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—— Abstract

An important goal in microbial computational genomics is to identify crucial events in the evolution

of a gene that severely alter the duplication, loss and mobilization patterns of the gene within
the genomes in which it disseminates. In this paper, we formalize this microbiological goal as a
new pattern-matching problem in the domain of Gene tree and Species tree reconciliation, denoted
“Reconciliation-Scenario Altering Mutation (RSAM) Discovery”. We propose an O(m - n - k) time
algorithm to solve this new problem, where m and n are the number of vertices of the input Gene
tree and Species tree, respectively, and k is a user-specified parameter that bounds from above the
number of optimal solutions of interest. The algorithm first constructs a hypergraph representing
the k highest scoring reconciliation scenarios between the given Gene tree and Species tree, and then
interrogates this hypergraph for subtrees matching a pre-specified RSAM Pattern. Our algorithm is
optimal in the sense that the number of hypernodes in the hypergraph can be lower bounded by
Q(m-n-k). We implement the new algorithm as a tool, denoted RSAM-finder, and demonstrate its
application to the identification of RSAMs in toxins and drug resistance elements across a dataset
spanning hundreds of species.
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1 Introduction

Prokaryotes can be found in the most diverse and severe ecological niches of the planet.
Adaptation of prokaryotes to new niches requires expanding their repertoire of protein families,
via two evolutionary processes: first, by selection of novel gene mutants carrying stable
genetic alterations that confer adaptation, and second, by dissemination of an adaptively
mutated gene. These two processes are correlated: an adaptation-conferring mutation in a
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Figure 1 High-level overview of the RSAM-finder algorithm.
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gene could accelerate its mobilization across bacterial lineages populating the corresponding
environmental niche [25], and vice-versa, the mobilization of a gene by transposable elements
increases its chances to mutate or “pick up” novel genomic context. Thus, an important
research goal is to identify gene-level mutations that affect the spreading pattern of the
mutated gene within and across the genomes harboring it.

For example, consider mutations conferring adaptation of bacteria to a human-pathogenesis
environment. Here, a mutation to a resistance or virulence factor could enhance pathogenic
adaptation, thus increasing the horizontal mobilization of the mutated gene within other
human pathogens inhibiting this niche [25]. In this case, we say that the mutation has a
causal association with the observed dissemination pattern of the mutated gene (i.e. the
increased mobilization of the gene among pathogenic bacteria). Identifying such mutations
could inform infectious disease monitoring and outbreak control, and assist in identifying
potential drug targets.

The co-evolution of genes and their host species is classically described by computing the
most parsimonious reconciliation scenario between a given Gene tree GG and the corresponding
Species tree S, that is, a mapping of each vertex u € G to a vertex x € S. Three major
evolutionary processes, traditionally considered by reconciliation approaches, are horizontal
gene transfer, gene duplication, and gene loss [36]. Each mapping of a vertex u € G to
a vertex z € S is associated with one of these evolutionary events, and assigned a cost,
accordingly. The optimization problem of computing a least-cost reconciliation between G
and S, where the total cost is computed as the sum of the costs assigned to each of the
mappings, is denoted Duplication-Loss-Transfer (DLT) Reconciliation.

Motivated by examples such as the one given above, we formalize a new pattern-matching
problem in the domain of DLT reconciliation. Given are a Gene tree G, a corresponding
Species tree S, a mapping o from the leaves of G to the leaves of S, and (optional) an
environmental annotation labeling the leaves of the input trees. Let H denote some data
structure, to be defined later in the paper, that models the space of reconciliations between G
and S. A DLT Reconciliation Scenario Pattern denotes a mapping between a vertex u € G to
a vertex x € S, which obeys a set of user-defined specifications regarding the corresponding
reconciliation event, the labels on the paired vertices, and other features associated with the
mapping. Mappings between pairs of vertices (u € G, x € S) that abide by the requirements
specified by P are denoted instances of P in H. Given a pre-specified DLT Reconcilation
Scenario pattern P and a data structure H modeling the space of reconciliations between G
and S, a Reconciliation Scenario Altering Mutation (RSAM) of P in H is a vertex v € G
representing a gene mutation with a putative causal association to instances of P in H. The
RSAM Discovery problem is to identify RSAMs in G.

