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ABSTRACT 

Despite significant progress in dissecting the genetic architecture of complex diseases by 

genome-wide association studies (GWAS), the signals identified by association analysis may not 

have specific pathological relevance to diseases so that a large fraction of disease causing genetic 

variants is still hidden.  Association is used to measure dependence between two variables or two 

sets of variables. Genome-wide association studies test association between a disease and SNPs 

(or other genetic variants) across the genome. Association analysis may  detect superficial 

patterns between disease and genetic variants. Association signals provide limited information on 

the causal mechanism of diseases. The use of association analysis as a major analytical platform 

for genetic studies of complex diseases is a key issue that hampers discovery of the mechanism 

of diseases, calling into question the ability of GWAS to identify loci underlying diseases. It is 

time  to move beyond association analysis toward techniques enabling the discovery of the 

underlying  causal genetic strctures of complex diseases. To achieve this, we propose  a concept 

of a genome-wide causation studies (GWCS) as an alternative to GWAS and develop additive 

noise models (ANMs) for genetic causation analysis. Type I error rates and power of the ANMs 

to test for causation are presented. We conduct GWCS of schizophrenia. Both simulation and 

real data analysis show that the proportion of the overlapped association and causation signals is 

small. Thus, we hope that our analysis will stimulate discussion of GWAS and GWCS.   

 

 

 

 



INTRODUCTION 

Although significant progress in dissecting the genetic architecture of complex diseases by 

GWAS has been made, the overall contribution of the new identified genetic variants is small 

and a large fraction of causal genetic variants is still hidden. Association is to measure 

dependence between two variables or two sets of variables in the data and to use these 

dependencies for prediction that is not dealing with causal problems (Altman and Krzywinski, 

2015; Lopez-Paz 2016). Association analysis may detect superficial patterns between disease and 

genetic variants. Its  signals provide limited information on the causal mechanism of diseases 

(Kahrilas and  Kahrilas 2019). Association analysis has been a major paradigm of genetic 

analsyis of complex diseases for  almost a century. Understanding the etiology and mechanism 

of complex diseases using association analysis remains elusive.  Most genetic questions to 

uncover the mechanism of the disease is causal in nature. Causation analysis is an essential to the 

genetic analysis of complex diseases, yet ignored for long time (Lopez-Paz 2016; Kreif  and 

DiazOrdaz 2019).   

     It is well recognized that association analysis is not a direct method to discover the causal 

mechanism of complex diseases. Many investigators think that “association is essential to 

causation” and hope that we can successfully shift from association to causation (Jones et al. 

2017). A current paradigm to make transition from association to causation is through omics 

analysis (Clyde 2017; Ongen et al. 2017). However,  such approaches have two limitations. First  

most current omics analysis still detect association signals. For example, eQTL analysis that tests 

for association of a discrete variable (genetic variant) with a continuous variable (gene 

expression) is still association analysis. Observed association may not lead to inferring a causal 

relationship ( Orho-Melander 2015; Lee et al. 2018). The recent study has found that 



“association signals tend to be spread across most of the genome (Boyle et al. 2017). The 

paradigm of GWAS with eQTL may still fail to identify the causal paths from genetic variants to 

disease.  Second,  the lack of association may not be necessary to imply the absence of a causal 

relationship (Callaway et al. 2017).  The set of causal loci including causal QTL, causal eQTL, 

and causal mQTL is not the subset of association loci that are identified in QTL, eQTL and 

mQTL analysis simply because QTL, eQTL and mQTL analysis are based on regression. A large 

proportion of causal loci may not be discovered by association analysis. Finding causal SNPs 

only via searching the set of associated SNPs may miss many causal SNPs. In summary, the use 

of association analysis as a major analytical platform for genetic studies of complex diseases is a 

key issue that hampers identification of causal SNPs and discovery of the causal mechanisms of 

the diseases.       

     Distuinguishing causation from association is an age-old problem. Methods for causation 

analysis that is one of the greatest challenging problems in science and technology need to be 

developed as an alternative to association analysis (Zenil et al. 2019). Without a proper causal 

analysis, to fully detect causal SNPs is not possible in general.  Intutively, causation implies that 

changes in one variable will directly make changes in the other (Jaffe 2010). The essential 

distinction between association and causation relies on what the response will be if we intervene 

in the system (Lattimore and Ong 2018). There are two types of causal inference: intenventional 

causal inference and observational causal inference (Kaplan 2018). Interventional causal 

inference learns the effect of taking an action directly via experiments, for example, randomized 

controlled trials. Interventional experiments are a gold standard for causal inference. However, 

since in human genetics, we cannot change the genetic materials of human subjects, 

experimental interventions are unethical and infeasible. Therefore, it is essential to develop 



statistical methods and algorithms to predict the outcomes of an intenvention from passive 

observation  (Spirtes et al. 2000; Lattimore and Ong 2018). In this paper, we take an 

observational causal inference approach to identifying causal  SNPs.  

Although we infer causation from observation data, our concept of causation is derived from 

intervention (Pearl 2019).  In principle, causal inference is based on interventional distribution. 

The do-calculus is used as an essential concept for causal inference, which can simplify the 

expression for an interventional distribution. Repeated applications of the do-calculus will lead 

to an expression containing only observational quantities that can be used to estimate the 

interventional distribution from observational data (Lattimore and Ong 2018). Therefore, the do-

operation is a key concept that makes observational causal inference feasible.  

Three essential frameworks: causal Beyesian networks, structural equation models and  

counterfactuals have been developed for observational causal inference (Rosenbaum and Rubin 

1983; Pearl 2000; Peters et al. 2014; Peters et al. 2017; Xiong 2018; Lattimore and Ong 2018).  

In history, causal Beyesian networks, structural equation models and counterfactuals developed 

relatively independently in different fields, but they can be unified using interventional queries 

with do-calculus (Lattimore and Ong 2018). This allows methods and algorithms developed 

within one framework to be easily applied to one another,  and also allows predictions about the 

consequences of intervening upon (rather than merely observing) variables, and provides a 

method of evaluating counterfactual claims. Therefore, we will use do-calculus as an unified 

framework for causal inference. 

