 4, and 8 cores, but its efficiency decreases with 16
and 32 cores. The parallel efficiency of H4MSA remains over 75% in all cases.
In Figure 4 and 5, we present a comparison among the five parallel approaches
in terms of runtime, speedup, and efficiency.

In Figure 4 and 5, if we compare the sequential runtime of each approach, we
can see that the fastest algorithms are (in order): Clustal Ω, MAFFT, H4MSA,
MSAProbs, and T-Coffee. However, thanks to the parallel efficiency of H4MSA,
it is able to be the second fastest approach when the number of cores is set to
32.
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(a) H4MSA

(b) MSAProbs

(c) T-Coffee

Figure 4: Runtime, average speedup, and average efficiency (%) obtained by
each MSA tool.
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(a) Clustal Ω

(b) MAFFT

Figure 5: Runtime, average speedup, and average efficiency (%) obtained by
each MSA tool.
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All in all, we can conclude that H4MSA is not only an accurate alignment
method but also its parallel performance allows it to handle datasets with hun-
dreds of sequences in a reasonable amount of time.

5 Conclusions and Future Works

A parallelization of the Hybrid Multiobjective Memetic Metaheuristic for Mul-
tiple Sequence Alignment (H4MSA) is presented in this work. H4MSA is based
on the Shuffled Frog-Leaping Algorithm, which provides the benefits of informa-
tion mixture of the ’shuffled complex evolution’ technique. The parallel version
of H4MSA has been compared with the parallel approaches of MSAProbs, T-
Coffee, Clustal Ω, and MAFFT when solving datasets with different number
of sequences in the range [88–1056]. We can conclude that the alignment ac-
curacy and parallel performance of H4MSA is significantly better than other
approaches published in the literature.

As future work, we intend to develop a parallel version of H4MSA for shared-
and distributed-memory architectures, in order to solve larger datasets.
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Álvaro Rubio-Largo is supported by the post-doctoral fellowship SFRH/BPD/100872/2014
granted by Fundação para a Ciência e a Tecnologia (FCT), Portugal.

References

[1] D. J. Bacon and W. F. Anderson. Multiple sequence alignment. J. Mol.
Biol., 191:153–161, 1986.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast Elitist Multi-
Objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolution-
ary Computation, 6(2):182–197, 2000.

[3] C. B. Do, M. S. Mahabhashyam, M. Brudno, and S. Batzoglou. ProbCons:
Probabilistic consistency-based multiple sequence alignment. Genome Re-
search, 15(2):330–340, 2005.

[4] R. Doolittle. Similar amino acid sequences: chance or common ancestry?
Science, 214:149–159, 1981.

[5] R. C. Edgar. MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Research, 32:1792–1797, 2004.

[6] M. Eusuff, K. Lansey, and F. Pasha. Shuffled frog-leaping algorithm: a
memetic meta-heuristic for discrete optimization. Engineering Optimiza-
tion, 38(2):129–154, 2006.

[7] D. Feng and R. Doolittle. Progressive sequence alignment as a prerequisite
to correct phylogenetic trees. J. Mol. Evolut., 25:351–360, 1987.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 1, 2017. ; https://doi.org/10.1101/103101doi: bioRxiv preprint 

https://doi.org/10.1101/103101
http://creativecommons.org/licenses/by-nc-nd/4.0/


[8] D. L. Gonzalez-Alvarez, M. A. Vega-Rodriguez, and A. Rubio-Largo. Find-
ing patterns in protein sequences by using a hybrid multiobjective teaching
learning based optimization algorithm. IEEE/ACM Trans. Comput. Biol.
Bioinformatics, 12(3):656–666, May 2015.

[9] Sandeep K. Gupta, John D. Kececioglu, and Alejandro A. Schaffer. Improv-
ing the practical space and time efficiency of the shortest-paths approach
to sum-of-pairs multiple sequence alignment. Journal of Computational
Biology, 2(3):459–472, 1995.

[10] K. Katoh, K. Misawa, K. Kuma, and T. Miyata. MAFFT: a novel method
for rapid multiple sequence alignment based on fast fourier transform. Nu-
cleic Acids Research, 30(14):3059–3066, 2002.

[11] T. Lassmann, O. Frings, and E. L. L. Sonnhammer. Kalign2: high-
performance multiple alignment of protein and nucleotide sequences al-
lowing external features. Nucleic Acids Research, 37(3):858–865, 2009.

[12] Yongchao Liu, Bertil Schmidt, and Douglas L. Maskell. MSAProbs: multi-
ple sequence alignment based on pair hidden Markov models and partition
function posterior probabilities. Bioinformatics, 26(16):1958–1964, 2010.

[13] A. Loytynoja and N. Goldman. An algorithm for progressive multiple align-
ment of sequences with insertions. Proceedings of the National Academy of
Sciences of the United States of America, 102(30):10557–10562, 2005.

[14] C. Notredame. Recent progresses in multiple sequence alignment: a survey.
Pharmacogenomics, 3(1):131–144, 2002.

[15] C. Notredame, D. G. Higgins, and J. Heringa. T-Coffee: a novel method
for fast and accurate multiple sequence alignment. Journal of Molecular
Biology, 302(1):205 – 217, 2000.

[16] A Rubio-Largo, M. A. Vega-Rodŕıguez, J. A. Gómez-Pulido, and J. M.
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