In what follows, we propose a three-stage solution to the RSAM Discovery problem defined
above (illustrated in Fig. 1). The first stage constructs a hypergraph H that recursively
aggregates all the k-best reconciliations of G and S. Each supernode in H consists of k&
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Figure 2 Various aspects of the problem addressed in this paper. (A) The input trees G and
S. (B) An example of a hypergraph constructed based on the input trees and parameter k. (C)
Three top-scoring solutions. (D) A putative RSAM (blue vertex) with causal association to the
mobilization pattern of the gene among species labeled with the red environmental annotation.

hypernodes, where each hypernode represents a partial solution for the DLT-reconciliation
problem. Our hypergraph-ensemble approach is based on a model proposed by [24] for
network evolution, where here we extend and adapt it to the DLT model. This hypergraph
of k-best reconciliations, intended to provide some robustness to the noise typical of this
data, will serve as the search-space for the pattern-matching stage. The second stage of our
proposed solution consists of assigning a probability to each partial solution, that is, to each
hypernode of H. Finally, in the third stage, instances of the sought RSAM-pattern P are
identified within ‘H, and RSAM-ranking scores are assigned accordingly to the vertices of
G. Based on these scores, vertices representing putative RSAMs are identified in G and
subjected to biological interpretation.

The construction of H, in the first stage, is the computational bottleneck of the RSAM-
Discovery pipeline mentioned above. Here, we adapt the approach proposed by Bansal et
al. [3] for the basic, one-best variant of DLT reconciliation, extending it to an efficient k-best
variant. This yields an O(m - n - k) time algorithm for the problem, where m and n are
the number of vertices of the input Gene tree and Species tree, respectively, and k is a
user-specified parameter that bounds from above the number of optimal solutions of interest.
Our algorithm is optimal in the sense that the number of hypernodes in the hypergraph can
be lower bounded by Q(m - n - k).

Our proposed solution to the problem defined in this paper is implemented as a tool called
RSAM-finder, publicly available on GitHub. We assert the performance of RSAM-finder
in large scale simulations, and exemplify its application to the identification of RSAMs in
toxins and drug resistance elements across a dataset spanning hundreds of species.

Previous Related Works. The DLT Reconciliation problem has been extensively studied. In
particular, two main DLT variants have been considered: (1) the undated DLT-reconciliation
where the species are undated, and (2) the fully-dated DLT-reconciliation where either each
vertex in the Species (and Gene) tree is associated with an estimated date or the vertices of
the Species (and Gene) tree are associated with a total order, and any reconciliation must
respect these dates (i.e. an HT event can occur only between co-existing species).

In the acyclic version of these variants, there cannot exist two genes such that one is a
descendant of the other, yet the descendant is mapped (in the Species tree S) to an ancestor
of the other. Tofigh et al. [36] showed that the acyclic undated version is NP-Hard. However,
the acyclic dated version becomes polynomially solvable [19].
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Tofigh et al. [36, 35] and David et al. [12] studied a version of the undated (cyclic) problem
that ignores losses and proposed an O(mn?) dynamic programming algorithm for it. They
also gave a fixed-parameter tractable algorithm for enumerating all optimal solutions. The
time complexity of the algorithm was improved to O(mn) in [35] (under a restricted model
that ignores the losses) and in [3] (which does not ignore losses).

It is well-known that the biological data used as input to the DLT Reconciliation problem
could be inaccurate, whether due to a sequencing problem, a problem in the reconstruction
of G or S [5], or due to some other problem caused by noise. To overcome this problem,
previous works try to examine more than one optimal solution, for example [13, 27]. A
probabilistic method for exploring the space of optimal solutions was suggested in [4, 14],
where the latter was improved in [15]. Additional studies considered a space of candidate
co-optimal scenarios within special variants of the DLT problem, some of which employed
special constraints to drive the search [30, 34, 22, 10]. Although all of the previous works
reviewed in this paragraph compute a space of candidate reconciliation scenarios, none of
these works mentioned considered the application of pattern matching on this space, as we
do in this work.

DLT Reconcilation algorithm variants, where the reconcilation computation is guided by
constraints derived from vertex-coloring information, were proposed in applications studying
host-parasite co-evolution, such as [6], where the vertex coloring (in both G and S) represents
the geographical area of residence. However, the applied constraints were “hard-wired” to
the specific problem addressed in that paper. In contrast, the approach proposed in this
paper is more general, supporting a pattern-search that is guided by a user-defined pattern.
Our tool RSAM-finder provides the users with a query language able to express more robust
patterns, according to the various applications where the pattern-search is to be employed.

