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 10 

Abstract 11 

Background: The enzymatic activity of the microbiome toward carbohydrates in the 12 

human digestive system is of enormous health significance (Zou, Y., et al., 2019; Pinard, 13 

D., et al., 2015). Predicting how carbohydrates through food intake may affect the 14 

distribution and balance of gut microbiota remains a major challenge. Understanding 15 

the enzyme-substrate specificity relationship of the carbohydrate-active enzyme 16 

(CAZyme) encoded by the vast gut microbiome will be an important step to address 17 

this question. In this study, we seek to establish an in-silico approach to studying the 18 

enzyme-substrate binding interaction.  19 

Results: We focused on the key carbohydrate-active enzyme (CAZyme) and 20 

established a novel Poisson noise-based few-shots learning neural network (pFSLNN) 21 



for predicting the binding affinity of indigestible carbohydrates. This approach 22 

achieved higher accuracy than other classic FSLNNs, and we have also formulated new 23 

algorithms for feature generation using only a few amino acid sequences. Sliding bin 24 

regression is integrated with mRMR for feature selection.   25 

Conclusion: The resulting pFSLNN is an efficient model to predict the binding affinity 26 

between CAZyme and common oligosaccharides. This model can be potentially applied 27 

to binding affinity prediction of other protein-ligand interactions based on limited 28 

amino acid sequences.  29 

 30 
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 34 

Background 35 

In recent years, increased attention has been paid to the human c microbiome and its 36 

health effect. Those microorganisms, mostly bacteria, inhabit the human 37 

gastrointestinal tract and engage in a symbiotic relationship with their host 38 

(Huttenhower, C. et al., 2012) (Conlon, M. A. and Anthony, B., 2015). The species of 39 

microorganism presented in the human body varies among individuals. Up to now, over 40 

2000 species of the human microbiome have been discovered, and this number is 41 

predicted to increase as more human gut microbiome samples are collected (Almeida, 42 



A. et al., 2019). Within those identified species, 997 species are proven to have 43 

statistical significance in positively influencing human health, which is named probiotic 44 

microbiome. 45 

 46 

One conserved feature of the vast microbiome is the expression of carbohydrate-active 47 

enzymes (CAZyme). CAZymes are enzymes that perform the synthesis, recognition, 48 

and degradation (digestion) of carbohydrates. CAZymes are essential for the 49 

microbiome to break down the complex carbohydrates from various food sources, 50 

including plant cell walls and seaweeds (Huang, L. et al., 2018). Despite its prevalence, 51 

the human genome only expresses approximately 17 CAZymes (Bhattacharya, T. et al., 52 

2015). As such, most of the food carbohydrates that are indigestible to human enzymes 53 

also referred to as dietary fibers, are digested by CAZymes encoded in the gut 54 

microbiome. Human gut microbiome CAZymes are highly diverse in sequences 55 

(Huang, L. et al., 2018).  Remarkably, CAZymes encoded by the gut microbiome 56 

shows the adaptability to the carbohydrates accessible to the host (Jan-Hendrik 57 

Hehemann, et al., PNAS, 109, 19786, 2012). These observations suggest that 58 

understanding the enzyme-substrate specificity relationship of CAZyme of the gut 59 

microbiome may provide a way to use specific carbohydrates (prebiotics) to modulate 60 

population abundance and distribution of gut microbiota to promote probiotic effect. 61 

Carbohydrate-binding modules (CBM) are non-catalytic modules of CAZymes that 62 

facilitate substrate binding (Boraston, A.B. et al., 2004). This study will focus on 63 



substrate binding by CBMs of CAZymes expressed by human microbiomes. 64 

 65 

Oligosaccharides, consisting of 3-10 monosaccharides, are complex carbohydrates 66 

found in a wide variety of biological systems. Oligosaccharides are abundant in 67 

glycolipids and glycol proteins, where they play indispensable roles in cell recognition 68 

and cell adhesion. One of the commonly seen oligosaccharides is fructo-69 

oligosaccharide (also called oligofructan), which is mainly found in fruits and 70 

vegetables and has prebiotic activity as dietary fiber. Fructans can react with reactive 71 

oxygen species, and this antioxidant activity can reduce potential inflammation 72 

(Franco-Robles, E. and Mercedes G. L., 2015). While being a major component of the 73 

human diet, Fructo-oligosaccharides cannot be digested by native human digestive 74 

enzymes (Moise, A. and Maria R., 2017). They are solely digested by the human gut 75 

microbiome by bacterial CAZymes (Franco-Robles, E. and Mercedes G. L., 2015). 76 

However, the detailed enzyme-substrate recognition mechanisms between these 77 

prebiotic oligosaccharides and microbiome encoded CAZymes remain largely 78 

unexplored. To address this question, we seek to establish a high throughput and robust 79 

computational approach that can be used to predict the carbohydrate substrate 80 

preference by a given CAZyme of a specific bacterial species in the human gut 81 

microbiome.  As a first step toward this goal, here we studied the binding of four 82 

model carbohydrate substrates to the active sites of CAZyme: 1-kestose, raffinose, 83 

nystose, and stachyose. These are four fructo-oligosaccharides that are shown to be 84 



digestible by the human microbiome (Hayakawa, K. et al., 1990), thus are used as 85 

CAZyme binding substrates during protein docking to analyze their binding pattern. 86 

These analyses will provide a structural basis for future exploration of the enzyme-87 

substrate specificity relationship of CAZymes in the human gut microbiome at the level 88 

of big data. 89 

 90 

To facilitate binding affinity prediction, we used protein models generated by I-Tasser 91 

and binding affinity predicted by Molegro Virtual Docker (MVD). Structure simulation 92 

and modeling by I-Tasser are carried out to predict the tertiary structure of a given 93 

amino acid sequence (AAS). I-Tasser is by far one of the most accurate protein structure 94 

prediction servers (MacCarthy, E. and Derrick, P., 2019) with more than 90% quality 95 

prediction accuracy and 85.1% accuracy in assigned molecular functions (Roy, A. et al., 96 

