
A Power-performance Perspective to Multi-objective EEG
Feature Selection on Heterogeneous Parallel Platforms

JUAN JOSÉ ESCOBAR*, JULIO ORTEGA, ANTONIO FRANCISCO DÍAZ, JESÚS

GONZÁLEZ, and MIGUEL DAMAS

Department of Computer Architecture and Technology, CITIC, University of Granada, Spain

ABSTRACT

This paper provides an insight on the power-performance issues related with the CPU-GPU parallel imple-

mentations of problems that frequently appear in the context of applications on bioinformatics and biomedical

engineering. More specifically, we analyse the power-performance behaviour of an evolutionary parallel multi-

objective electroencephalogram (EEG) feature selection procedure that evolves subpopulations of solutions with

time-demanding fitness evaluation. The procedure has been implemented in OpenMP to dynamically distribute

either subpopulations or individuals among devices, and uses OpenCL to evaluate the fitness of the individuals.

The development of parallel codes usually implies to maximize the code efficiency, thus optimizing the achieved

speedups. To follow the same trend, this paper extends and provides a more complete analysis of our previous

works about the power-performance characteristics in heterogeneous CPU-GPU platforms considering different

operation frequencies and evolutionary parameters such as distribution of individuals, etc. This way, different

experimental configurations of the proposed procedure have been evaluated and compared with respect to a

master-worker approach, not only in runtime but also considering energy consumption. The experimental results

show that lower operating frequencies does not necessarily mean lower energy consumptions since energy is the

product of power and time. Thus, we have observed that parallel processing not only reduces the runtime but

Address correspondence to:

Mr. Juan José Escobar

Department of Computer Architecture and Technology

CITIC, University of Granada

Calle Periodista Rafael Gómez Montero, 2

18014, Granada

Spain

E-mail: jjescobar@ugr.es

1

also the energy consumed by the application despite a higher instantaneous power. Particularly, the workload

distribution among both CPU and GPU cores provides the best runtime and very low energy consumption

compared with the values achieved by the same alternatives executed by only CPU threads.

Keywords: Heterogeneous Parallelism, Energy-aware Computing, Dynamic Scheduling, EEG Classification,

Multi-objective Feature Selection, Subpopulations.

1. INTRODUCTION

EEG classification problems appear in many neurological and bioengineering applications such as diagnosis

of sleep disorders, prediction of epileptic seizures, or Brain Computer Interfaces (BCI) tasks (Rupp et al., 2014).

EEG classification involves some hard issues related with the unstable behaviour and non-linearity of the signals,

the low signal to noise rate, and the high number of features required to represent the information included in

the evolution of the signals with respect to time. Moreover, as the experimental work required to register EEG

signals (or EEG patterns) for different subjects and situations is quite time consuming, the number of EEG

patterns available to train the classifiers is much smaller than the number of features used to describe each EEG.

Thus, a so-called curse-of-dimensionality problem (Duin, 2000) arises, unless a feature selection procedure to

reduce the dimensionality of the EEG patterns is accomplished.

Nevertheless, finding the optimum set of features has proven to be a Non-deterministic Polynomial-time

hard (NP-hard) problem, and thus metaheuristics such as simulated annealing, genetic algorithms, ant colony

optimization, and particle swarm optimization constitute suitable approaches to tackle the problem (Marinaki

and Marinakis, 2014). Thus, feature selection can take advantage of evolutionary algorithms. Although these

algorithms could require a lot of runtime in high-dimensional problems, as they do not use explicit information

about the problem to be solved, they can be accelerated by present parallel computer architectures in several ways.

In our previous papers (Escobar et al., 2017a, 2016a,b, 2017c), we described the benefits of CPUs and GPU cores

to accelerate EEG classification which, as many other bioinformatics applications, requires solving problems with

different parallelism types. More specifically, in (Escobar et al., 2017a), we accelerated the EEG feature selection

problem by a subpopulation-based evolutionary algorithm to take advantage of parallel architectures involving

multicore CPUs and GPUs. Nevertheless, besides speed, energy consumption has become an important issue to

evaluate the program efficiency, not only due to economic and environmental reasons, but also as a challenge for

the High-Performance Computing (HPC) community to allow efficient use of future Exascale systems, and as a

requirement for handheld and wearable devices.

Although the relevance of energy consumption in the context of evolutionary algorithms has been pointed out

2

in (Cotta et al., 2015), and even taking into account that decreasing energy consumption should be considered at

par with decreasing the running time, to the best of our knowledge, there is not any paper on parallel evolutionary

algorithms that provides a detailed efficiency analysis from the power-performance approach. (Fernández-de-Vega

et al., 2016) analyses the energy consumption in different platforms of a sequential evolutionary procedure, but

deals more with the energy efficiency of different platforms than with the comparison of the energy consumption

of different algorithms in the same heterogeneous platform.