2 Preliminaries

For a (binary) rooted tree T, let L(T), V(T), I(T) and E(T) denote the sets of leaves,
vertices, internal vertices and edges, respectively, of T. Additionally, let V(T)* denote the
set of finite (ordered) vectors over V(T'), i.e. V(T)* = {(v1,v2,...,v¢) | v; € V(T) for all
i€{l,...,£},£ € N}. When T is clear from context, let V* = V(T)*. Throughout, we treat
any (binary) rooted tree T as a directed graph whose edges are directed from root to leaves.
Then, if (u,v) € E(T), we say that v is a child of u, and w is the parent of v. For u,v € V(T),
the notation v <r u signifies that v is a descendant of u (alternatively, u is an ancestor of
v), i.e. there is a directed path from v to v or u = v. We say that v is a proper descendent
(proper ancestor) of w if v <7 u (v >7 u) and u # v, denoted <7 (>7). When both v £ v
and v £ u, we say that u and v are incomparable.

For any u,v € V(T), let dr(u,v) denote the number of edges in the (unique simple
undirected) path between u and v in T. When T is clear from context, we drop it from the
notations v <7 u and dr(u,v). For any u € V(T), let T,, denote the subtree of T rooted in
u (then, V(T,) ={v e V(T) | v < u}).

DLT Scenario. A DLT scenario for two binary trees G (the Gene tree) and S (the Species
tree) is a tuple (o,7,%, A, 0, E) where o : L(G) — L(S) is a mapping of the leaves of G to
the leaves of S, v : V(G) — V(S) is a mapping of the vertices of G to the vertices of S, and
(X, A,0) is a partition of I(G) (the set of internal vertices of G) into three event classes:
Speciation (X), Duplication (A) and Horizontal Transfer (©). The subset = C E(G) specifies
which edges are involved in horizontal transfer events. Additionally, the following constraints
should be satisfied.
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1. Consistency of o and ~. For each leaf u € L(G), v(u) = o(u). This constraint ensures
that v respects o — that is, each leaf of G is mapped to the species where it is found.

2. Consistency of 4 and ancestorship relations in S. For each u € I(G) with children
v and w:

a. v(u) £s v(v) and y(u) £ v(w). This constraint ensures that each of the two children
(in G) of the gene u is mapped by v to a species that is not a proper ancestor (in S)
of the species to which the gene u is mapped; thus, it can be either a descendant of u
or incomparable to u.

b. At least one of v(v) and y(w) is a descendant of v(u). This constraint ensures that at
least one of the two children (in G) of the gene u is mapped by v to a species that is a
descendant (in S) of the species to which the gene u is mapped.

3. Identifying horizontal transfer edges. For each edge (u,v) € E(G), it holds that
(u,v) € Z if and only if y(u) €s v(v) and y(v) £s v(u). This constraint identifies which
edges are horizontal transfer edges — specifically, a horizontal transfer edge is an edge
(u,v) € E(G) from a gene u to a gene v that are mapped to species v(u) and v(v) that
are incomparable.

4. Associating events with internal vertices. For each v € I(G) with children v, w:
a. Speciation. u € ¥ only if both (7) y(u) = lca(y(v),v(w)) and (%) v(v) and vy(w) are

incomparable (i.e. v(v) €s v(w) and y(w) £€s v(v)).
b. Duplication. u € A only if y(u) >g Ica(y(v), v(w)).
c. Horizontal transfer. u € O if and only if either (i) (u,v) € Z or (ii) (u,w) € E

Fig. S1 demonstrates a DLT scenario.

Costs. We let ca and cg denote the costs of a duplication event and a horizontal transfer
event, respectively. Accordingly, the cost of a DLT scenario is defined as |A| - ca + (0] - co.
When seeking a “best” DLT scenario, the goal is to find one that minimizes this cost. It is
straightforward to extend the cost model, and the corresponding algorithm, to take losses
into account, yet for lack of space, these details are omitted throughout the paper.