2010). MVD is the software used for substrate-enzyme binding predictions between 97 

selected CBMs and the four aforementioned oligosaccharides. This software is also 98 

used in the docking analysis between chlorogenic acid and aldose reductase since it 99 

provides a consistent and relatively accurate score for binding models with different 100 

binding energy (Naeem, S. et al., 2013). MolDock algorithm used by this software 101 

provides protein cavity and substrate binding location predictions with around 87% 102 

accuracy and position deviation within 2Å (Thomsen, R. and Mikael H. Christensen., 103 

2006). MVD provides possible binding locations, binding energy scoring (rerank score), 104 

as well as cavity related fragment sequences and substrate binding residuals. MVD is 105 



by far the most optimum docking software considering accuracy, information output, 106 

and runtime.   107 

 108 

The simulation of binding interactions between the CAZyme CBM and substrate 109 

oligosaccharide is relatively accurate but highly time-consuming. An average docking 110 

process for one CAZyme on the I-Tasser server is approximately 30 hours. The advent 111 

of machine learning provides an efficient approach for this time cost issue. However, 112 

the difficulty for these enzymes and substrates to be in full data set simulation using 113 

any machine learning models is its lack of ample sample space. Heavy data training is, 114 

therefore, often impossible due to the scarcity of available enzyme/substrate structures. 115 

To overcome this limitation, we sought to apply few-shots learning (FSL) ideas and 116 

develop our version of protein sequence-based Poisson augmentation few-shots 117 

learning network. 118 

 119 

This study aims to establish a method of predicting enzyme-substrate (protein-ligand) 120 

binding affinity across an unlimited number of proteins in a given sample ensemble, 121 

based on a small sample (~50) of enzyme-substrate docking results. Few-shot learning 122 

is used to generate a neural network that is capable of differentiating the distinctive 123 

classes under various goals, for example, classifying pictures of different animal species 124 

will small data set (Richard, Z. et al., 2017) (Li, Z. et al., 2017). This property is 125 

especially important since the high variability of AAS in proteins allows testing samples 126 



to consist of rather various sequences from training samples. A neural network 127 

optimization algorithm of finding the loss of each round of neural network generation 128 

is a core feature of few-shot learning (Garcia, V. and Joan B., 2017). The loss algorithm 129 

applied is based on a prototypical neural network with adjustment of using accuracy 130 

rate instead of Euclidean distance; since among the various neural networks available, 131 

a prototypical neural network is the most reliable means of approach in this situation 132 

thanks to its outstanding performance in the small sample space in practices (Pan, Y. et 133 

al., 2019), which often outputs the prediction accuracy that has surpassed human 134 

recognition (He, K. et al., 2016). By integrating with few-shot learning algorithms, the 135 

prototypical neural network achieved an approximated 70% accuracy in 5-way 5-shot 136 

image classification (Richard, Z. et al., 2017). 137 

 138 

In this study, the whole set CAZyme CBMs of probiotic human microbiomes are 139 

obtained from CAZy-database (Lombard, V. et al., 2014). The over 4000 proteins are 140 

clustered based on K-nearest neighbors according to the primary structure. This study 141 

provides the novel idea of selecting anchor protein as bases for feature generation, 142 

including cavity site and protein binding site similarity calculated through fuzzy search 143 

according to anchor protein binding site fragment sequences. 144 

 145 

Aim to establish an improved few-shots learning model, we bring in the data 146 

augmentation through Poisson noise, since it represents the distribution of amino acid 147 



in 1D. Previous research shows that the site substitution mutation of proteins can be 148 

described by the Poisson-correction method (Sadygov, R. G., 2018). Especially when 149 

the substitution rate is independent among sites, Poisson -correction can best describe 150 

the scenario (Grishin, N. V., 1995). In this study, since the site-dependence of 151 

substitution is unknown, site-independent substitution will be assumed. In addition, we 152 

mapped the data into several higher dimensions. We have also compared the Poisson 153 

data augmentation with Gaussian, random, and salt-and-pepper noises.  154 

 155 

The major significance of this study is several folds: firstly, this study takes the first 156 

step towards understanding enzymatic function at the scale of the gut microbiome, 157 

which is a timely topic attracting much attention. Secondly, the study establishes a 158 

generalized method pipeline for future similar few shots learning in biology and is the 159 

first to try FSL and noise augmentation on proteins. Since the enzyme-substrate binding 160 

predictions are based on primary structure instead of the tertiary structure used in most 161 

other studies, the time of protein simulation can be reduced. Thirdly, the study sets up 162 

the first example for future studies of protein-substrate interactions to be performed 163 

with minimal data input and limited computational power with reasonable accuracy. 164 

 165 

Results 166 

 167 

1 Prototypical neural network for Few-shot learning  168 



 169 

This experiment aims to provide a method of prediction of protein-ligand interaction 170 

based on a small amount of labeled data, since acquiring the labeled training set using 171 

I-Tasser and Molgro is the most time-consuming. 172 

 173 

Using a small training set, though timelier, provides less accurate prediction results 174 

using traditional machine learning algorithms. To achieve better performance, we 175 

adopted and modified the prototypical neural network for few-shot learning. This model 176 

applies to our data set in two aspects. First is that most features of the data set resemble 177 

distance from a specific anchor data, which renders each data point inherent distance to 178 

a calculated prototype. This feature generating technique inherently implies the protein 179 

evolution tree, where proteins with similar functions from similar organisms closely 180 

resemble ligand binding site structure with each other. Second is that since the training 181 

set is small, multiple epochs of neural network formation are best to run to exploit the 182 

random selection of the starting point of linear regression so that the neural network 183 

which has the best performance during cross-validation can be selected. 184 

 185 

Applying prototypical neural network algorithms increases the F1 score of prediction 186 

for 18%, comparing the next best machine learning model SVM (table 1). Data 187 

augmentation techniques are also applied to the data set. Such a technique has been 188 

used in image recognition in previous studies of artificial intelligence industries. 189 