In this paper we provide a detailed analysis of different parallel implementations of our subpopulation-based

evolutionary algorithm for EEG feature selection, not only with respect to the quality of the obtained solutions

and the speedup achieved by the alternative configurations of parallel platforms but also considering their energy

consumption characteristics. This way, with respect to our previous paper (Escobar et al., 2017a), we analyze

the quality of the solutions achieved (hypervolume indicator), the speedup, and the energy consumed by our

parallel codes in a more complete set of experiments. These experiments correspond to different operating

frequencies (1.2 and 2.1 GHz, and the alternative used by the runtime system), subpopulations and individuals

per subpopulations, number of migrations, and platforms (heterogenous platforms including both CPU and

GPU cores, or constituted by either CPU or GPU cores). We have also shown the evolution with time of the

instantaneous power dissipated by different alternatives on operating frequency and subpopulations.

After this introduction, Section 2 briefly describes the parallel evolutionary multi-objective algorithm alter-

natives for feature selection in heterogeneous CPU-GPU architectures along with some details for their imple-

mentations. Then, Section 3 shows the related works in the literature, Section 4 describes and analyses the

experimental setup and results, and finally, Section 5 summarises the conclusions.

2. A SUBPOPULATION-BASED MULTI-OBJECTIVE FEATURE SELECTION ON

CPU-GPU PLATFORMS

A multi-objective evolutionary procedure, in our case the well-known NSGA-II algorithm (Deb et al., 2000),

evolves subpopulations of individuals that codify different feature selections. Besides the mutation and crossover

operators applied to some selected parent individuals, NSGA-II also includes the so-called Non-domination

Sorting to rank the individuals into different levels of non-dominance: the first level (Pareto front) includes the

individuals non-dominated by any other individual.

Given a feature selection (an individual in the subpopulation), the components of the NP patterns included

in the training dataset, DS, are determined and correspond to the selected features among the whole set of NF

features. In our approach, the fitness of each feature selection is obtained by applying the K-means algorithm

3

to the NP patterns Pi = (p1i , ..., p
NF
i)(i = 1, ..., NP) in order to determine the centroids Kt(j)(j = 1, ..,W) of

the W possible clusters (W = 3 because it is equal to the number of classes in our BCI tasks). Once the clusters

are built by including each pattern in its nearest centroid, the fitness of each individual in the subpopulation is

evaluated by using two Clustering Validation Indices (CVIs), defined by the intraclass f1 and the interclass f2

distances, which are detailed in (Escobar et al., 2017c).

The parallel code has been implemented with OpenMP pragmas and OpenCL. OpenMP dynamically dis-

tributes the fitness evaluation of the individuals (the cost functions f1 and f2) launching OpenCL kernels among

both CPU and GPU devices. As many CPU threads as available OpenCL devices, ND, are created through

the corresponding OpenMP pragma to parallelise the loop that iterates over all subpopulations, Sp. To eval-

uate the fitness in parallel, two dynamic scheduling alternatives can be applied, as the procedure distributes

subpopulations or individuals when only one subpopulation is detected. Thus, according to the device, two

parallelism levels can be achieved in a CPU, and up to three in a GPU, where the K-means data parallelism is

also implemented. Algorithm 1 provides a detailed description of our parallel multi-objective evolutionary algo-

rithm, named D2S NSGAII (Dynamic Distribution of Subpopulations using NSGA-II), which also is summarised

in Figure 1.

On the other hand, to execute a GPU kernel, the individuals must be transferred from the host memory to the

GPU memory, and vice-versa. The required copies per generation between devices could constitute an important

bottleneck, as was analysed in (Escobar et al., 2017b). Nevertheless, as the subpopulations are dynamically

allocated to the devices available in the platform, the time required for transferring data can be overlapped.

A migration implies to build a new set of subpopulations. To define a new subpopulation, each subpopulation

contributes with half of its solutions of its present Pareto front at most. Finally, the solutions obtained by different

subpopulations are recombined by the main CPU thread, and returned at the end of the function. These steps

are repeated according to the required number of subpopulation generations and migrations as Figure 1 shows.

3. RELATED WORKS

The use of multi-objective optimization in data mining applications has been shown in (Mukhopadhyay

et al., 2014a,b), and its benefits in both supervised and unsupervised classification have been reported elsewhere

(Handl and Knowles, 2006). As GPU architectures constitute one of the present mainstream approaches to

take advantage of technology improvements (Collet, 2013), their use has been described in many previous papers

involving the analysis of the acceleration rates attained by the GPUs with respect to a sequential implementation

that only uses CPU cores (Luong et al., 2010). With respect to evolutionary algorithm implementations, it is