Similar to GWAS which investigates the dependence relationship between SNPs and disease 

at a time, GWCS investigates the causal relationship between SNPs and disease at a time,  



referred to as bivariate causal discovery. The traditional causal inference theory infers causal 

relationships among more than three variables and cannot be applied to bivariate causal 

discovery. Only recently the independence of cause and mechanism (ICM) and functional causal 

model, specifically additive noise models (ANMs) (Peters et al. 2017; Xiong 2018), has been 

proposed. ICM and discrete ANMs can be applied to GWCS.  

For a long time, many genetic epidemiologists hold a view that that causal inference from 

observational data is impossible. Some views and concepts that misunderstand causation widely 

exist in genetic epidemiology. There is also lack of  algorithms for causal inference in genetics. 

Purpose of this paper is to rigorously define causation, clarify concept of causation and 

association and develop effective causal models and algorithms that can be easily used to 

discover causal structure in genetic analysis.  While there is increasing evidence that association 

signals provide limited information on causes of disease and some investigators call the future of 

the GWAS into question (Callaway 2017), the modern causal inference theory provides powerful 

tools for bivariate causal discovery. In the past two dacades, causal theory has been well 

developed and is becoming an important component of artificial intelligence (AI).  “Reasoning in 

causal terms is omnipresent, from fundamental physics to medicine, social sciences and 

economics, and in everyday life” (Barrett et al. 2019).   

It is urgent to develop concepts and theory to show that under the right conditions and 

assumptions, causal-effect relationship between two variables can be inferred from purely 

observational data. It is time to develop a new generation of genetic analysis to shift the current 

paradigm of genetic analysis from association analysis to causal inference. To make the shift 

feasible, we will rigorously use do-calculus to model intervations, define the concept of 

causation, unify counterfactuals, functional causal models and ICM, and investigate the 



connections and difference between association and causation. ANMs are easily used causal 

models. We use ANMs 𝑌𝑌 = 𝑓𝑓𝑌𝑌(𝑋𝑋) + 𝑁𝑁𝑌𝑌 where 𝑌𝑌 represents the disease status, 𝑋𝑋 represents the 

indicator variable for the genotype of a SNP, and   𝑁𝑁𝑌𝑌  represents some residual term,  as a 

general framework to distinguish causal directions and  develop a new ANM-based statistic to 

test causation of SNP locus with the disease, which will be used for GWCS of complex disease. 

Under the assumption of no counfounders (causal model with counfounders will be discussed 

somewhere else), we investigate the identifiability of the ANM-based statistics for bivariate 

(SNP and disease) causal discovery.  Since an analytical form for the distribution of the causal 

test statistic is difficult to derive, permutation methods will be used to compute the distribution 

of the causal test. 

To evaluate its performance for genetic causal analysis, we use large scale simulations to 

calculate the type I error rates of of the ANM-based statistics to test causation and to ompute its 

power under various conditions. To further evaluate its performance, an ANM-based casual test 

is applied. The proposed method is applied to the CATIE-MGS-SWD schizophrenia (SCZ) study 

dataset with 8,421,111 common SNPs typed in 13,557 individuals to perform GWCS of SCZ. To 

further investigate the properties of the ANM-based causal test, we will investigate the prediction 

ability of causal SNPs and impact of linkage disequilibrium (LD) on the causation analysis. Our 

purpose is to provide a detailed analysis of GWAS and GWCS as a response to the comments 

about the ability of GWCS to identify disease causing loci (Orho-Melander 2015).  

 

Basic concepts of association and causation 



In this section, we briefly introduce causal inference theory to make this section as self-

contained as possible. We assume that two variables 𝑥𝑥  and 𝑦𝑦  are considered. Their joint 

distribution is denoted by 𝑃𝑃(𝑥𝑥,𝑦𝑦). Association between two variables 𝑥𝑥 and 𝑦𝑦 are defined as 

dependence between them. Statistically, association between 𝑥𝑥 and 𝑦𝑦 is defined as 

𝑃𝑃(𝑦𝑦|𝑥𝑥) ≠ 𝑃𝑃(𝑦𝑦).          (1) 

Statistical dependence is a symmetric concept: if the variable 𝑥𝑥 to depends on the variable 𝑦𝑦, 

then the variable 𝑦𝑦 also depends on the variable 𝑦𝑦.  

      Classical machine learning and statistical methods, built on pattern recognition and 

association analyses, are insufficient for causal reasoning. The science of causal reasoning is 

developing in various disciplines. In different disciplines, there may be different definitions of 

causations. Four key approaches have emerged: structural equation models, causal Bayesian 

networks, counterfactuals and independence of cause and mechanism (ICM) (Lattimore and 

Ongv 2018; Marsala 2015; Peters et al. 2017; Xiong 2018). The four schools of causality have 

been recently unified. Intervention calculus (do-calculus) can be taken as an unifuing language 

for causal inference. 

Intervention calculus 

    The purpose of intervention calculus is to describe the mathematical conditions under which 

we can make causal inference from observational data. Intuitively, causation is defined as the 

encoding of potential outcomes under intervention. Intervention is surgeries on mechanism.  In 

other words, changes in one variable under intervention will affect the outcomes of another 

variable and hence can be used to measure effects of intervention (action).   



  We consider two variables 𝑋𝑋 and 𝑌𝑌. A causal model can be defined by intervention (action) as 

follows. If we do 𝑋𝑋 (forcing the random variable 𝑋𝑋 to take a specified value), then 𝑌𝑌 will be 

affected. Causation analysis investigates prediction of the effects of actions that perturb the 

observed system (Mooij et al. 2016). 