Previous studies on using data augmentation in FSL incorporated gaussian noise and 190 

linear transformations, and the prediction accuracy on EMNIST data and Face 191 

recognition reached accuracies of 80.25% and 58.46% using 25 samples (Antoniou, A. 192 

et al., 2017). Poisson noise augmentation was applied to the data set, and in optimum 193 

configurations, it increased the F1 score of prediction by 8.67%. The justification and 194 

discussion were stated in the following section (table 1).  195 

 196 

2 Effect of Poisson augmentation 197 

 198 

The augmenting input sequence increases the sample size, which better supports the 199 

neural net formation when experimental data scare. The natural mutation of AAS 200 

sequences is independent between each site of amino acid. The mutation rate of each 201 

AA remains constant, disregarding the sequence. Assuming the probability of 202 

occurrence of a specific event in a small interval of a sequence is equal to the 203 

macroscopic intensity, such mutation rate can be described by a Poisson distribution, 204 

where the value of lambda represents the mutation rate. This mutation rate consists of 205 

both total mutation rate, the possibility that an amino acid site will mutate versus will 206 

not mutate, and the amino acid-specific mutation rate, the probability of which amino 207 

acid the site will mutate. The amino acid-specific mutation state was generated by 208 

summarizing the occurrence frequency of each amino acid in the entire sample set. This 209 

likely represents the relative abundance of each amino acid. Such a method was 210 



compared with an evenly distributed model, in which the former model has better 211 

prediction results. A range of different total mutation rates was tested, and 10% gave 212 

the best result. The increase of the total mutation rate exhibits a possible trade-off 213 

between overfitting and information perseverance.  214 

 215 

3 Feature importance 216 

 217 

Minimum Redundancy Maximum Relevance (mRMR) algorithm was used to calculate 218 

the effectiveness and redundancy of the features. The mRMR score of each feature was 219 

calculated, and the features were rearranged accordingly. Without loss of generality, a 220 

sliding bin of 10-feature was used to slide over the rearranged features. Features in the 221 

bin were the only input features for the FSL algorithm. F1 scores of those trails were 222 

obtained and shown in figure 2. 223 

 224 

Features ranking 1-40 shows a decreasing trend as expected. A second peak appeared 225 

at feature group 51-60, suggesting that there are features, though redundant, are capable 226 

of providing more substantial information. The redundancy of features can be explained 227 

by either caused by combinations between features or the underlying scaling 228 

mechanism of the mRMR algorithm. The features were further rearranged according to 229 

the resulting F1 values to validate the claim above. Not to lose generality, a sliding bin 230 

of size 20 was used to generate three groups, with 1-10 and 51-60 in group 1, 11-20 and 231 



41-50 in group 2, and 21-30 and 61-70 in group 3. The resulting F1 values are shown 232 

in figure 2. 233 

 234 

51-60 contain all 9 Sugar binding Alignment scores and no Cavity Fragment Alignment 235 

scores. This can be explained by the possible redundancy of Sugar Binding Alignment 236 

as they are basically, as mentioned in the method section, Cavity Fragment Alignment 237 

with a sugar-binding coefficient matrix applied to the AA exchange matrix. This 238 

suggests that the modification of the sugar-binding coefficient does not have an 239 

apparent effect on the prediction ability of cavity fragments. 240 

 241 

The decreasing trend shown supports the hypothesis. This suggests that the most 242 

important features in this pNN neural network come from group 1 of the rearranged 243 

features. Note that the F1 score of intervals 1-10 and group 1 both exceeds the F1 score 244 

of all features suggesting that contradicting features downplays the predicting 245 

capability of the model.  246 

 247 

Table 2 listed out the types of features that are selected from the 71-feature to the top 248 

20 features generating the highest F1 value. High percentages of α-Helix prediction 249 

score and Cavity Fragment Alignment score was selected. The identified important 250 

features retain intrinsic structural significance. α-Helix prediction score consists of 251 

individual residue count (SSSH_01) and long strand count (SSSH_02). A higher score 252 



of either feature indicates the more abundant in α-helix (figure 4a, 4b). Cavity 253 

alignment and Sugar binding alignment scores show the possibility of occurrence of a 254 

similar cavity pattern between the sample protein and a given anchor protein (figure 4f). 255 

The whole sequence of sugar-binding score shows gives the average affinity of residues 256 

in the sample protein to a specific ligand (figure 4g). 257 

 258 

Protein samples with a high correlation in values of important features are likely to 259 

preserve similar structural identities and functionality. For example, P19 is a sample 260 

protein that has resulted in a perfect score aligning with anchor protein P5 (CFAL_05, 261 

SBAK_05), and such a relationship is validated by AAS alignment using super 262 

algorithm resulting in an RMSD of 0.389 (figure 4e). Whole sequence alignment shows 263 

the level of similarity in AAS between a sample and an anchor protein. P19, though 264 

possesses a drastically different sequence compared with P5, has a relatively high whole 265 

sequence alignment score (WSAL_05). Thus, a high structural similarity between P5 266 

and P19 is identified (figure 4c, 4d). Subsequent research indicates that P5 and P19 are 267 

glycogen debranching proteins in B. glumae and A. veronii (Lim, JaeYun, et al., 2009; 268 

Yang, Honghui, et al., 1996). Since B. glumae and A. veronii are of different classes, it 269 

is highly possible that P5 and P19 are enzymatic proteins that underwent convergent 270 

evolution. The discovery of the Glxg proteins provides evidence that this pFSLNN has 271 

the potential to identify proteins of similar function regardless of phylogenic origin. 272 