4

Algorithm 1: Subpopulations scheduler pseudocode. The evaluation of subpopulations is distributed

among all OpenCL devices, where each of them is assigned to one OpenMP thread

1 Function D2S NSGAII(Sp,ND, D,NSpop,M,DS,K,DSt)

Input : The initial subpopulations, Spi; ∀i = 1, ..., NSpop

Input : Number of available OpenCL devices, ND

Input : Object Dj containing the OpenCL devices, ∀j = 1, ..., ND

Input : Number of subpopulations NSpop to be evolved

Input : Number of individuals in each subpopulation, M

Input : Dataset DS: NP training patterns of NF features

Input : Set K of W centroids randomly chosen from DS

Input : Dataset DSt is DS in column-major order

Output: S, the new solution for the problem

2 repeat

// OpenMP parallel section with ND devices

3 repeat

// Start the evolution process

4 repeat

5 Offspr ← UniformCrossover(Spi)

6 if Dj is a CPU then

7 Offspr ← evaluationsCPU(Offspr,M,DS,K)

8 else

9 Offspr ← evaluationsGPU(Offspr,M,DS,K,DSt)

10 end

// Replacement process

11 Aux← Join Spi and Offspr in one array

12 Aux← nonDominatedSorting(Aux,M + NOffspr)

13 Spi ← Copy the first M individuals from Aux

14 until the number of subpopulations generations is reached;

15 until all NSpop subpopulations are evaluated;

16 Sp← migration(Sp,NSpop,M)

17 until the number of desired migrations is reached;

// Recombination process

18 Sp← nonDominatedSorting(Sp,NSpop ×M)

19 S ← Copy the first M individuals from Sp

20 return S

21 End

possible to use the GPU only to evaluate the fitness of the individuals in the population, taking advantage of

the data parallelism present in that fitness function. Another approach is to implement the whole evolutionary

algorithm in the GPU (Jähne, 2016).

An alternative GPU implementation of the non-dominance rank used in NSGA-II, the Archived-based

5

Non-dominated

sorting

Replace

subpopulation

Crossover &

mutation

Copy it again

onto device

Subpopulations

evaluation

Sp

Database, centroids

and subpopulations

D2S_NSGA-II

Pre-process data

Copy data onto devices

O
p

e
n

M
P

 t
h

re
a

d
s

End?

Final
recombination

(implies a call to
Non-dominated

sorting)

Migration every X iterations

Figure 1. Scheme of the steps in the D2S NSGAII procedure. Firstly, the algorithm receives all necessary parameters to

perform the evolution of subpopulations. Then, each subpopulation SpMi (assigned to one CPU thread) is evaluated by

one OpenCL device, which executes the cycle of steps inside of the blue brackets. If only one subpopulation is detected,

all devices cooperate to perform the evaluation. The algorithm uses uniform crossover with a probability of 0.75, mutation

by inversion of the selected bit with a probability of 0.025, and selection by binary tournament.

Stochastic Ranking Evolutionary Algorithm (ASREA), is provided in (Sharma and Collet, 2013). Paper (Wong

and Cui, 2013) provides a parallel NSGA-II implementation for a data mining application that executes all steps

of the algorithm in the GPU except for the non-dominated selection of a multi-objective evolutionary algorithm.

Nevertheless, works analysing the effect in the parallel performance of heavy fitness functions requiring high-

volume datasets and the parallelization on a heterogeneous platform of a whole data mining application with

similar characteristics to our target application are less frequent. In our previous paper (Escobar et al., 2016a),

we proposed a multi-objective feature selection that implements both functional and data parallelism which can

be executed either in a CPU or in a GPU. Moreover, in (Escobar et al., 2016b, 2017c), the effect of memory

access optimization on GPU implementations has been demonstrated.

The main approaches to the development of energy-efficient parallel and distributed codes can be grouped

into two alternatives. Several approaches propose scheduling procedures that take into account not only running

time but also energy consumption of the program (Baskiyar and Abdel-Kader, 2010; Dorronsoro et al., 2014;

Lee and Zomaya, 2011; Nesmachnow et al., 2013; Rotem et al., 2016; Zhang et al., 2002). Other approaches

investigate the effect of different implementations for a specific application in energy consumption and try to

derive energy-aware strategies and power models from the corresponding experimental results (Aliaga et al.,

2014). Here, we follow this approach.

With respect to energy consumption efficiency of hybrid CPU-GPU platforms, papers (Allen and Ge, 2016;

Ma et al., 2012; Marowka, 2012) provide some results on this topic. For example, (Marowka, 2012) provides

6

analytical models to get insight into performance gains and energy consumption and concludes that a greater

parallelism allows opportunities for energy-saving parallel applications. We demonstrate this from the energy

consumption we have measured in our computing node.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we analyse the performance of our OpenMP-OpenCL codes running on Linux CentOS 6.7

operating system, in a node with two Intel Xeon E5-2620 v4 processors at 2.1 GHz including eight cores per

socket with two Hyper-Threading threads per core, thus comprising 32 threads. The node also has a GPU

Nvidia Tesla K40m with 288 GB/s as maximum memory bandwidth and 2,880 CUDA cores at 745 MHz. In

our experiments, we have used three datasets from the BCI Laboratory at the University of Essex and described

in (Asensio-Cubero et al., 2013). They correspond to subjects coded as 104, 107, and 110, and each includes

178 EEG patterns with 3,600 features per pattern. The measures have been obtained considering three different

alternatives: two correspond to the use of fixed operation frequencies at 1.2 GHz and 2.1 GHz in CPU, and

the third one is the so-called Syst alternative in which the runtime system modifies the operation frequency

according to its strategy to optimize the code efficiency.