    We use 𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑 (𝑋𝑋)) to denote the distribution of 𝑌𝑌 conditional on an intervention that sets 

𝑋𝑋 = 𝑥𝑥.  Now 𝑋𝑋 causing 𝑌𝑌 can be methatically defined as 

𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑(𝑋𝑋1)) ≠ 𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑(𝑋𝑋2)) for some 𝑋𝑋1,𝑋𝑋2,𝑋𝑋1 ≠ 𝑋𝑋2.     (2) 

If 𝑋𝑋 causes Y (𝑋𝑋 → 𝑌𝑌), then in general,  we have 

𝑃𝑃(𝑌𝑌|𝑋𝑋) = 𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑(𝑋𝑋)) ≠ 𝑃𝑃(𝑌𝑌).       (3) 

However, 𝑃𝑃�𝑋𝑋�𝑑𝑑𝑑𝑑 (𝑌𝑌)� = 𝑃𝑃(𝑋𝑋) ≠ 𝑃𝑃(𝑋𝑋|𝑌𝑌), or if 𝑌𝑌 causes 𝑋𝑋 (𝑌𝑌 → 𝑋𝑋) then  

          𝑃𝑃�𝑌𝑌�𝑑𝑑𝑑𝑑(𝑋𝑋)� = 𝑃𝑃(𝑌𝑌) ≠ 𝑃𝑃(𝑌𝑌|𝑋𝑋). 

Although the joint probability can be factorized in terms of marginal distribution and conditional 

istribution as  

𝑃𝑃(𝑋𝑋𝑋𝑋) = 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌|𝑋𝑋) = 𝑃𝑃(𝑌𝑌)𝑃𝑃(𝑋𝑋|𝑌𝑌), 

If 𝑋𝑋 causes Y (𝑋𝑋 → 𝑌𝑌), we have the factorization: 𝑃𝑃(𝑋𝑋𝑋𝑋) = 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑(𝑋𝑋)), but in this case 

(𝑋𝑋 → 𝑌𝑌), we do not have 𝑃𝑃(𝑋𝑋𝑋𝑋) = 𝑃𝑃(𝑌𝑌)𝑃𝑃(𝑋𝑋|𝑑𝑑𝑑𝑑(𝑌𝑌)), i.e.,  𝑃𝑃(𝑋𝑋𝑋𝑋) ≠ 𝑃𝑃(𝑌𝑌)𝑃𝑃(𝑋𝑋|𝑑𝑑𝑑𝑑(𝑌𝑌)),  the 

joint probability of 𝑋𝑋 and 𝑌𝑌 cannot  be factorized in terms of marginal distriation 𝑃𝑃(𝑌𝑌) and 

interventional  probability distribution 𝑃𝑃(𝑋𝑋|𝑑𝑑𝑑𝑑(𝑌𝑌)) unless 𝑋𝑋  and 𝑌𝑌 are independent. 



     For the genetic problem,  𝑌𝑌 represents a disease status and 𝑋𝑋 represents a genotype. The 

action do 𝑋𝑋 means that changing genotype 𝑋𝑋 is conducted (for human subject this is impossible, 

but for animal, it can be done by genome editing).   Intervention calculus implies that  if 𝑋𝑋 

causes disease,  then 𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑𝑑𝑑)) = 𝑃𝑃(𝑌𝑌|𝑋𝑋), otherwise if 𝑋𝑋 is not disease lcous, then 

𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑(𝑋𝑋)) = 𝑃𝑃(𝑌𝑌) ≠ 𝑃𝑃(𝑌𝑌|𝑋𝑋).  

    Do-calculus can also be defined as 𝐸𝐸[𝑌𝑌|𝑑𝑑𝑑𝑑(𝑋𝑋)]. If effect variable 𝑌𝑌 is a binary variable, then 

we have 

𝐸𝐸[𝑌𝑌|𝑑𝑑𝑑𝑑(𝑋𝑋)] = 𝑃𝑃(𝑌𝑌 = 1|𝑑𝑑𝑑𝑑(𝑋𝑋)). 

The various relationships between marginal, conditional and interventional distributions of 𝑋𝑋 

and 𝑌𝑌  under causation and association are summarized in Figure 1. Figure 1 (d) clearly 

demonstrates differences between association and causation. Although temperate in the room and 

thermometer are associated, since temperature causes changes in  thermometer, change in 

thermometer cannot change the temperature in the room, i.e., 𝑃𝑃(𝑋𝑋|𝑑𝑑𝑑𝑑(𝑌𝑌)) = 𝑝𝑝(𝑋𝑋).  

In summary, association is studied by observed conditional distribution and causation is 

investigated  by interventional distribution where causal effect is determined by the effect of 

hypothetic manipulation of an input on an output. In other words, association is investigated by 

seeing and causation is investigated by doing. To illustrate the the difference between seeing and 

doing, we present the following example:  

Example 1 

Consider  

𝑍𝑍𝑖𝑖~𝑁𝑁(0,1), 



𝑋𝑋𝑖𝑖 ← 2𝑍𝑍𝑖𝑖, 

        𝑌𝑌𝑖𝑖 ← 2𝑋𝑋𝑖𝑖 + 𝑍𝑍𝑖𝑖2. 

Then, from the observed data generated by this model, we can estimate that 

𝐸𝐸[𝑌𝑌|𝑋𝑋 = 1] ≈ 2
1
4

 .  

Next we perform intervention do (𝑋𝑋 = 1) . Then, the intervened generative model is 

𝑍𝑍𝑖𝑖~𝑁𝑁(0,1), 

𝑋𝑋𝑖𝑖 ← 1, 

        𝑌𝑌𝑖𝑖 ← 2𝑋𝑋𝑖𝑖 + 𝑍𝑍𝑖𝑖2. 

Then, we obtain that 

          𝐸𝐸[𝑌𝑌|𝑑𝑑𝑑𝑑(𝑋𝑋 = 1)] ≈ 3 . 

This clearly demonstrates that seeing and doing are quite different. 

 

Conuterfactual  

Causality can also be defined in terms of potential outcomes or counterfactuals in the 

Neyman-Rubin causal model (Rosenbaum and Rubin 1983). We can read interventional 

distribution 𝑃𝑃�𝑌𝑌�𝑑𝑑𝑑𝑑(𝑋𝑋)�  as counterfactual questions: “what would have been the distrution of 𝑌𝑌  

had 𝑋𝑋 = 𝑥𝑥?” (Lopez-Paz 2016). Intuitively, counterfactuals assume the presence of an alternative  

world where everything is the same as the factual world, except for the alternative (hypothetical) 

intervention and its effects.  