Using the same important features for assessment, we also identified P10 and P52 to 273 



contain similar residues in their binding cavity (figure 5). Those two proteins also come 274 

from different bacteria species. Despite having drastically different AAS, the two 275 

proteins showed similar key residues at their binding cavities. Such ability of this model 276 

can serve to accomplish the goal of classifying the human microbiome basing on 277 

enzymatic functionalities instead of 16s RNA, and be beneficial to the research of the 278 

functionalities of probiotics. 279 

 280 

Discussion 281 

 282 

This study focuses on the novel FSL with Poisson augmentation on data sets. This idea 283 

can be used in other fields such as genomic prediction, where datasets are few. The FSL 284 

model was built upon techniques in the generation of feature matrices, which can be 285 

applied to prediction models on interactions with unknown causal features but has 286 

symbolic labeled subjects as anchors. Another important finding is that certain features, 287 

including cavity fragment similarity and α-helix pattern, are important for the prediction 288 

of binding affinity for resistant sugars. Moreover, the method of evaluating features by 289 

sliding bin regression can be applied to other FSL learning models.  290 

 291 

It should be noted that there are certain limitations for this study: a) Although it 292 

facilitates the acquirement of virtual calculated binding affinity data when the dataset 293 

is small and especially when the mass structure simulation is not an option, the 294 



generalization of this specific Poisson augmented FSL pNN directly to others are 295 

relatively not easy. b)  It still remains as a question of whether certain features are 296 

causally representative of a special kind enzyme as predicted and selected by this model, 297 

and likewise, if an apparent unknown transferable feature set can be obtained among 298 

similar protein/enzyme species. c) Feature encoding combining vector embedding 299 

method and traditional ways in FSL needs to be further explored for the sake of 300 

prediction confidence and power. d) There are certain other FSL modes and patterns 301 

which could further enhance the prediction score if Poisson augmentation is added. 302 

Other methods using deep learning networks (Thapa, N. et al., 2020) may achieve better 303 

results for this kind of study, but in terms of time cost and coding vector embedding, it 304 

may not be very well suited to FSL framework, especially with pNN, but is definitely 305 

worthy of future investigation. e) Specifically, for CAZymes, more structural features 306 

involving side chain interactions with certain sugar structure types can be further 307 

explored. Depending on the interacting group characteristics, evaluation scores can be 308 

reranked towards certain preferences such as H-bond/aromatic stacking, and the results 309 

can be regionally optimized and cross-validated globally (McCartney, L. et al., 2004). 310 

Still, this study is only a small step towards understanding the CAZyme features among 311 

thousands of probiotic types. The intriguing world of probiotic bacteria and their 312 

CAZyme relationships, together with the charming world of FSL modeling, is definitely 313 

worth substantial future works to be devoted to. 314 

 315 



Conclusion 316 

The study focused on the binding of 4 typical resistant sugars with key carbohydrate-317 

active enzymes (CAZyme) and established a novel Poisson noise-based few-shots 318 

learning neural network (pFSLNN) for predicting the binding affinity of indigestible 319 

carbohydrates. This approach achieved higher F1 scores than other classic 320 

FSLNNs using Poisson noise augmentation, which has never been applied in the FSL 321 

fields before. The Poisson augmentation is found to be optimal at a 10% noise level. 322 

During the pFSLNN establishment, we have also formulated several new algorithms 323 

for generating feature matrix depending on a few linear amino acid sequences, such as 324 

sliding window fuzzy search and two-dimension threshold optimization. We have also 325 

evaluated feature importance by novel sliding window method. Several discoveries 326 

concerning the binding pattern of the resistant sugars have been made during the 327 

pFSLNN prediction: 1) Different proteins share relatively similar binding cavities and 328 

patterns concerning the same sugar substrate, with the same interaction residues and 3D 329 

structures around the sugar. 2) The overall structures can be quite similar even across 330 

different 16S classes with vastly distinctive sequences, which suggests that some key 331 

residues and fragment parts far from the cavity are enough to reestablish the similar 332 

same binding mode and the whole protein structures. These results suggest a new 333 

binding function-based relationship between CAZymes and resistant sugars from the 334 

structure perspective endowed by pFSLNN prediction. 335 

 336 



Methods 337 

1 Data collection 338 

1.1 Sample preparation 339 

A list of probiotic human microbiomes that contains 997 species was adopted from 340 

previous research (Forster, Samuel C., et al., 2016)). Each species was searched on the 341 

CAZy database (Alisdair B. et al., 2004) for its expressed CAZymes, and all CBM's 342 

AAS were downloaded. This pool of CBM contains 3749 molecules. To acquire AAS 343 

with distinct features, the pool of AAS was first grouped using K-mean cluster analysis. 344 

Without loss of generality, h = 500 was selected as the cutoff line, and 10 groups were 345 

generated. 6 AAS were randomly chosen from each group to make up the sample set of 346 

60 AAS. Random selection after clustering can ensure AAS with different general 347 

characteristics is evenly represented in the sample set. 348 

 349 

The 60 AAS samples were uploaded to the I-Tasser server (https://zhanglab.ccmb. 350 

med.umich.edu/I-TASSER/) for protein structure modeling and simulation. Substrate 351 

oligosaccharide models of 1-kestose (440080), raffinose (439242), nystose (166775), 352 

and stachyose (439531) were obtained from PubChem databank (Berman, H.M. et al., 353 

2000). Molgro Virtual Docker was used to detect carbohydrate-binding cavities and 354 

protein-ligand binding positions. The cavity was searched for each protein, and the 355 

binding position search was performed within a 15 Å radius around the center of the 356 

cavity after considering the sugar substrate sizes in this study. 10 binding simulations 357 



were performed for each protein-ligand pair. The binding position with the lowest 358 

Rerank score was recorded. For each AAS-oligosaccharide pair, ones with Rerank score 359 

below -100 were labeled as 1, representing binding, and others were labeled as 0, 360 

representing non-binding. Each AAS thus has four labels.  361 

 362 

1.2 Anchor AAS selection 363 

Assuming each AAS in different groups is distinct, one AAS from each group (10 in 364 

total) were selected as anchor AAS. Those AAS were not used as testing samples in the 365 

following few-shot learning process. For those 10 AAS, residues that are within 6Å 366 

(Biro, J. C., 2006) of the cavity site were recorded as cavity related fragments with 367 

connected residues in the same fragment. Fragments of less than three residues were 368 

neglected. Sugar-binding fragments were also recorded based on the binding position 369 

of each oligosaccharide. Those fragments were searched for in each AAS.  370 

 371 

The key concept of the feature generation pipeline is to obtain the binding pattern of 10 372 

anchor AAS. The higher similarity in secondary structure, cavity fragments, and sugar-373 

binding fragments between a tested AAS and an anchor AAS suggest a higher 374 

possibility for the two proteins to have the same protein-ligand binding pattern. Anchor 375 