4.1 HYPERVOLUME RESULTS

The quality of the solution obtained by our procedure is evaluated thought their corresponding Pareto front

hypervolume (Fonseca et al., 2018), computed here with (1,1) as reference point, and the minimum values of

the cost functions f1 and f2 are respectively 0 and -1. Thus, the maximum value for the hypervolume is 2. We

have made 10 repetitions of each experiment to analyse, through Kolmogorov-Smirnov and Kruskal-Wallis tests,

the statistical significance of the observed differences among alternatives. Figure 2 shows hypervolume results

for some of the parallel alternatives we have compared. They correspond to good enough solutions included in

Pareto fronts with average hypervolumes between 1.881 and 1.978 and standard deviations among 0.007 and

0.03. The statistical analysis does not show significant hypervolume differences for any pair of alternatives.

Thus, although our parallel algorithms are not equivalent to the corresponding sequential procedure with only

one subpopulation, they provide solutions with similar classification quality.

4.2 RUNNING TIME PERFORMANCE

Figure 3 provides the averages of the speedups obtained for the dataset of subject 110 by different platform

configurations using 32 CPU threads and/or GPU. In Figures 3.a, 3.b, and 3.c, a population of 480 individuals is

distributed into 2, 4, 8, and 16 subpopulations of, respectively, 240, 120, 60, and 30 individuals. Each subpopu-

lation independently executes generations among migrations. The figures show results for 1 to 5 migrations and,

7

SEQ-1 SEQ-4 SEQ-8 CPU-1 CPU-4 CPU-8 HET-1 HET-4 HET-8
Execution mode - Number of subpopulations

1.88

1.9

1.92

1.94

1.96

1.98
H

yp
er

vo
lu

m
e

(a)

SEQ-1 SEQ-4 SEQ-8 CPU-1 CPU-4 CPU-8 HET-1 HET-4 HET-8
Execution mode - Number of subpopulations

1.88

1.9

1.92

1.94

1.96

1.98

H
yp

er
vo

lu
m

e

(b)

SEQ-1 SEQ-4 SEQ-8 CPU-1 CPU-4 CPU-8 HET-1 HET-4 HET-8
Execution mode - Number of subpopulations

1.88

1.9

1.92

1.94

1.96

1.98

H
yp

er
vo

lu
m

e

(c)

Figure 2. Hypervolumes obtained using multiple CPU frequencies, and different number of subpopulations and execution

modes (SEQ: 1 thread; CPU: 32 threads; HET: CPU + GPU): (a) 1.2 GHz; (b) 2.1 GHz; (c) Syst alternative. We only

show the results obtained for subject 110, as they are similar to those obtained for the rest of subjects.

as all algorithms execute 60 generations, respectively 60, 30, 20, 15, and 12 generations of independent evolu-

tions are executed by each subpopulation between migrations, also showing improvements in the speedups as the

number of subpopulations decreases, or as the number of individuals in the subpopulations increases (the same

in all cases, i.e. 480). With respect to changes in the number of migrations, the speedups remain approximately

constant. A migration implies send individuals and cost functions among subpopulations and thus, its cost

increases with the number of subpopulations and individuals per subpopulation. Nevertheless, communications

should not be more costly than the replacement process because communications are indeed done through the

shared memory that stores the information about individuals and their fitness. The main changes shown in the

speedups of Figures 3.a, 3.b, and 3.c seem to be determined by the number of subpopulations and their size

(as more subpopulations mean less individuals per subpopulation). As the number of subpopulations grows, the

number of calls to the CPU or GPU kernels that allocate a subpopulation to the corresponding device also grows,

being costly because a call to the kernel implies to initialize it, and to copy the data to and from the device.

By comparing Figures 3.a, 3.b, and 3.c is apparent that the speedups obtained by using only 32 CPU threads

8

1 2 3 4 5
Number of migrations

0

2

4

6

8

10

12

14
S

pe
ed

up

16 subpop. 30 indiv.
8 subpop. 60 indiv.
4 subpop. 120 indiv.
2 subpop. 240 indiv.

(a)

1 2 3 4 5
Number of migrations

0

2

4

6

8

10

12

14

S
pe

ed
up

16 subpop. 30 indiv.
8 subpop. 60 indiv.
4 subpop. 120 indiv.
2 subpop. 240 indiv.