For simplicity, consider a binary treatment 𝑇𝑇 = {0,1} or potential intervention, where 𝑇𝑇 = 1 

indicates the treatment (intervention) and 𝑇𝑇 = 0 indicates the control (no intervention). Each 

individual has two potential outcomes, {𝑌𝑌𝑖𝑖1,𝑌𝑌𝑖𝑖0}, one for each value of the treatment: 



𝑌𝑌𝑖𝑖1:  potential outcome if the individual received a treatment (𝑇𝑇𝑖𝑖 = 1) , 

𝑌𝑌𝑖𝑖0: potential outcome if the individual received no treatment (𝑇𝑇𝑖𝑖 = 0) . 

    This implies that a potential outcome is the outcome that would be realized if the individual 

received a specific value of the treatment (intervention). A SNP has two alleles. We can define  

𝑇𝑇 = �1 allele 𝐴𝐴
0 allele 𝑎𝑎 . 

    The  potential outcome is 1 if the individual is affected, potential outcome is 0 if the individual 

is normal. Let 𝑋𝑋 be the set of contexts (covariates).  

The “fundamental problem of causal inference” (Holland 1986) is that we can only observe 

one of the potential outcomes rather than both of them. The unobserved (missed) potential 

outcome is called “counterfactual” outcome. Similar to do-calculus, coundetrfactual can be 

defined as stating that 𝑌𝑌� would change to 𝑌𝑌 if it were 𝑇𝑇. In other words, we imagine that value 𝑌𝑌 

would be taken if we did hypothetical intervention T. Causal effects are defined as differences in 

counterfactual variables. In other words, it measures difference between what would have 

happened if we did one thing versus what would have happened if alternatively, we did 

something else (Lattimore and Ong 2018). A brief overview about counderfactual theory is 

summarized in Supplementary A. 

Structural equation model and independence of cause and mechanism (ICM) 

   The third language of causation which we inrtoduce is structural equation moels (SEMs).  

SEMs can be used to model causal relationships between some given variables, where each 

variable is expressed as a function of some other variables (its causes or treatments) as well as 



some noise (Nowzohour and Bühlmann 2016, Xiong 2018).  The model consists of three 

essential components: (1) causal structure, (2) the functional dependence among causal and 

effect variables, and (3) the joint distribution of the noises. We  assume that (1) there are no 

unobserved variables and hence that the noise terms are independent and (2) the difference 

between the effect variable and some noise term is a deterministic function of the causal 

variables. In this paper, we focus on bivariable causal discovery. The SEMs for two variables is 

defined as (Lattimore and Ongv 2018) 

𝑋𝑋 = 𝑓𝑓𝑥𝑥(𝜀𝜀𝑥𝑥), 𝑌𝑌 = 𝑓𝑓𝑦𝑦(𝑋𝑋, 𝜀𝜀𝑌𝑌),    𝜀𝜀𝑥𝑥 ⫫ 𝜀𝜀𝑌𝑌 ,      (4) 

where 𝜀𝜀𝑥𝑥  and 𝜀𝜀𝑦𝑦  are noises or exogenous random variables. If the functions 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 are free 

form, the SEMs are called  nonparametric structural equation models.  One can 

    The structural equation model (4) encodes the assumption that the outcome 𝑌𝑌𝑖𝑖  for an 

individual 𝑖𝑖 is caused by the cause (treatment) 𝑋𝑋𝑖𝑖 which the individual receives and other factors 

𝜀𝜀𝑦𝑦 that are indepdent of cause 𝑋𝑋. The SEMs describe the causal effects of performing real-world 

interventions or experiments on their variables 𝑋𝑋. 

    Although conditional independences can be used  to make causal inference from the data 

under study, conditional independence cannot be applied to causal analysis under two variaables 

(Lopez-Paz 2016). Consider observational causal inference for two random variables, 𝑋𝑋 and 𝑌𝑌. 

We want to infer  whether 𝑋𝑋 → 𝑌𝑌  or 𝑋𝑋 ← 𝑌𝑌 . Unfortunately, the absence of a third random 

variable prevents us from measuring conditional independences. To overcome this limitation, in 

the past decade, observational causal inference methods that are not based on conditional 

independence have been developed. One of them is  the widely used Independence of cause and 

mechanism  (ICM) principle.  



Independence of Cause and Mechanism (ICM) assumes that causes and mechanisms are 

chosen independently by nature is a recently proposed principle for causal reasoning and causal 

learning (Janzing  and Sch¨olkopf 2010; Shajarisales et al. 2015; Peters et al. 2017).  ICM 

assumes that the mechanism that generates effect from its case contains no imformation about 

the  the cause. Assume that 𝑋𝑋 is a cause and 𝑌𝑌 is an effect. The joint distribution 𝑃𝑃(𝑋𝑋,𝑌𝑌) can be 

decomposed into 

𝑃𝑃(𝑋𝑋,𝑌𝑌) = 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑 (𝑋𝑋)).       (5) 

The conditional distribution 𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑(𝑋𝑋)) is a mechanism that generates effect 𝑌𝑌 from cause 𝑋𝑋. 

The conditional distribution 𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑(𝑋𝑋)) is independent of the distribution of cause 𝑃𝑃(𝑋𝑋). If 𝑋𝑋  

causes 𝑌𝑌  then 𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑(𝑋𝑋)) = 𝑃𝑃(𝑌𝑌|𝑋𝑋) . The conditional distribution 𝑃𝑃(𝑌𝑌|𝑋𝑋)  contains no 

information about marinal distribution of cause 𝑃𝑃(𝑋𝑋). Therefore, the ICM postulates that the 

conditional distribution of each variable given its causes contains no information about its cause.   

  SEMs, ICM and counterfactuals developed relatively independently in different fields. 

However, it is shown that they can be unified  under some assumptions using interventional 

queries with do-calculus (Supplementary B). This allows methods and algorithms developed 

within one framework to be easily applied to one another and provides foundation for 

interpretation of ANMs and justification of GWCS.  

Additive noise models 

    In the previous section,  we showed that the SEMs, the ICM and counterfactual approach to 

causal inference are equivalent in general. To facilitate the application of causal inference to the 

real world, we need simpler methods to implement these general approaches to causal inference. 

In this paper, we propose to use discrete additive noise models (ANMs) that are based on the 



ICM principle, as a tool for GWCS. We assume that there is no confoundeing, no selection bias 

and no feedback between the cause and effects (Mooij et al. 2016). The methods for causality 

analysis with confoundeing  will be presented else where.  