AAS always has the maximum available score when compared to its secondary 376 

structure, cavity fragment, and sugar-binding fragments; thus, they were taken as 377 

feature standards by the prototypical neural network and remained in training set for 378 



each round of learning. 379 

 380 

1.3 Feature value matrices preparation 381 

According to the secondary structure sequence returned from I-Tasser, the frequency of 382 

each AA appearing as each general secondary structure type (Helix, Sheet, Coil) was 383 

recorded. These data were used to predict secondary structure.  384 

 385 

The AA exchange matrix was adopted from Lev Y. Yampolsky and Arlin Stoltzfus's 386 

research on The Exchangeability of Amino Acids in Proteins (Yampolsky, L.Y. and 387 

Arlin S., 2005), this matrix was used to assign similarity scores when performing fuzzy 388 

search between the cavity fragments and AAS. The sugar-binding coefficient was then 389 

applied to the AA exchange matrix to generate a sugar-binding exchange matrix. 390 

 391 

2 Neural network Preparation 392 

2.1 Feature generation pipeline 393 

For each AAS sample, a total of 71 features (6 from secondary structure score, 10 from 394 

binding cavity alignment, 10 from whole sequence alignment, 40 sugar-binding 395 

fragment alignment, 4 from sugar-binding whole sequence alignment, 1 from sample 396 

AAS length) were generated according to the AAS and the matrixes mentioned above: 397 

6 features were generated for secondary structure score, including the estimated number 398 

of promoting AA and estimated number of long consecutive representing each of the 399 



three general secondary structure types. Those parameters of secondary structure give 400 

hints to the overall shape of the protein, as more helix promoting AA with less helix 401 

strand suggests helix strands being longer towards a rod shape. 10 features were 402 

generated from cavity fragment alignment. Fuzzy search algorithm (Algorithm 2) was 403 

applied to cavity fragments generated from anchor proteins on each sample AAS to 404 

search for the longest succeeding fragment chain. A higher score against either anchor 405 

protein implies a higher possibility for a similar cavity to form. 10 features of the whole 406 

sequence alignment score implied the possibility of the whole sequence to present 407 

similar interactions between the anchor protein and sample AAS. 40 features were 408 

generated from the sugar-binding AA exchange matrix. The same algorithm was 409 

applied, but the AA exchange matrix has been modified according to the frequency of 410 

each AA binding with a respective oligosaccharide. 4 features of whole sequence sugar-411 

binding scores were generated using a fuzzy search algorithm with an interaction 412 

coefficient modification to the AA exchange matrix. 1 feature of AAS length was added. 413 

 414 

Using fragment and whole sequence similarity as a feature instead of direct and simple 415 

AAS has three advantages. Firstly, the median length of sample AAS is approximately 416 

530, introducing 530 features in building a neural network is unrealistically time-417 

consuming. Secondly, the properties of AA cannot be linearly represented due to 3D 418 

intramolecular structures. This means that the feature matrix for each AA would be 419 

indefinite and hard to be quantified in only 1 dimension. Thirdly, since the sample AAS 420 



has a different length, a convolutional neural network that was to be applied would be 421 

increasing its time cost. Since the aim of this study is to complete mass prediction in 422 

the shortest time with only a limited sample size, applying a fixed number of features 423 

that describe binding patterns would be optimum.   424 

 425 

2.2 prototypical Neural Network (pNN) formation  426 

For the 60 sample AAS, each AAS was 1:10 augmented by Poisson noise (detailed 427 

description is in the data augmentation section below). A matrix of 660 AAS samples, 428 

each with 71 features and 4 labels, was generated after the feature generation pipeline. 429 

AAS samples augmented from the same AAS sample, including the original AAS, were 430 

defined to possess the same root. The set of AAS samples was denoted D. The set of 431 

110 anchor AAS were denoted Danchor, where Danchor ∈D. 110 samples of 10 different 432 

roots from D - Danchor was randomly selected as the training set, denoted as Dtrain, the 433 

remaining is the testing set, denoted Dtest. The ratio between the training and testing set 434 

is 5:1.  435 

 436 

For each epoch of FSL training, Dtrain was divided into supporting set S and query set 437 

Q, where the number of samples in S and the number of samples in Q has a ratio of 4:1. 438 

440 AAS samples of 40 different roots, including DAnchor were used to compute the 439 

prototype from S. The training algorithm of the Few-Shot learning model is the same 440 

as Jake Snell, Kevin Swersky, and Richard Zemel’s (Richard, Z. et al., 2017). DAnchor 441 



was always included in the supporting set as they provided the guidelines of each 442 

feature. Anchor proteins contributed the most to the class generation as they have the 443 

most distinct feature values. The neural network generated that performs the 444 

classification is denoted NN. Q, consisting of the leftover 110 AAS, is used to compute 445 

Loss-J of NN. Loss-J was modified to be the number of incorrect predictions of this 446 

neural network on the validation set. As epochs proceed to 100, the NN with the least 447 

loss-J was selected to be returned as the best neural network (bNN). The prediction 448 

accuracy of bNN for Dtest was recorded. 449 

 450 

3 Feature generation  451 

3.1 Generation of secondary structure score 452 

-Feature structure 453 

Each amino acid sequence (AAS) input returned 6 values that consist of a secondary 454 

structure score, denoted as Mij (i∈[1,3], i∈[1,2]). Those values included estimation 455 

in the number of Amino acids (AA) promoting each classic secondary structure 456 

(Helixes, plated Sheets, and random Coils) that were denoted as H, S, and C, as well as 457 

the estimation of the number of long, consecutive strands (≥ 5) of AA promoting the 458 

same secondary structure. To be convenient as a demo, we defined a fragment of AAS, 459 

showing the consecutive occurrence of the same classic secondary structure over 5 460 

times as a secondary structure strand. 461 

 462 



The function that generates secondary structure scores, denoted GenSS(), was based on 463 

the secondary structure promotion matrix (sspM) and secondary structure promotion 464 

threshold matrix (sspT). sspM recorded the frequency of each AA appearing in each 465 

classic secondary structure after normalization according to the average and standard 466 

deviation of the training set. The normalization of this matrix allowed the values to be 467 

in a statistical range. sspT contained three sets of thresholds, which are the promotion 468 

bar, demotion bar, and the tolerance number. The two bars characterized AA into 469 