(b)

1 2 3 4 5
Number of migrations

0

5

10

15

20

25

S
pe

ed
up

16 subpop. 30 indiv.
8 subpop. 60 indiv.
4 subpop. 120 indiv.
2 subpop. 240 indiv

(c)

16-30 8-60 4-120 2-240 1-480
Number of subpopulations - Number of individuals

0

5

10

15

20

25

S
pe

ed
up

GPU
CPU (32 threads)
HET (CPU + GPU)

(d)

Figure 3. Averages of speedups achieved with different number of subpopulations and execution modes: (a) GPU; (b)

CPU: 32 threads; (c) HET: CPU + GPU; (d) Comparison of platforms for different number of subpopulations and

individuals per subpopulation. The speedup characteristics for subjects 104 and 107 are quite similar.

are quite similar to those obtained by the GPU. The effect of using both CPU and GPU cores is shown in Figures

3.c and 3.d. As Figure 3.d shows, the speedup grows as the number of subpopulations decreases, except in the case

of using only one subpopulation. In this case, the CPU and GPU kernels respectively take 32 and 15 individuals

and thus, (480/32 = 15) and (480/15 = 32) calls to the CPU or GPU kernels are required. Consequently, the

number of calls is higher in the one subpopulation case than in the case of multiple subpopulations.

Figure 4 provides the average of the running time for alternatives corresponding to different values of sub-

populations, number of migrations, operating frequencies, and platform configurations. The running time for

the parallel alternatives are clearly lower than those corresponding to the sequential executions. It is also clear

that the times also decrease in case of using an operating frequency of 2.1 GHz and the Syst strategy.

4.3 ENERGY CONSUMPTION BEHAVIOUR

The power and the energy consumption in the node has been measured by using a data acquisition system

which we have devised, based on Arduino Mega, which gives four real-time measures per second of power and

energy consumption. In what follows, we analyse the energy-power behaviour of our approach for frequencies of

9

SEQ-1 SEQ-4 SEQ-8 CPU-1 CPU-4 CPU-8 HET-1 HET-4 HET-8
0

2

4

6

8

10

12
x 10

5

Execution mode - Number of subpopulations

T
im

e
 (

m
s
)

1,200 MHz

2,100 MHz

Syst

(a)

SEQ-4-3 SEQ-8-3 CPU-4-3 CPU-8-3 HET-4-3 HET-8-3 SEQ-4-5 SEQ-8-5 CPU-4-5 CPU-8-5 HET-4-5 HET-8-5
0

2

4

6

8

10

12
x 10

5

Execution mode - Number of subpopulations - Number of migrations

T
im

e
 (

m
s
)

1,200 MHz

2,100 MHz

Syst

(b)

Figure 4. Running time for different parallel alternatives and operating frequencies, using 60 generations and 480 individ-

uals distributed into multiple number of subpopulations: (a) 1 migration; (b) 3 and 5 migrations.

1.2 GHz and 2.1 GHz, and the Syst strategy, previously described. Figures 5.a and 5.b provide the evolution of

the instantaneous power consumed along the execution of our procedure in two different parallel configurations:

one running in the CPU and the other using the heterogenous mode (HET). These figures show that the lowest

instantaneous power values correspond to the 1.2 GHz alternative. The 2.1 GHz and Syst alternatives present

similar values. Figures 5.c and 5.d clearly show the advantage of using the HET mode instead of only CPU.

In addition, it is also clear that the highest instantaneous power consumption corresponds to the HET mode,

followed by the configuration which only includes CPU. Nevertheless, the energy consumption depends on the

time required to complete the task.

The behaviour with respect to energy consumption for different alternatives is shown in Figure 6. From

this figure, it is also clear that the parallel alternatives consume less energy. Although the instantaneous power

consumed is higher, the achieved speedup allows better consumption figures. Moreover, the energy consumption

is also less in case of an operating frequency of 2.1 GHz and in the Syst strategy. In those two last alternatives,

10

0 10 20 30 40 50 60 70 80 90 100
80

100

120

140

160

180

200

220

240

Time (s)

P
o

w
e

r
(W

)

1,200 MHz

2,100 MHz

Syst

(a)

0 5 10 15 20 25 30 35 40 45 50
80

100

120

140

160

180

200

220

240

Time (s)

P
o

w
e

r
(W

)

1,200 MHz

2,100 MHz

Syst

(b)

0 10 20 30 40 50 60
Time (s)

80

100

120

140

160

180

200

220

240

P
ow

er
 (

W
)

HET
CPU

(c)

0 10 20 30 40 50 60
Time (s)

80

100

120

140

160

180

200

220

240

P
ow

er
 (

W
)

CPU (8 subpopulations)
CPU (4 subpopulations)
CPU (1 subpopulation)
HET (8 subpopulations)
HET (4 subpopulations)
HET (1 subpopulation)

(d)

Figure 5. Power measured along the execution of different parallel alternatives with 60 generations and 480 individuals:

(a) CPU mode with 8 subpopulations, 5 migrations; (b) HET mode with 8 subpopulations, 5 migrations; (c) CPU and

HET modes with 8 subpopulations, 5 migrations at 2,100 MHz; (d) CPU and HET modes with 1 migration at 2,100 MHz

the energy consumption is almost the same. It has to be noticed that the energy measures correspond to the

energy consumed by the whole node including the consumption of buses and memories. Nevertheless, differences

are still apparent for different processing architectures.