    Let 𝑌𝑌 be a binary variable to indicate disease status: 𝑌𝑌 = 1, presence of disease and 𝑌𝑌 = 0, 

normal and 𝑋𝑋 be a genotype indicator variable: 

𝑋𝑋 = �
0 𝑑𝑑𝑑𝑑
1 𝐷𝐷𝐷𝐷
2 𝐷𝐷𝐷𝐷

 , 

where 𝐷𝐷 is a disease allele.  

    Let 𝑚𝑚 be an integer. Assume that 𝑍𝑍 = 𝑘𝑘𝑘𝑘 + 𝑟𝑟, 𝑟𝑟 = 0, 1, … ,𝑚𝑚 − 1. 𝑍𝑍 is called a m-cyclic 

random variable, if 𝑍𝑍 takes the remainder 𝑟𝑟 as its value. Now we define a discrete ANMs for 

genetic causation analysis. 

    Let 𝑋𝑋 and 𝑌𝑌 be 3 and 2-cyclic random variables, respectively.  An ANM from 𝑋𝑋 to 𝑌𝑌 is 

defined as (Peters et al. 2011) 

𝑌𝑌 = 𝑓𝑓𝑦𝑦(𝑋𝑋) + 𝑁𝑁𝑦𝑦,      𝑋𝑋 ⫫ 𝑁𝑁𝑦𝑦 ,           (6) 

where 𝑓𝑓𝑥𝑥 is an integer function and 𝑁𝑁𝑦𝑦 is a 2-cyclic noise variable.  

    An ANM is called reversible if  there is also an ANM: 

𝑋𝑋 = 𝑓𝑓𝑥𝑥(𝑌𝑌) + 𝑁𝑁𝑥𝑥,     𝑌𝑌 ⫫ 𝑁𝑁𝑥𝑥,       (7) 

where 𝑁𝑁𝑥𝑥 is a 3-cyclic noise variable.  



    In practice, there may be multipe potential cuasations 𝑋𝑋2, … ,𝑋𝑋𝑘𝑘. However, only one causation 

𝑥𝑥1  is explicitely considered in the model equation (6). Other cuasations 𝑋𝑋2, … ,𝑋𝑋𝑘𝑘  are 

unobserved. Their causal effects to 𝑌𝑌 are accounted for by residual. Then, we can show that the 

following model 

𝑌𝑌 = 𝑓𝑓𝑌𝑌(𝑋𝑋1) + 𝑁𝑁�𝑌𝑌,   𝑋𝑋1 ⫫ 𝑁𝑁�𝑌𝑌       (8) 

where the effects of 𝑋𝑋2, … ,𝑋𝑋𝑘𝑘  on 𝑌𝑌  are included in 𝑁𝑁�𝑌𝑌  still holds if we assume that 𝑋𝑋1 ⫫

𝑋𝑋2, … ,𝑋𝑋1 ⫫ 𝑋𝑋𝐾𝐾. Its extension to multiple dependent causations is more complicated and will be 

presented elsewere.  

    It is well known that the set of joint distributions 𝑃𝑃(𝑋𝑋,𝑌𝑌) that allow the ANM in both forward 

and backward directions is very small. In other words, in general, the direction of the ANMs is 

identifiable (Peters et l.  2011).  Assumptions for identificability of the direction of the ANMs 

are summarized in Supplementary C.  

    In our cases, 𝑋𝑋 is an indicator variable for genotypes and 𝑌𝑌 is a binary variable for disease 

status. In Supplementary C, we show that in general, reversible is impossible and hence the 

direction of the ANMs is identifiable.                           

Numerical algorithms to implement ANMs for genetic causal analysis 

    To implement the ANMs to identify a causal SNP, we used the numerical algorithm that was 

presented in the paper (Peters et al. 2011) to test the causal relathinsip between the SNP and 

disease. The algorithm is summarized as follows (Hu et al. 2018). 

Algorithm to implement the  discret ANMs for genetic causal analysis: 



    Assume that qualitative trait data 𝑌𝑌 and indicator variable 𝑋𝑋 for the genotypes of a SNP are 

available.  

1. To infer direction 𝑋𝑋 → 𝑌𝑌, we regress the trait 𝑌𝑌 on the genotype indicator variable 𝑋𝑋: 

𝑌𝑌 = 𝑓𝑓(𝑋𝑋) + 𝑁𝑁𝑌𝑌. Calculate the residuals 𝑁𝑁�𝑌𝑌 = 𝑌𝑌 − 𝑓𝑓(𝑋𝑋). 

2. To infer potential causal direction 𝑌𝑌 → 𝑋𝑋, we fit the following nonlinear integer 

regression to the data: 𝑋𝑋 = 𝑔𝑔(𝑌𝑌) + 𝑁𝑁𝑋𝑋. Calculate the residuals 𝑁𝑁�𝑋𝑋 = 𝑋𝑋 − 𝑔𝑔�(𝑌𝑌) . 

3. Test for independence between the residuals and potential causation. If 𝑁𝑁�𝑌𝑌 and 𝑋𝑋 are 

independent (𝑁𝑁�𝑌𝑌 ⫫ 𝑋𝑋) , and 𝑁𝑁�𝑋𝑋 and 𝑌𝑌 are not independent, then 𝑋𝑋 causes 𝑌𝑌 (𝑋𝑋 → 𝑌𝑌) 

If both 𝑁𝑁�𝑌𝑌  and 𝑋𝑋, and 𝑁𝑁�𝑋𝑋  and 𝑌𝑌 are not independent or if both 𝑁𝑁𝑌𝑌�  and 𝑋𝑋, and 𝑁𝑁�𝑋𝑋  and 

𝑌𝑌 are independent, then no causation conclusion can be made. 

    Nonlinear integer regressions to implement the ANMs have two important features. First, in 

general, we do not have general functional forms for nonlinear integer functions. We usually, 

investigate all possible mapping (functions) from 𝑋𝑋  to 𝑌𝑌  and evaluate their values of lost 

function. Second, the ordinary regression usually minimizes the sum of square of errors. 