3 Hypergraph of k-Best Scenarios

2 we use a directed hypergraph denoted by H based on the

To represent k-best solutions,
notation in [17]. The hypergraph is a tuple H = (V| E) where V is a finite set of vertices, and
E is a finite set of (directed) hyperedges defined as follows. Each e € E is a pair (T'(e), h(e)),
where h(e) € V is the head of e and T'(e) € V* (i.e. T'(e) is a vector of vertices in V') is its
tail. In our settings, |T'(e)| = 2 for every e € E. In what follows, we define the hypernodes
and hyperedges of H with respect to our problem. In Fig. 2.B, we illustrate the hypergraph
corresponding to the input G and S given in Fig. 2.A, where k = 4. Each hypernode (u, z, 1)
represents a DLT scenario, annotated with its cost and with the event that occurred between
u and z in this scenario (where ‘S’, ‘D’ and ‘HT’ stand for speciation, duplication and

horizontal transfer, respectively). For additional details, see the Supplementary Materials.

Hypernodes. For every vertex u in G, a vertex z in S and an integer ¢ € {1,...,k}, we
have a node (u,z,4) in H. Such a node (u, x,1) is associated with the i*® best (where ties
are broken arbitrarily) solution mapping the subtree of G rooted at u to the subtree of S

2 That is, k DLT scenarios of the highest score(s), where ties (if any exist) can be broken arbitrarily.
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rooted in x that is a DLT scenario. In addition, for every integer i € {1,...,k} we have
a node (root,i) in the hypergraph H. Such a node (root,i) is associated with the %
best solution of mapping G (entirely) to any subtree of S. Each node (u,x,%) has a score
c(u, z,1), and each node (root,) has a score c(root,i). Moreover, each node (u,x,1) is
associated with the event corresponding to the mapping of v and z in the DLT scenario
of (u,z,4) (speciation, duplication and horizontal transfer), denoted event(u, x, ).
Supernodes. For any vertex u € V(G) and vertex z € V(S), we define the supernode
(u, z) as the list {(u,z,i) : 1 <1i <k} (i.e. (u,z) is the set of k hypernodes corresponding
to the mapping of the subtree of G rooted in u to the subtree of G rooted in x). This
notation will simplify our presentation.

Hyperedges. Recall that each hypernode (u,x,i) € V(H) describes a DLT scenario.
Each hypernode has exactly one incoming hyperedge, but it can have multiple outgoing
hyperedges. In particular, for each hypernode (u,xz,i) € V(H), the (only) incoming
hyperedge e = (T'(e), h(e)) = ([(v,y,7), (w, z,7)], (u,z,4)) describes the mapping of the
subtrees of the children of u, namely, v and w, in the scenario of (u,x,); here, the subtree
of v is mapped to the subtree of y as in the scenario of (v,y,j), and the subtree of w is
mapped to the subtree of z as in the scenario of (w, z,7).

4 Framework and Algorithms

In this section, we elaborate on each of the three stages of the workflow in Section 1.

4.1 Stage 1: Hypergraph Construction

The first stage of our framework constructs the hypergraph described in Section 3. To this
end, we develop an efficient algorithm that runs in time O(m - n - k). The technical details
(including pseudocode) are given in the Supplementary Materials.

The Algorithm. We iterate over all v € V(G) in postorder, as well as over all x € V(5) in
postorder. (However, as explained immediately, when we consider a vertex u € V(G), after
iterating over all vertices x € V(S) in postorder, we also iterate over all vertices x € V(S)
in preorder.) In each iteration, corresponding to a pair (u, z), we construct three lists: px
(speciation), pa (duplication) and pe (horizontal transfer). Specifically, psy; should be a list
of k-best solutions that are DLT scenarios where the subtree of GG rooted in u is mapped to
the subtree of S rooted in x under the restriction that the event corresponding to matching
u and x is speciation. The meaning of the lists pa and pg is similar, where the restriction of
speciation is replaced by duplication or horizontal transfer, respectively. Having these three
lists suffices to construct the hypernode (u, x).