Promoting, indifferent, and demoting for each of the three secondary structure types. 470 

The promotion bar is the lower bound of the sspM value of a given AA being 471 

characterized to start or succeed a secondary structure strand. The demotion bar is the 472 

higher bound of the sspM value of a given AA being characterized to prohibit or 473 

terminate a secondary structure strand. AA with sspM value between the two thresholds 474 

is considered indifferent to a classic secondary structure type. The tolerance number is 475 

the minimum number of AA in a secondary structure strand to view the next indifferent 476 

AA as a successor of the ongoing secondary structure strand. 477 

 478 

-Generation process 479 

The data input that generates those matrixes consisted the AAS training set, denoted 480 

Atrian
ij (i∈[1,50], j∈[1, length(Atrian

i)]), where i and j mean the jth AA from the ith AAS 481 

of the set, and the secondary structure sequence (SSS) returned by I-Tasser, denoted 482 

Strian
ij (i∈[1,50], j∈[1,length(Strian

i)]).  483 



 484 

The data collection for mxy∈sspM (x∈[1,20], y∈[1,3]), where mxy represents the xth 485 

AA, or the AA “x”, and the yth classic secondary structure, is shown below. mxy finds 486 

the portion between an AA in the helix (sheet, coil) and the total amount of the AA type, 487 

normalized by the average and standard deviation of all three classic secondary 488 

structure types.  489 𝑚𝑥𝑦490 

= −𝑚𝑦̅̅ ̅̅ + ∑ 𝑓(𝐴𝑖𝑗𝑇𝑟𝑎𝑖𝑛)𝑖,𝑗 ∈ (𝐴𝑖𝑗𝑇𝑟𝑎𝑖𝑛=𝑥)∑ 1𝑖,𝑗 ∈ (𝐴𝑖𝑗𝑇𝑟𝑎𝑖𝑛=𝑥)𝜎𝑚𝑦                                                                           (1)491 

𝑓(𝐴𝑖𝑗𝑇𝑟𝑎𝑖𝑛)492 

= {1, 𝐴𝑖𝑗𝑇𝑟𝑎𝑖𝑛 =  𝑆𝑖𝑗𝑇𝑟𝑎𝑖𝑛0, 𝐴𝑖𝑗𝑇𝑟𝑎𝑖𝑛 ≠  𝑆𝑖𝑗𝑇𝑟𝑎𝑖𝑛                                                                                         (2)493 

The threshold matrix txy∈sspT (x∈[1,3], y∈[1,3]), where txy represents the x = 1 494 

(higher), x = 2 (lower), x = 3 (tolerance) threshold for the yth classic secondary structure, 495 

was optimized through linear regression of minimizing difference between GenSS() 496 

output value of Atrian
ij and Strian

ij. A demo run of GenSS() using the values from a given 497 

sspT was denoted by GenSSt(). The sspT was optimized when the difference between 498 

the estimated value and real value (running SSS in the same algorithms gives the real 499 

value) is minimized.  500 

 𝑑 ∑ |𝐺𝑒𝑛𝑆𝑆𝑡(𝐴𝑡𝑟𝑎𝑖𝑛) − 𝐺𝑒𝑛𝑆𝑆𝑡(𝑆𝑡𝑟𝑎𝑖𝑛)|𝐺𝑒𝑛𝑆𝑆𝑡(𝑆𝑡𝑟𝑎𝑖𝑛)𝑑𝑡501 = 0                                                                 (3) 502 



GenSS() has two parts: the first is counting the number of each secondary structure 503 

promoting AA. For the cth AAS, there are: 504 𝑀𝑖1505 

= ∑ 𝑓(𝐴𝑐𝑗𝑇𝑟𝑎𝑖𝑛)                                                                                                      (4) 𝑗 ∈ 𝐴𝑐𝑗𝑇𝑟𝑎𝑖𝑛506 

𝑓(𝐴𝑐𝑗𝑇𝑟𝑎𝑖𝑛)507 

= {1, 𝑚𝐴𝑐𝑗𝑇𝑟𝑎𝑖𝑛 𝑖 ≥  t1𝑖0, 𝑚𝐴𝑐𝑗𝑇𝑟𝑎𝑖𝑛 𝑖 <  t1𝑖                                                                                            (5)508 

The generation of Mi2 is further illustrated in Figure 8. 509 

 510 

3.2 Generation of fragment binding and whole sequence binding score 511 

-AA exchange fuzzy search 512 

Fuzzy search is a searching algorithm based on the sliding-window idea with a penalty 513 

of the difference applied to each distinctive element in the window (Vernica, R. and 514 

Chen L., 2009). The advantage of the sliding-window algorithm against the Smith-515 

Waterman algorithm is that the Smith-Waterman algorithm aims to find local 516 

alignments between the two strands, which neither must include the other, while the 517 

sliding-window algorithm ensures to find consecutive and including alignments. In 518 

addition, the Smith-Waterman algorithm aims to find the aligning strand while the aim 519 

of the fuzzy search is to return the alignment score for each site. 520 

 521 

The substitution matrix in this alignment was the AA exchange matrix, denoted aaEXij 522 



(i∈[1,20], j∈[1, 20]), where i is the substituting AA, and j is the substituted AA. The 523 

score for the same AA substitution is 1000, and the higher score indicated better 524 

substitution efficiency. One AAS of sequence and fragment were inputs for one round 525 

of fuzzy search. The fragment was being searched throughout the sequence. The 526 

sequence is denoted S, where Sm is the mth AA of the sequence. The fragment is denoted 527 

F, where Fn is the nth AA of the fragment. The Fuzzy search returns a vector of length 528 

m, denoted Rm. Each value of R represented the alignment score between S and F at the 529 

given position. The value was the average of aaEX values substituting each AA from 530 

the sequence for the AA from the fragment.  531 𝑅𝑖 =532 

 ∑ 𝑎𝑎𝐸𝑋𝑆𝑖+𝑗−1𝐹𝑗𝑙𝑒𝑛𝑔𝑡ℎ(𝐹)𝑗=1 𝑙𝑒𝑛𝑔𝑡ℎ(𝐹)                                                                                                      (6)              533 