However, in the above algorithm, in addition to evaluate the loss function, we still need to test 

the independence between the the regressor and residuals. Therefore, Peters et al. (2011) 

suggested using a dependence measure (DM) between regressor and residuals as a lost 

function.  We adopt the discrete regression with dependence measure minimization procedure 

for genetic causal analysis (Peters et al. 2011). 

Discrete nonlinear regression with dependence measure minimization for genetic causal 

analysis 

Step 1: Calculate the sampling distribution 𝑃𝑃�(𝑋𝑋,𝑌𝑌). 



Step 2: Initialization. 

𝑓𝑓(0)�𝑥𝑥𝑖𝑖� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦𝑃𝑃��𝑋𝑋 = 𝑥𝑥𝑖𝑖 ,𝑌𝑌 = 𝑦𝑦�, 𝑡𝑡 = 0. 

Step 3: Repeat 

 ;1+= tt  

Step 4: for ni ,...,1=  do 

Step 5:    𝑓𝑓(𝑡𝑡)�𝑥𝑥𝑖𝑖� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑌𝑌𝐷𝐷𝐷𝐷(𝑋𝑋,𝑌𝑌 − 𝑓𝑓𝑥𝑥𝑖𝑖→𝑦𝑦
(𝑡𝑡−1)(𝑋𝑋)) 

 end for 

Step 6:  until  |�𝑓𝑓(𝑡𝑡) − 𝑓𝑓(𝑡𝑡−1)�|2 < 𝜀𝜀 or �𝑁𝑁�𝑌𝑌 = 𝑌𝑌 − 𝑓𝑓(𝑡𝑡)(𝑋𝑋)� ⫫ 𝑋𝑋  , or 𝑡𝑡 = 𝑇𝑇, where ε and T are 

pre-specified.  

    A 𝜒𝜒2 test statistic will be used as the dependence measure (DM). Specifically,  we formulate a 

2 × 3 contingence table (Table 1). In the ANM equation (6),  𝑁𝑁𝑦𝑦 is assumed as a 2-cyclic noise 

variable.   Let 𝑛𝑛0 and 𝑛𝑛1be number of individuals with 𝑁𝑁𝑌𝑌 = 0 and 𝑁𝑁𝑌𝑌 = 1, respectively. Let 

𝑛𝑛 = 𝑛𝑛0 + 𝑛𝑛1. Consider three genotypes: 𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑  and  𝐷𝐷𝐷𝐷. Let 𝑁𝑁𝑌𝑌 = 0,      𝑎𝑎11,𝑎𝑎12  and 𝑎𝑎13 be 

the number of individuals with genotypes 𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑  and 𝐷𝐷𝐷𝐷 , respectively. Let  𝑁𝑁𝑌𝑌 = 1,   and    

𝑏𝑏11, 𝑏𝑏12  and 𝑏𝑏13  be the number of individuals with genotypes 𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑  and 𝐷𝐷𝐷𝐷 , respectively. 

Define the marginal frequencies as shown in Table 1. Then, we obtain  

𝐸𝐸�𝑎𝑎1𝑗𝑗� = 𝑛𝑛0(𝑎𝑎1𝑗𝑗+𝑏𝑏1𝑗𝑗)
𝑛𝑛

, 𝑗𝑗 = 1,2,3, and 𝐸𝐸�𝑏𝑏1𝑗𝑗� = 𝑛𝑛1(𝑎𝑎1𝑗𝑗+𝑏𝑏1𝑗𝑗)
𝑛𝑛

, 𝑗𝑗 = 1,2,3. 

    Then, the test statistic for testing independence is defined as 

𝐷𝐷𝐷𝐷 = ∑ �(𝑎𝑎1𝑗𝑗−𝐸𝐸[𝑎𝑎1𝑗𝑗])2

𝐸𝐸[𝑎𝑎1𝑗𝑗]
+ (𝑏𝑏1𝑗𝑗−𝐸𝐸[𝑏𝑏1𝑗𝑗])2

𝐸𝐸[𝑏𝑏1𝑗𝑗]
�3

𝑗𝑗=1 .              (9) 

     Under the null hypothesis of independence, the test statistic 𝐷𝐷𝐷𝐷 is distributed as a central 𝜒𝜒(2)
2  

distribution with 2 degrees of freedom. If SNPs involve rare variants, the expected counts of 

many cells will be small. Fisher’s exact test should be used to test for independence. 



     The statement that there is no causal relationship between the SNP and disease implies that 

neither causations 𝑋𝑋 → 𝑌𝑌 nor causation 𝑌𝑌 → 𝑋𝑋 holds. Let 𝐷𝐷𝐷𝐷𝑋𝑋→𝑌𝑌 and 𝐷𝐷𝐷𝐷𝑌𝑌→𝑋𝑋 be the 𝜒𝜒2 statistics 

for testing causations 𝑋𝑋 → 𝑌𝑌 and causation 𝑌𝑌 → 𝑋𝑋, respectively.  

    The null hypothesis for testing causal relationships between two random variables 𝑋𝑋  and 𝑌𝑌 is 

:0H  no causation between two random variables X and Y .  

    The statistic to test the causal relationsips between two randoom variables X and Y  is defined 

as 

𝑇𝑇𝐶𝐶 = |𝐷𝐷𝐷𝐷𝑋𝑋→𝑌𝑌 − 𝐷𝐷𝐷𝐷𝑌𝑌→𝑋𝑋| .       (10) 

    When CT  is large, either  𝐷𝐷𝐷𝐷𝑋𝑋→𝑌𝑌 >  𝐷𝐷𝐷𝐷𝑌𝑌→𝑋𝑋  which implies 𝑋𝑋  causes 𝑌𝑌 , or  𝐷𝐷𝐷𝐷𝑌𝑌→𝑋𝑋 >

 𝐷𝐷𝐷𝐷𝑋𝑋→𝑌𝑌 which implies that 𝑌𝑌 causes 𝑋𝑋.  When 0≈CT , this indicates that no causal decision can 

be made. Since 𝐷𝐷𝐷𝐷𝑋𝑋→𝑌𝑌 and 𝐷𝐷𝐷𝐷𝑌𝑌→𝑋𝑋  may be dependent,  a closed, analytic expression for the 

distribution  of 𝑇𝑇𝐶𝐶  is not yet known (Bausch 2012). Although a computational  algorithm to 

numerically calculate the distribution of 𝑇𝑇𝐶𝐶 is available, in this paper we will use the permulation 

test to calculate the P-value of the test 𝑇𝑇𝐶𝐶.  