To avoid repetitive computation, we maintain two additional lists: subtree and incomp.
Intuitively, subtree(u,,) is the i*® best cost of a reconciliation of the subtree of G’ rooted
in w with some subtree of S whose root is a vertex y that is a descendant of z, and
incomp(u, x,7) is the i*" best cost of a reconciliation of the subtree of G rooted in u with
some subtree of S whose root is a vertex y incomparable to x. We use subtree to speed-up the
computation of ps;, pa and pe, and incomp to speed-up the computation of pg. The notations
subtree(u, z) and incomp(u, x) refer to the lists of the k-best scores {subtree(u,z,4)}%_; and
{incomp(u, =, i) }¥_,, respectively, similarly to our usage of the notation of a supernode.
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The efficient computation of ps;, pa and peg, along with the maintenance of subtree and
incomp themselves, is highly non-trivial. For space constraints, the technical details (in
particular, pseudocode) are delegated to the Supplementary Materials Section 2.1. On a high-
level, we first initialize all five lists to contain only costs of oco; then, still in the initialization
phase, we add hypernodes that match between leaves of G and S in accordance with o and
update subtree consequently. After the initialization, the main computation considers each
u € V(G) in postorder, and performs two steps. In the first step, we consider each x € V(.5)
in postorder. Then, for each i € {1,...,k}, we compute ps(u,,%), pa(u,z,i) and pe(u, z, 1)
based on somewhat involved recursive formulas. Afterwards, we construct the surpernode
(u, ), as well as compute the list subtree(u, x). In the second step, we consider each x € I(S)
with children y and z in preorder, and compute the lists incomp(u, y) and incomp(u, z).

Having constructed all hypernodes of the form (u, z, ) along with their ingoing hyperedges,
it is trivial to construct the hypernodes of the form (root, ) and their ingoing edges. Thus, we
conclude the outline with statements of correctness and running time proved in Supplementary
Materials Section 2.1.

» Lemma 1. Given an instance (G,S,0) of the DLT problem and a positive integer k,
the efficient algorithm correctly constructs a hypergraph H that represents k-best solutions

for (G, S,0).

» Remark 2. Given an instance (G, S, o) of the DLT problem and a positive integer k, the
efficient algorithm runs in time O(m - n - k).

4.2 Stage 2: Assigning Probabilities

In the second stage, we assign a probability to each hypernode so that a hypernode with best
score has the highest probability, and hypernodes with score co (the worst possible score)
have probability 0.

Weight Computation. Let v+ € RT be a user-specified parameter. As vy grows lower,
hypernodes with higher (worse) scores are assigned probabilities much lower than hypernodes
with lower scores.

Denote r = root, and let m(r) be the largest integer i € {1,...,k} such that c(r,i) # oo
(the notation (root,i) was defined in Section 3). For a node (r,i) where i € {1,...,m(r)},
define w'(r,i) = BECh O Then, the weight of a node (r,4), which stands for the
(unconditional) probability that the scenario described by (r, ) happens, is defined as follows:
if i € {1,...,m(r)}, then w(r,i) = — WD) otherwise (ie. if i € {m(r) + 1, m(r) +

" w(r,4)
2,...,k}), w(r,i) =0.

We now turn to define the weight of a hypernode (u, z,4), which should stand for the
(unconditional) probability that the scenario described by (u,,7) happens. The definition is
recursive. In the basis, where w is the root of G, we define w(u, z,7) (for any x € V(S) and
i€ {l,...,k}) as follows: if there exists an index j € {1,...,k} such that (r,j) is derived
from (u,x,1) (here, it means that they represent the same scenario), then w(u, z,7) = w(r, j);
otherwise, w(u,z,7) = 0.

Now, consider v that is not the root of G. We define w(v,y,7) (for any y € V(S) and
i € {l,...,k}) as follows. First, let D(v,y,7) denote the collection of nodes (u,z,j) such
that c(u, z,j) was derived from c(v,y,?) — in other words, the hypergraph has an hyperedge
directed from (v,y,4) (and some other node) to (u,x,j). In particular, w is the parent of
v in G, hence the weight w(u,z, j) is calculated before the weight w(v,y,4). Then, define

W(U7 Y, Z) = Z(u,z,j)ED(U,y,i) W(U, Zz, ])

9:7
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Note that Zie{l ____ K} w(r,i) = 1. As an additional check, we prove the following in

Supplementary Materials Section 3.

» Lemma 3. For any two compatible leaves v € L(G) and x € L(S), w(u,z,1) = 1.

Time Complexity. Iterating the hypergraph in O(|V(H)|) = O(m - n - k) time.

4.3 Stage 3: Pattern Discovery

The current version of RSAM-finder allows pattern queries to be specified as follows. A
pattern specification consists of a tuple (EV, color, distance) where:

1.