Figure 7 compares the energy consumption of the CPU mode with respect to the HET mode. It shows that

the CPU alternative only implies less energy consumption in case of one subpopulation for both 2.1 GHz and

Syst alternatives. The Kruskal-Wallis test shows statistically significant differences in these two cases. Instead,

the application of the Kruskal-Wallis test does not detect statistically significant differences between CPU and

HET alternatives in case of 4 subpopulations. Finally, the HET mode shows lower energy consumption than

the CPU one in case of 8 subpopulations. In this case, the differences are statistically significant according to

the Kruskal-Wallis test. Thus, although the HET mode shows higher instantaneous power consumptions than

the CPU alternative, the lower execution time of the HET mode in conjunction with an increase in the energy

consumed by the CPU alternative when more subpopulations are evolved would explain this behaviour. A similar

behaviour can also be seen in Figure 8.

11

SEQ-1 SEQ-4 SEQ-8 CPU-1 CPU-4 CPU-8 HET-1 HET-4 HET-8
0

5

10

15

20

25

30

35

40

Execution mode - Number of subpopulations

E
n

e
rg

y
 (

W
 x

 h
)

1,200 MHz

2,100 MHz

Syst

(a)

SEQ-4-3 SEQ-8-3 CPU-4-3 CPU-8-3 HET-4-3 HET-8-3 SEQ-4-5 SEQ-8-5 CPU-4-5 CPU-8-5 HET-4-5 HET-8-5
0

5

10

15

20

25

30

35

40

Execution mode - Number of subpopulations - Number of migrations

E
n

e
rg

y
 (

W
 x

 h
)

1,200 MHz

2,100 MHz

Syst

(b)

Figure 6. Energy consumption for different parallel alternatives and operating frequencies, using 60 generations and 480

individuals distributed into multiple number of subpopulations: (a) 1 migration; (b) 3 and 5 migrations.

2100-1-1 Syst-1-1 2100-4-1 2100-4-3 2100-4-5 Syst-4-1 Syst-4-3 Syst-4-5 2100-8-1 2100-8-3 2100-8-5 Syst-8-1 Syst-8-3 Syst-8-5
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Frequency (MHz) - Number of subpopulations - Number of migrations

E
n

e
rg

y
 (

W
 x

 h
)

CPU

HET

Figure 7. Comparison of energy consumption for configurations using only CPU threads and HET mode.

From Table 1, it can be seen that there are statistically significant differences in all cases considered when

the parallel code is executed only by CPU threads. Instead, when the parallel code is executed by both, CPU

threads and GPU, there are only statistically significant differences between 4 and 8 subpopulations in the 2.1

GHz case. Even in these cases with significant differences, the p-values are near (p = 0.05). In all cases, the

12

Table 1. p-values obtained from Kruskal-Wallis test to analyse the statistical significance of differences in the energy

consumption for different parallel configurations with multiple number of subpopulations and migrations, NM (p-value

< 0.05 means statistically significance).

NM # Subpopulations CPU (2.1 GHz) CPU (Syst) HET (2.1 GHz) HET (Syst)

1
1 vs 4 0.005 0.008 0.091 0.093

4 vs 8 0.007 0.008 0.030 0.155

3 4 vs 8 0.012 0.007 0.045 0.282

5 4 vs 8 0.007 0.008 0.045 0.155

1.8 2 2.2 2.4 2.6 2.8 3
Energy (W x h)

2

3

4

5

6

7

8

9

T
im

e
(m

s)

104

CPU
HET

Figure 8. Time versus energy for different parallel configurations. The alternatives which uses CPU threads and GPU

provide the lowest values of running time. One of the heterogeneous alternatives even shows a very low energy consumption,

despite that the lowest energy consumption values correspond to parallel configurations that only involve CPU threads.

statistically significant differences correspond to increases with the number of subpopulations.

5. CONCLUSIONS

This paper proposes and analyses parallel heterogeneous implementations of a multi-objective feature selection

procedure applied to EEG classification on BCI tasks, which take advantage of both CPU and GPU architectures.

It uses OpenMP threads to distribute the workload and OpenCL kernels to perform the fitness evaluation of the

individuals in each subpopulation. The K-means algorithm to evaluate the individual fitness is also parallelized

through the GPU cores, with the objective of taking advantage of the data parallel GPU capabilities.