Distance Correlation as a Causation Measure 

    In previous sections, we introduce the basis principal for assessing causation YX → that the 

distribution )(XP of causal X  is independent of the causal mechanism or conditional 

distribution )|( XYP  of the effect Y , given causal X . Now the question is how to assess their 

independence. The Pearson correlation coefficient 𝜌𝜌(𝑋𝑋,𝑌𝑌), the widely-used classical meaure of 

dependence measures linear dependence between two random variables 𝑋𝑋  and 𝑌𝑌 , and in the 



bivariate normal case, 𝜌𝜌(𝑋𝑋,𝑌𝑌) = 0 is equivalent to independence between  𝑋𝑋  and 𝑌𝑌 . If  the 

distributions of 𝑋𝑋 and 𝑌𝑌 are not normal, then 𝜌𝜌(𝑋𝑋,𝑌𝑌) = 0 may not imply independence between  

𝑋𝑋 and 𝑌𝑌. Recently distance correlation that can be applied to all distributions with finite first 

moments is proposed to measure dependence between random vectors which allows for both 

linear and nonlinear dependence (Sze´kely et al. 2007, 2009).  Distance correlation extends the 

traditional Pearson correlation in two remarkable directions: 

(1) Distance correlation extends the Pearson correlation defined between two random 

variables to the correlation between two sets of variables with arbitrary numbers; 

(2) Zero of distance correlation indicates independence of two random vectors.  

Consider two vectors of random variables: p - dimensional vector X and q - dimensional vector 

Y . Let 𝑃𝑃(𝑋𝑋) and  𝑃𝑃(𝑌𝑌) be density functions of the vectors X  and Y , respectively.  Let  𝑃𝑃(𝑋𝑋,𝑌𝑌) 

be the joint density function of X  and Y . There are two ways to define independence between 

two vectors of variables: i) density function definition and ii) characteristic function definition.  

In other words, if X  and Y  are independent then either 

i)  𝑃𝑃(𝑋𝑋,𝑌𝑌) = 𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌) 

or 

    ii)  𝑓𝑓𝑋𝑋,𝑌𝑌(𝑡𝑡, 𝑠𝑠) = 𝑓𝑓𝑋𝑋(𝑡𝑡)𝑓𝑓𝑌𝑌(𝑠𝑠), 

where ][),( )(
,

ysxti
YX

TT

eEstf += , ][)( xit
X

T

eEtf =  and ][)( yis
Y

T
eEsf =  are the characteristic 

functions of ( ),YX , X and Y , respectively. Therefore, we can use both distances ||𝑃𝑃(𝑋𝑋,𝑌𝑌) −

𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)|| and ||)()(),(|| , sftfstf YXYX −  to measure the dependence between two vectors X  

and Y . Since characteristic function 𝑓𝑓 is a complex-valued function, its norm is defined as 

|𝑓𝑓|2 = 𝑓𝑓𝑓𝑓.̅  Definition of The distance covariance 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋,𝑌𝑌) between two random vectors 𝑋𝑋 



and  , distance variance 𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉2(𝑋𝑋) , and algorithms for their calculations are  briefly introduced 

in Supplementary D. Square of correlation 𝑅𝑅2(𝑋𝑋,𝑌𝑌) is defined as 

𝑅𝑅2(𝑋𝑋,𝑌𝑌) = �
𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋,𝑌𝑌)

�𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉2(𝑋𝑋)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑌𝑌)
𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉2(𝑋𝑋)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑌𝑌) > 0

0 𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉2(𝑋𝑋)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑌𝑌) = 0
 .   (11) 

     Now we propose to use distance correlation to measure the dependence between the 

distributions 𝑃𝑃(𝑋𝑋) and 𝑃𝑃(𝑌𝑌|𝑋𝑋). Assume that 𝑋𝑋 takes 𝑚𝑚 different values and 𝑌𝑌 takes 𝑚𝑚�  different 

values. Define two vectors 𝑃𝑃(𝑋𝑋) = [𝑃𝑃(𝑋𝑋1), … ,𝑃𝑃(𝑋𝑋𝑚𝑚)]𝑇𝑇 and 

𝑃𝑃(𝑌𝑌|𝑋𝑋) = [𝑃𝑃(𝑌𝑌1|𝑋𝑋1), … ,𝑃𝑃(𝑌𝑌𝑚𝑚� |𝑋𝑋1), … .𝑃𝑃(𝑌𝑌1|𝑋𝑋𝑚𝑚), … ,𝑃𝑃(𝑌𝑌𝑚𝑚� |𝑋𝑋𝑚𝑚)]𝑇𝑇.  

    A meaures for causal directions 𝑋𝑋 → 𝑌𝑌  and 𝑌𝑌 → 𝑋𝑋 are defined as 

𝐶𝐶𝑋𝑋→𝑌𝑌 = 1 − 𝑅𝑅(𝑋𝑋,𝑃𝑃(𝑌𝑌|𝑋𝑋))           (12) 

 and  

𝐶𝐶𝑌𝑌→𝑋𝑋 = 1 − 𝑅𝑅(𝑌𝑌,𝑃𝑃(𝑋𝑋|𝑌𝑌)) ,                     (13) 

respectively.  

    A measure for quantifying the strength of causal relationships between 𝑋𝑋 (genetic variant) and 

𝑌𝑌 (disease phenotype) can be defined by 

𝐶𝐶𝐶𝐶 = |𝐶𝐶𝑋𝑋→𝑌𝑌 − 𝐶𝐶𝑌𝑌→𝑋𝑋|.        (14) 

    Using Theorem 3 in the paper (Sze´kely et al. 2009) , we can show that 

0 ≤ 𝐶𝐶𝑋𝑋→𝑌𝑌 ≤ 1 and 𝐶𝐶𝑋𝑋→𝑌𝑌 = 1 if and only if  𝑋𝑋 → 𝑌𝑌  . 