EV C {S,D,HT} specifies the evolutionary event of the pattern (S for speciation, D for
duplication and HT for horizontal transfer).

. color € {red, black, None} specifies the color representing the environmental niche to which

the sought RSAM confers adaptation.

. distance € {True, False} is a boolean indicator specifying whether or not to consider edge

lengths (representing evolutionary distances) in the pattern specification.

For a colored query (having the second parameter in the specification set to red or black),

the user is expected to provide, as part of the input, a function colors : L(X) — YT where X
specifies whether the pattern refers to a subtree of S or a subtree of G, and T = {red, black}.
Here, colors represent a binary environmental annotation of the leaves. Then, a preprocessing
step is applied, in which the nodes of S and G are colored based on the colors assigned to the
leaves of the subtree they root. We omit the technical details entailing the implementation
of this preprocessing step to Supplementary Materials Section 4.1.

In addition to the settings described above, the user can select one of two modes:

. Single-pattern mode. In this mode, the user specifies a single pattern and a threshold,

and the sought RSAMs are identified as nodes u € I(G) such that G,, is enriched in the
pattern, and |V(G,)| is bounded from below by the specified threshold.

. Dual-pattern (contrasting) mode. In this mode, the user specifies two patterns and

one threshold, and the sought RSAMs are identified as nodes u € I(G) with children
v,w € V(G) such that |V(G,)| is enriched with one pattern while |V(G,)|is enriched
with the other pattern. Here, the threshold that bounds (from below) the subtree-size
refers to |G,| and |G|

The following three queries will be exemplified in Section 5,

Q@1 : ({D}, None, False). @ identifies vertices u € I(G), such that G, is enriched in
duplication events.

Q2 : ({S,HT}, None, True). Q3 identifies vertices u € I(G), such that G, is enriched in
speciation and horizontal transfer events (at “the expense” of duplication events).

Qs : ({HT},red, True), ({S,D, HT}, black, False)). Q3 identifies vertices u € I(G) with
children v,w € V(G), such that G, is enriched in red-to-red horizontal transfer events
and G, is enriched in any black events (illustrated in Fig. 2.D).

The Pattern Identification algorithm proceeds as follows.

. For each pattern P = (EV, color, distance) and for each hypernode (u,x,7) € V(H), check

whether both event(u,z,i) € EV and the colors obey the requirements derived from
the color field of the pattern specification. (described in more details in Supplementary
Materials Section 4.1.1). If so, mark (u,x,7) as interesting.



R. Zoller, M. Zehavi, and M. Ziv-Ukelson

2. Reflect the interesting nodes identified in ‘H to G, by assigning corresponding weights
to V(G); Each u € I(G) is assigned a score, which is the cumulative probabilities of
instances of the pattern found in G,,, normalized by the number of possible events in
G,,. Additional book-keeping details regarding how this score is computed are given in
Supplementary Materials Section 4.2.

3. Based on the specified mode of the query (single pattern or dual pattern), identify the ¢
top scoring vertices u € I(G). In case of a single-pattern mode, the scores are as defined
in (2). In case of dual-pattern mode, let P; and P, be the patterns. To each u € V(G)
with children v, w € V(G), we assign two scores: the first score of u is the score of v for
Py (as defined in (2)) plus the score of w for P, and the second is the score of w for Py
plus the score of v for Ps.

Time Complexity. Iterating over the hypergraph takes O(|V(H)|) = O(m - n - k) time.

5 Applications

In this section we exemplify preliminary applications of RSAM-finder to genomic analysis.
Mobile elements in prokaryotes contribute greatly to the process of gene duplication and
dissemination. For example, toxins and antibiotic resistance factors, conferring adaptation to
the pathogenesis environment, are often encoded on plasmids, prophages, transposons and
other mobile elements in bacteria [25]. Thus, we exemplify two microbiological applications
of RSAM-finder by applying query patterns Q1, Q2, and Q3 (defined in Section 4.3), to the
discovery of RSAMs in toxins and resistance factors.

Supplementary Materials Section 5.2 reports on large scale simulations, where we demon-
strate the engine’s tolerance to noise, and Supplementary Materials Section 5.3 measures the
practical running times of the proposed hypergraph construction algorithm as a function of
increasing input size.