The experimental evaluation of our approach has been done in terms of speedup and energy consumption for

different alternatives of subpopulations, migrations, and platform configurations. It has been shown that, for

13

some subpopulation and migration alternatives, the configuration including both CPU and GPU devices provides

not only better speedups results but also lower energy consumption than the corresponding alternatives. Com-

pared with a master-worker parallel implementation (the alternative corresponding to only one subpopulation),

the heterogeneous configuration still provides the highest speedups, and depending on their specific values, its

energy consumption could be higher or lower than the corresponding CPU configuration. Moreover, although the

instantaneous power is higher for HET configurations than for the corresponding ones using only CPU threads,

the runtime are lower for the HET mode. On the other hand, the energy consumption measured for the HET

configuration almost does not show any significant changes with the number of subpopulations. In this case,

the energy consumed by components not included in the CPU (buses, RAM memory, etc.) could mask the

differences in the energy consumption.

Among other approaches that should be explored to take advantage of both CPU and GPU architectures,

a message-passing implementation could offer new insights about speed and energy behaviour of heterogeneous

architectures for applications that demand a high amount of heterogeneous parallelism. Moreover, building

accurate quantitative models for energy consumption will be also very useful to identify energy-performance

efficient workload distributions.

ACKNOWLEDGMENTS

Work funded by project TIN2015-67020-P (Spanish “Ministerio de Economı́a y Competitividad” and ERDF

funds). We would like to thank the BCI laboratory of the University of Essex, especially prof. John Q. Gan, for

allowing us to use their databases. We also thank the reviewers for their useful comments and suggestions.

AUTHOR DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Aliaga, J., Barreda, M., Dolz, M., Mart́ın, A., Mayo, R., and Quintana-Ort́ı, E. (2014). Assessing the impact

of the cpu power-saving modes on the task-parallel solution of sparse linear systems. Cluster Computing,

17(4):1335–1348.

Allen, T. and Ge, R. (2016). Characterizing power and performance of gpu memory access. In Proceedings of

the 4th International Workshop on Energy Efficient Supercomputing, E2SC’2016, pages 46–53, Salt Lake City,

Utah, USA. IEEE Press.

14

Asensio-Cubero, J., Gan, J., and Palaniappan, R. (2013). Multiresolution analysis over simple graphs for brain

computer interfaces. Journal of Neural Engineering, 10(4).

Baskiyar, S. and Abdel-Kader, R. (2010). Energy aware dag scheduling on heterogeneous systems. Cluster

Computing, 13(4):373–383.

Collet, P. (2013). Why gpgpus for evolutionary computation? In Tsutsui, S. and Collet, P., editors, Massively

Parallel Evolutionary Computation on GPGPUs, Natural Computing Series, pages 3–14. Springer.

Cotta, C., Fernández-Leiva, A., Fernández-de-Vega, F., Chávez, F., Merelo, J., Castillo, P., Camacho, D., and

Bello-Orgaz, G. (2015). Ephemeral computing and bioinspired optimization: Challenges and opportunities.

In Proceedings of the 7th International Conference on Evolutionary Computation Theory and Applications,

ECTA’2015, pages 319–324, Lisbon, Portugal. IEEE.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic

algorithm for multi-objective optimization: Nsga-ii. In Proceedings of the 6th International Conference on

Parallel Problem Solving from Nature, PPSN VI, pages 849–858, Paris, France. Springer.

Dorronsoro, B., Nesmachnow, S., Taheri, J., Zomaya, A., Talbi, E.-G., and Bouvry, P. (2014). A hierarchi-

cal approach for energy-efficient scheduling of large workloads in multicore distributed systems. Sustainable

Computing: Informatics and Systems, 4(4):252–261.

Duin, R. (2000). Classifiers in almost empty spaces. In Proceedings of the 15th International Conference on

Pattern Recognition, ICPR’2000, pages 1–7, Barcelona, Spain. IEEE.

Escobar, J., Ortega, J., Dı́az, A., González, J., and Damas, M. (2017a). Power-performance evaluation of

parallel multi-objective eeg feature selection on cpu-gpu platforms. In Proceedings of the 17th International

Conference on Algorithms and Architectures for Parallel Processing, ICA3PP’2017, pages 580–590, Helsinki,

Finland. Springer.

Escobar, J., Ortega, J., González, J., and Damas, M. (2016a). Assessing parallel heterogeneous computer

architectures for multiobjective feature selection on eeg classification. In Ortuño, F. and Rojas, I., editors,

Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering, IWBBIO’2016,

pages 277–289, Granada, Spain. Springer.

Escobar, J., Ortega, J., González, J., and Damas, M. (2016b). Improving memory accesses for heterogeneous

parallel multi-objective feature selection on eeg classification. In Proceedings of the 4th International Workshop

on Parallelism in Bioinformatics, PBIO’2016, pages 372–383, Grenoble, France. Springer.