 534 

-Longest increasing fragment 535 

A vector of cavity fragments was obtained from each anchor protein. Each fragment 536 

was labeled by its order in the anchor protein sequence. A new vector V of length m 537 

was first filled with placeholder values. For each Rxm, which x indicates the xth fragment 538 

from the anchor, looping through Rx, each i (i∈[1,m]) that has Rxi larger than threshold 539 

value T, Vi is labeled x.  540 𝑉𝑖 = 𝑓(𝑅𝑥𝑖)      𝑓(𝑅𝑥𝑖)541 = {0, 𝑅𝑥𝑖 < 𝑇𝑥, 𝑅𝑥𝑖 ≥ 𝑇                                                                                  (7)542 

A second vector W of the same length as V stored the fuzzy search alignment value of 543 



each corresponding position. A longest increasing subsequence searching algorithm 544 

(Aldous, D. and Persi D., 1999) was applied to V with the weight of each position 545 

modified to its corresponding value in W. The returning cavity fragment alignment 546 

score was the total weight of the longest increasing subsequence in V that was divided 547 

by the total number of AA in all the fragments.  548 

 549 

-Two-dimensional optimization of threshold T 550 

Threshold T was a crucial parameter in the search for the longest cavity strand. This 551 

parameter was decided to increase the standard deviation of each column vector of 552 

feature matrix while maintaining the minimum difference of such standard deviation 553 

across the 10 features. We denote each column vector of the 10 cavity fragment 554 

alignment of all samples as Fi (i∈ [1,10]), where i indicates the cavity fragment 555 

alignment vector with the ith anchor protein. The standard deviation of Fi using t as 556 

threshold T is denoted sdFi
t. The standard deviation of sdFi

t for i∈[1,10], is denoted 557 

sd(sdFt). t that fulfills equation 8 was chosen as T. T value is 608 in the experimental 558 

run.  559 

     𝑑   ∑ 𝑠𝑑𝐹𝑖𝑡10𝑖 =1  𝑠𝑑(𝑠𝑑𝐹𝑡)      𝑑𝑡560 = 0                                                                                                          (8)561 

 562 

-Whole sequence fuzzy search 563 

For the whole sequence alignment score, the shorter sequence between the anchor 564 



sequence and the sample sequence was viewed as a fragment. The same algorithm in 565 

the previous section is applied with the substituting and substituted AA assigned 566 

according to the compared length between the two AA. AA was substituted from the 567 

sample AAS to the anchor AAS. The fuzzy search alignment value was returned as the 568 

whole sequence alignment score.  569 

 570 

-Sugar binding matrix 571 

4 sugar-specific binding matrix was multiplied with a coefficient to aaEX to form sugar-572 

binding AA exchange matrix denote sbEXi
mn (i∈ [1,4], m,n∈ [1,20]), where i 573 

represents 1-kestose, nystose, raffinose, and stachyose, n, and m represent substituting 574 

AA m with AA n. 4 vectors of AA-sugar interaction frequency, denoted sbVj (j∈[1,20]), 575 

where j represents AA. For i∈[1,4], the AA-sugar affinity matrix was generated by 576 

counting AA residuals that appear within 5Å (Sharma, R. et al., 2008) of the sugar-577 

binding site. This method is similar to the method introduced in the work by Misaki 578 

Banno when performing AA-sugar affinity prediction (Banno, M. et al., 2017). sbMi
mn

 
579 

was a matrix that contains the ratio between sbVn and sbVm. A larger ratio represents a 580 

higher affinity of substituted AA. sbEXi was generated by applying a sbMi filter, 581 

multiplied by a factor F, on aaEX. 582 



𝑠𝑏𝐸𝑋𝑚𝑛𝑖
583 = 𝑎𝑎𝐸𝑋 584 × (1 + 𝐹585 × (𝑠𝑏𝐸𝑋𝑚𝑛𝑖  586 −  1))                                                             (9) 587 

F was also optimized using equation 8, replacing T by F.  588 

 589 

3.3 Whole sequence sugar-binding 590 

4 whole sequence sugar-binding score, one for each oligosaccharide ligand, was 591 

generated. AA-sugar interaction matrix was obtained using the same method as above. 592 

The difference is that AA in the whole sequence was accounted for instead of AA 593 

residuals that appear within 5Å of the sugar-binding site. And the average of AA-sugar 594 

interaction score for all AA in the protein was calculated as the whole sequence sugar-595 

binding score.   596 

 597 

3.4 Poisson augmentation 598 

Poisson augmentation simulates the mutation of AAS to increase the sample size. The 599 

usage of Poisson distribution relied on the assumptions 1) AA mutation chance is 600 

independent of AA site; 2) the effect of minor mutations will not affect sugar-binding 601 

efficiency. This augmentation process required an AA frequency matrix, denoted aaFMi 602 

(i∈ [1,20]), where i represents AA, and a mutation chance at each site C. The 603 



probability mass function of Poisson distribution is given by function (10). The value 604 

of k = 1 and the value of λ was calculated by equation (11).  605 𝑝606 

=  𝜆𝑘𝑒−𝜆𝑘!                                                                                                                               (10)607 𝜆𝑖608 = 𝐶 609 ×  𝑎𝑎𝐹𝑀𝑖∑ 𝑎𝑎𝐹𝑀                                                                                                                (11)610 

20 λ values formed an accumulated interval sequence. After an AAS was input to the 611 

Poisson augmentation function, a random number from 0 to 1 was generated for each 612 

site of AA. The interval in which the random number falls into determines if the AA at 613 

this given site would mutate and which AA it would mutate to.  614 

 615 

The Poisson augmentation function was run on each sample AAS for 10 times to 616 

generate a set of augmented AAS of the same root. Test trials of C = 5%, 10%, and 20% 617 

were performed, and C = 10% gave the best prediction results. Augmented AAS ran the 618 

same feature generation pipeline. 619 
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 758 