Methods and Data Bases. Genes in our experiment are represented by their membership
in a Cluster of Orthologous Genes [33]. The STRING database [32] was used to extract the
chromosomal protein sequences for the COGs of interest, annotated with their corresponding
species names as well as the corresponding NCBI IDs. Protein sequences were subjected
to multiple sequence alignment and dendogram construction via Clustal Omega [28]. The
list of NCBI IDs was used as input for the NCBI Taxamony Browser which provided a
(non-binary) Species tree. Both Gene and Species trees were converted to binary trees via
the Ape R package [26]. Habitat labels for the species were extracted from PATRIC, and
missing tags were manually annotated by information from the GOLD database [23] and from
literature. MEME motif discovery [2] was employed to identify sequence motifs distinguishing
the RSAM-subtree gene sequences from the background. CD Search [20] was employed to
seek statistically significant discriminating domain-level mutations (i.e. the gain or loss of a
protein functional domain). The simulator and our algorithm were implemented in Python,
using NetworkX package, DendroPy [31] and ETE Toolkit [18]. Visualizations of the trees
and plots were created using Matpllotlib and Seaborn tools.

RSAM Discovery in a Chromosomally Acquired Toxin. Bacterial toxin-antitoxin (TA)
systems are diverse and widespread in the prokaryotic kingdom. They are composed of
closely linked genes encoding a stable toxin that can harm the host cell and its cognate
unstable antitoxin, which protects the host from the toxin’s deleterious effect. TA systems

9:9

WABI 2019


https://www.patricbrc.org
https://networkx.github.io

9:10

RSAM-Finder

invade bacterial genomes through horizontal gene transfer. Their role in stabilization
and maintenance of plasmids or genomic islands by post-segregational killing has been
thoroughly studied [25].

However, much is yet to be learned about how horizontally acquired TA systems are
fixed within the population, and about the functions of the chromosomally encoded TA
systems. Some TA systems, such as higBA [38], have integrated into host regulatory networks,
controlling drug tolerance, growth arrest and programmed cell death.

Here we exemplify how RSAM-finder could be harnessed to advance such studies, e.g. by
identifying chromosomally acquired variants of the same toxin gene, that exhibit distinct
reconciliation patterns: One variant of the toxin follows a “deep and ongoing” invasion
pattern (pattern @), i.e. one involving abundant recent duplications within invaded genomes.
The other variant follows a “wide and shallow” invasion pattern (pattern @)2), i.e. the invaded
genomes are far-apart in terms of phylogenetic distance, and a very slow rate of duplications
within the invaded genomes is observed.

The Plasmid Maintenance System Killer Protein higB (represented by COG3549) is the
toxin component of the TA module higBA. This toxin, which is abundant in Proteobacteria
[11], is repressed by the Plasmid Maintenance System Antitoxin higA (represented by
COG3093). Gene trees for COG3549, and for the chromosomes of Protobacterial species
harboring it, were constructed (652 genes versus 493 species), and RSAM-Finder was applied
to interrogate this dataset with queries ()7 and ()2. Parameters for ()1 were set as follows:
k = 50, and the minimum size required per sought subtree was set to 0.05 of the total number
leaves of G. Parameters for (2 were set in the same manner, without bounding the size
of sought subtrees and ca = cg = 1. Figures displaying G, where the top-ranking RSAM
nodes are marked with a star, are provided in the supplementary materials, jointly with the
corresponding sequences. Also provided is a figure displaying S, o, and the full multiple
alignment used for constructing G.

The highest-scoring RSAM identified for Q5 roots a subtree with 23 leaf nodes (shown
in Fig. S2.C), spanning classes «, 3,7 and § of proteobacteria. The sequences of the
genes represented by the leaves of this subtree, denoted the “identified gene set”, were
subjected to distinguishing sequence motif search analysis [2], using the full set of input
genes, denoted “background gene set”, as background. This analysis identifies an insertion
sequence represented by the motif logo given in Fig. S2.E (MEME e-value 4.5¢-094). This
insertion is validated by the multiple sequence alignment, based on which the gene tree was
constructed (see Fig. S2.F and the corresponding multiple alignment file provided in the
Supplementary Materials).

Most instances of the higB toxin (473/652) in the background gene set have the antitoxin
higA in their immediate downstream position. In contrast, the instances of higA found
immediately downstream the genes from the identified gene set are enriched in an additional
domain: the Zn-dependent peptidase ImmA, belonging to the M78 peptidase family (14/23
vs. 14/652, hypergeometric p-value = 3.27e-23). Homologues of immA are found in many
mobile genetic elements [7], and it is predicted to participate in a conserved mechanism for
regulation of horizontal gene transfer.