15

Escobar, J., Ortega, J., González, J., Damas, M., and Dı́az, A. (2017b). Parallel high-dimensional multi-objective

feature selection for eeg classification with dynamic workload balancing on cpu-gpu. Cluster Computing,

20(3):1881–1897.

Escobar, J., Ortega, J., González, J., Damas, M., and Prieto, B. (2017c). Issues on gpu parallel implementation

of evolutionary high-dimensional multi-objective feature selection. In Proceedings of the 20th European Con-

ference on Applications of Evolutionary Computation, Part I, EVOSTAR’2017, pages 773–788, Amsterdam,

The Netherlands. Springer.

Fernández-de-Vega, F., Chávez, F., Dı́az, J., Garćıa, J., Castillo, P., Merelo, J., and Cotta, C. (2016). A cross-

platform assessment of energy consumption in evolutionary algorithms. In Proceedings of the 14th International

Conference on Parallel Problem Solving from Nature, PPSN’2016, pages 548–557, Edinburgh, UK. Springer.

Fonseca, C., López-Ibáñez, M., Paquete, L., and Guerreiro, A. (2018). Computation of the hypervolume indicator.

http://lopez-ibanez.eu/hypervolume.

Handl, J. and Knowles, J. (2006). Feature subset selection in unsupervised learning via multiobjective optimiza-

tion. International Journal of Computational Intelligence Research, 2(3):217–238.

Jähne, P. (2016). Overview of the current state of research on parallelisation of evolutionary algorithms on

graphic cards. In GI-Jahrestagung, INFORMATIK’2016, pages 2163–2174, Bonn, Germany. LNI.

Lee, Y. and Zomaya, A. (2011). Energy conscious scheduling for distributed computing systems under different

operating conditions. IEEE Transactions on Parallel and Distributed Systems, 22(8):1374–1381.

Luong, T., Melab, N., and Talbi, E.-G. (2010). Gpu-based island model for evolutionary algorithms. In Proceed-

ings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO’2010, pages 1089–

1096, Portland, OR, USA. ACM.

Ma, K., Li, X., Chen, W., Zhang, C., and Wang, X. (2012). Greengpu: A holistic approach to energy effi-

ciency in gpu-cpu heterogeneous architectures. In Proceedings of the 41st International Conference on Parallel

Processing, ICPP’2012, pages 48–57, Pittsburgh, PA, USA. IEEE.

Marinaki, M. and Marinakis, Y. (2014). An island memetic differential evolution algorithm for the feature

selection problem. In Proceedings of the 6th International Workshop on Nature Inspired Cooperative Strategies

for Optimization, NICSO’2013, pages 29–42, Canterbury, UK. Springer.

16

Marowka, A. (2012). Energy consumption modeling for hybrid computing. In Proceedings of the 18th Interna-

tional Conference on Parallel Processing, Euro-Par 2012, Euro-Par’2012, pages 54–64, Rhodes Island, Greece.

Springer.

Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., and Coello Coello, C. (2014a). A survey of multiobjective

evolutionary algorithms for data mining: Part i. IEEE Transactions on Evolutionary Computation, 18(1):4–19.

Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., and Coello Coello, C. (2014b). A survey of multiobjective

evolutionary algorithms for data mining: Part ii. IEEE Transactions on Evolutionary Computation, 18(1):20–

35.

Nesmachnow, S., Dorronsoro, B., Pecero, J., and Bouvry, P. (2013). Energy-aware scheduling on multicore

heterogeneous grid computing systems. Journal of Grid Computing, 11(4):653–680.

Rotem, E., Weiser, U., Mendelson, A., Ginosar, R., Weissmann, E., and Aizik, Y. (2016). H-earth: Heterogeneous

multicore platform energy management. IEEE Computer Magazine, 49(10):47–55.

Rupp, R., Kleih, S., Leeb, R., Millan, J., Kübler, A., and Müller-Putz, G. (2014). Brain-computer interfaces and

assistive technology. In Grübler, G. and Hildt, E., editors, Brain-Computer-Interfaces in their Ethical, Social

and Cultural Contexts, The International Library of Ethics, Law and Technology, pages 7–38. Springer.

Sharma, D. and Collet, P. (2013). Implementation techniques for massively parallel multi-objective optimization.

In Tsutsui, S. and Collet, P., editors, Massively Parallel Evolutionary Computation on GPGPUs, Natural

Computing Series, pages 267–286. Springer.

Wong, M. and Cui, G. (2013). Data mining using parallel multi-objective evolutionary algorithms on graphics

processing units. In Tsutsui, S. and Collet, P., editors, Massively Parallel Evolutionary Computation on

GPGPUs, Natural Computing Series, pages 287–307. Springer.

Zhang, Y., Hu, X., and Chen, D. (2002). Task scheduling and voltage selection for energy minimization. In

Proceedings of the 39th Annual Design Automation Conference, DAC’2002, pages 183–188, New Orleans,

Louisiana, USA. ACM.

17