Figure legends 759 

Figure 1: Fructo-Oligosaccharides. Name, CAS number, 3D structure, and 2D structure 760 

of the four fructo-oligosaccharides that are used as substrates in this study. 761 

Figure 2: F1 scores of FSL models trained using each 10-feature groups arranged 762 

according to mRMR scores. 763 

Figure3: F1 score of FSL models inputting 20 features from three groups of mRMR 764 

intervals.  765 

Figure 4: Structural presentation of sample proteins. a) Structure of P9 with alpha 766 

helixes in red. SSSH_01 = 12, SSSH_02 = 150. b) Structure of P6 with alpha helixes 767 

in red, SSSH_01 = 1, SSSH_02 = 35. c) Structure of anchor protein P5 with alpha 768 

helixes in blue and beta sheets in yellow; binding ligand1-kestose is shown in red. d) 769 

Structure of protein P19 with alpha helixes in blue and beta sheets in yellow; binding 770 

ligand1-kestose is shown in red. e) Structural alignment of cavity fragments of P5 (blue) 771 



and P19 (gray) using align function in pymol with alignment RMSD = 0.389; residue 772 

labels are shown in corresponding colors. f) Sample AAS alignment of P5 (GlgX [B. 773 

glumae]) and P19 (GlgX [A. veronii]) around the two cavity fragments; aligned AA of 774 

a given secondary structure or belongs to a cavity fragment is shown in the color scheme. 775 

g) Sample AAS alignment of non-cavity parts of P5 and P19, with AA of a given 776 

secondary structure shown in the color scheme. 777 

Figure 5: Predicted interaction of two CAZyme CBMs (P10 and P52) with 1-kestose. 778 

P10 and P52 are highly correlated according to group 1 features, while having no 779 

significant similarity in sequence. Similar amino acid residues are found in the radius 780 

of the interaction of both P10 and P52, including SER, ALA, ARG, and LEU. This 781 

suggests that the feature matrix may obtain inherent biological meaning. a) Interaction 782 

model of P10 viewing from beta-D-fructofuranose. b) Interaction model of P10 viewing 783 

from beta-D-fructofuranosyl residue. c) Interaction model of P10 viewing from alpha-784 

D-glucopyranosyl residue. d) Interaction model of P52 viewing from beta-D-785 

fructofuranose. e) Interaction model of P52 viewing frombeta-D-fructofuranosyl 786 

residue. f) Interaction model of P52 viewing from talpha-D-glucopyranosyl residue. 787 

Figure 6: Flow chart for feature generation procedure. Arrows show derivation. 788 

Figure 7: Flow chart of feature matrix generation and pFSLNN process. 789 

Figure 8: This figure illustrates the bases of the algorithm estimating the number of 790 

residuals of each general secondary structure type. Without loss of generality, α-Helix 791 

(H) is shown as an example. A cursor scans over the input AAS to find the first H 792 



promoting AA. A secondary structure strand of H begins. When the strand length is 793 

more than or equal to 5, the strand is considered a long strand. As the cursor proceeds, 794 

3 types of successor (promoting, demoting, indifferent) AA can result in 5 cases. Initial 795 

sspTH = (-0.5, -1.6, 2).  796 
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Tables  798 

Table 1:                        Accuracy and F1 score for experimented models  799 

Table 2:            Percentage of selected feature types in the top 20 features 800 



Figures

Figure 1

Fructo-Oligosaccharides. Name, CAS number, 3D structure, and 2D structure of the four fructo-
oligosaccharides that are used as substrates in this study.



Figure 2

F1 scores of FSL models trained using each 10-feature groups arranged according to mRMR scores.

Figure 3

F1 score of FSL models inputting 20 features from three groups of mRMR intervals.



Figure 4

Structural presentation of sample proteins. a) Structure of P9 with alpha helixes in red. SSSH_01 = 12,
SSSH_02 = 150. b) Structure of P6 with alpha helixes in red, SSSH_01 = 1, SSSH_02 = 35. c) Structure of
anchor protein P5 with alpha helixes in blue and beta sheets in yellow; binding ligand1-kestose is shown
in red. d) Structure of protein P19 with alpha helixes in blue and beta sheets in yellow; binding ligand1-
kestose is shown in red. e) Structural alignment of cavity fragments of P5 (blue) and P19 (gray) using



align function in pymol with alignment RMSD = 0.389; residue labels are shown in corresponding colors.
f) Sample AAS alignment of P5 (GlgX [B. glumae]) and P19 (GlgX [A. veronii]) around the two cavity
fragments; aligned AA of a given secondary structure or belongs to a cavity fragment is shown in the
color scheme. g) Sample AAS alignment of non-cavity parts of P5 and P19, with AA of a given secondary
structure shown in the color scheme.

Figure 5



Predicted interaction of two CAZyme CBMs (P10 and P52) with 1-kestose. P10 and P52 are highly
correlated according to group 1 features, while having no signi�cant similarity in sequence. Similar amino
acid residues are found in the radius of the interaction of both P10 and P52, including SER, ALA, ARG,
and LEU. This suggests that the feature matrix may obtain inherent biological meaning. a) Interaction
model of P10 viewing from beta-D-fructofuranose. b) Interaction model of P10 viewing from beta-D-
fructofuranosyl residue. c) Interaction model of P10 viewing from alpha-D-glucopyranosyl residue. d)
Interaction model of P52 viewing from beta-D-fructofuranose. e) Interaction model of P52 viewing
frombeta-D-fructofuranosyl residue. f) Interaction model of P52 viewing from talpha-D-glucopyranosyl
residue.

Figure 6

Flow chart for feature generation procedure. Arrows show derivation.



Figure 7

Flow chart of feature matrix generation and pFSLNN process



Figure 8

This �gure illustrates the bases of the algorithm estimating the number of residuals of each general
secondary structure type. Without loss of generality, α-Helix (H) is shown as an example. A cursor scans
over the input AAS to �nd the �rst H promoting AA. A secondary structure strand of H begins. When the
strand length is more than or equal to 5, the strand is considered a long strand. As the cursor proceeds, 3
types of successor (promoting, demoting, indifferent) AA can result in 5 cases. Initial sspTH = (-0.5, -1.6,
2).
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