Thus, RSAM-Finder identifies a putative three-component variant of higBA, consisting of
a variant of the higB toxin with a conserved insertion sequence, coupled with an ImmA-higA
fusion protein variant of the higA antitoxin. Further analysis of this result may reveal possible
functional correlation between the insertion sequence identified within this higB toxin variant,
and the additional ImmA domain characterizing the corresponding higA instances.
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In contrast to the top-ranking result for pattern @2, the top-ranking result for pattern
Q1 identifies a subtree of G whose leaves encode members of a two component variant of the
higBA TA (shown in Fig. S2.D). Further analysis of this result may help decipher whether
the observed duplications of this invading higB variant are tolerated by the invaded genomes
due to mere decay of its addictive properties, or due to some mutations conferring selective
advantage to the host.

RSAM Discovery in a Beta Lactamase. Beta lactamases are versatile enzymes conferring
resistance to the Beta lactam antibiotics, found in a diversity of bacterial sources. Their
commonality is the ability to hydrolyze chemical compounds containing a Beta lactam ring
[9]. The persistent exposure of bacterial strains to a multitude of Beta lactams has induced
dynamic and continuous production and mutation of Beta lactamases in these bacteria,
expanding their activity even against the newly developed Beta lactam antibiotics [29]. Thus,
an important objective is to identify mutations in Beta lactamase genes conferring adaptation
to human and animal hosts.

Among the known classes (A-D) of Beta lactamase, class D (represented by COG2602)
is considered to be the most diverse [16]. Thus, we selected COG2602 (622 genes in 543
genomes) to exemplify the colored RSAM pattern ()3, where colors represent a binary
environmental annotation: human and animal host (219 species) were annotated “red”, while
species associated with all other habitats (324 species), such as soil, water and plant, were
annotated “black”. Parameters were set as follows: k£ = 50, the minimum size required per
sought subtree was set to 0.1 of the total number leaves of G, and ca = co = 1. A figure
displaying G, where the top-ranking RSAM node is marked with a star, are given in the
supplementary materials. Also provided are the corresponding sequences, a figure displaying
the corresponding S, and o.

Within the top-ranking result for this query, we were interested in the subtree matching
the first part of pattern Q3 (i.e. enrichment in red-to-red HT edges). The gene set represented
by the leaves of this subtree, denoted “identified gene set”, was found to be enriched in an
additional domain, BlaR, a signal transducer membrane protein regulating Beta lactamase
production (87/119 in the identified gene set versus 118/622 in the background, p-val =
3.94e-52). The only transcriptional regulator currently known for Beta lactamase genes is
the repressor protein Blal, previously predicted to operate in a two-component regulatory
system together with BlaR in Class A Beta lactamase [1]. The positions adjacent to the
instances of the identified gene set in the corresponding genomes were found to be enriched
in Blal (70/119 of the identified gene set instances versus 90/622 of the background gene set
instances, hypergeometric p-value = 1.11e-41).

In contrast to the identified gene set, the genes represented by the subtree that matches
the second part of Qs (frequent black HT, S and D events) are not enriched in the BlaR
domain (2/36), nor is there contextual enrichment in Blal (4/36) in positions immediately
adjacent to instances of these genes. Applying RSAM-finder to this data with simpler queries
that take into account only enrichment in environmental coloring does not yield this result,
nor does the application of RSAM-finder to this data with any part of @3 on its own.

The identified gene set for this result spans a wide range of Firmicutes, including both
pathogenic (e.g. staphylococcus) and non-pathogenic species (e.g. various gut microbes from
the Clostridiales order). Homology between BlaR receptor proteins and the extra-cellular
domain of Class D Beta-lactamases was previously observed [21, 8], mainly in gram-negative
bacteria (with focus on clinical samples).
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Thus, RSAM-finder identifies a putative Beta lactamase system in gram positive bacteria,

consisting of a COG2602-BlaR Beta lactamase-receptor protein and its Blal family repressor,
predicted to confer adaptation to animal and human host environment. Further comparative
sequence-level analysis [37] may reveal the affinity of this Beta lactamase system to specific

Beta lactam drugs.
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