    Similarly, we can show that 



0 ≤ 𝐶𝐶𝑌𝑌→𝑋𝑋 ≤ 1  and 𝐶𝐶𝑌𝑌→𝑋𝑋 = 1 if and only if 𝑌𝑌 → 𝑋𝑋. 

    Consider linear transformations 𝑈𝑈 = 𝑎𝑎1 + 𝑏𝑏1𝐷𝐷1𝑋𝑋  and 𝑉𝑉 = 𝑎𝑎2 + 𝑏𝑏2𝐷𝐷2𝑌𝑌  where 𝐷𝐷1  and 𝐷𝐷2  are 

orthonormal matrices, then we can show that 𝐶𝐶𝑈𝑈→𝑉𝑉 = 𝐶𝐶𝑋𝑋→𝑌𝑌 . In other words, linear 

transformation of the random variables will not change the srtength of causality between two 

variables 𝑋𝑋 and 𝑌𝑌. 

RESULTS 

Type 1 Error of Statistics for Testing Causation 

    To examine the validity of statistics 𝑇𝑇𝐶𝐶 for testing the causal relationships between a common 

SNP and disease,  we performed a series of simulation studies to compare their empirical levels 

with the nominal ones.  We consier two scenarios: (1) no causation in the absence of association 

and (2) no causation in the presence of association.  We selected the top 100 common SNPs 

(MAF between 0.19 and 0.49) from gene TEKT4P2 on chromosome 21 from 1,000 Genome 

Project.  In scenario (1), a binary trait 𝑌𝑌 is randomly generated and independent of  indicator 

variables 𝑋𝑋 for genotypes of SNPs. In senario (2),  we first randomly generated 𝑋𝑋 and 𝑌𝑌, and 

then selected the associated pairs of data as our dataset (𝑋𝑋,𝑌𝑌).  

      We generated the data with 100,000 subjects by resampling  from the 99-individual CEU 

population in 1,000 Genome Project.  Number of permutations was 1,000, Number of replication 

of tests was 1,000. The sampled subjects from the generated population for type 1 error rate 

calculations were 500, 1,000, 2,000 and 5,000,  respectively.  We first consider scenatior 1. 

Table 2  summarized the average type I error rates of the test statistics for testing the causal 

relationsips between SNP and disease in the absence of association between SNP and disease 

over all 100 SNPs at the nominal levels 𝛼𝛼 = 0.05 and 𝛼𝛼 = 0.01 , respectively. To ensure no 



association in the data, we also presented Table 3 that summarized average type 1 error rates of 

the association test over 100 SNPs.  These tables showed that the in the absence of association,  

type I error rates of the test statistics for testing the causal relationships between SNPs and 

disease  were not appreciably different from the nominal   levels. Next we consider scenartio 2.  

Table 4 presented the average type I error rates of the test statistics for testing the causal 

relationsips between SNP and disease in the presence of association between SNP and disease  

over all 100 SNPs at the nominal levels 𝛼𝛼 = 0.05  and 𝛼𝛼 = 0.01 , respectively. Agan, these 

results demonstrated even in the presence of association the type I error rates of the test statistics 

for testing the causal relationships between SNPs and disease were not appreciably different 

from the nominal levels.  

Power Evaluation 

     To evaluate the performance of the ANMs for assessing the causal relationships between SNP 

and disease, simulated data were used to estimate their power to detect a true causation. First, we 

invesitigate the power as a function of sample sizes with fixed causal measure parameter. The 

data were generated by the following cyclic  model: 

𝑌𝑌 = 𝑓𝑓(𝑋𝑋) + 𝑁𝑁𝑌𝑌,𝑁𝑁𝑌𝑌 ⫫ 𝑋𝑋,      (15) 

where 𝑌𝑌 = {0, 1} 𝑤𝑤𝑤𝑤𝑤𝑤 a binary trait and genearted by the model equation (15),   𝑋𝑋 = {0, 1, 2} 

was an indicator function for genotype of a SNP selected from 1,000 Genome Project, the minor 

allele frequency of the SNP  was 0.1, 𝑓𝑓 was an integer function: 𝑓𝑓(0) = 0,𝑓𝑓(1) = 0,𝑓𝑓(2) = 1, 

𝑁𝑁𝑌𝑌 = {0, 1} was a noise distributed as a binormial with probability parameter 𝑃𝑃. We used the 

model equation (15) to generate the population of 100,000 individuals with 𝑌𝑌 and 𝑋𝑋.  A set of 

500, 1,000, 2,000, 5,000, 10,000 and 20,000 individuals were sampled from the population. A 



total of 1,000 simulations were repeated for the power calculation.  Three factors: the probability 

parameter 𝑃𝑃 in the bionomial distribution, significance level 𝛼𝛼 and sample sizes affect the power 

of the ANMs for testing causation.   We first fixed the parameter  𝑃𝑃  and significance level 𝛼𝛼.    

Figure 2 plotted the power curves as a function of sample sizes where four scenarios: : (1) 𝑃𝑃 =

0.2,𝛼𝛼 = 0.05 ; (2) 𝑃𝑃 = 0.2,𝛼𝛼 = 0.01 ; (3) 𝑃𝑃 = 0.4,𝛼𝛼 = 0.05  and (4) 𝑃𝑃 = 0.4,𝛼𝛼 = 0.01  were 

considered. We observed from Fiure 2 that for  𝑃𝑃 = 0.2,𝛼𝛼 = 0.01, we could reach 81% power  

even when sample sizes were only 500 and for 𝑃𝑃 = 0.4,𝛼𝛼 = 0.01, we still could reach 80% 

power when sample sizes were 5,000.  

    We then fixed sample sizes 𝑛𝑛 and significance level  𝛼𝛼. Figures 3 and 4 showed the power 

curves of the causation test as a function of the parameter 𝑃𝑃 with significance levels 𝛼𝛼 = 0.05 

and 𝛼𝛼 = 0.01, respectively.  We observed that when the parameter 𝑃𝑃 increased, the power of the 

causal tests decreased. Indeed, the parameter 𝑃𝑃 determined the value of the residual 𝑁𝑁𝑌𝑌, which in 

turn, influenced the causality measure. When the parameter 𝑃𝑃  was small, the values of the 

response variable 𝑌𝑌  were mainly determined by causal 𝑋𝑋 . As the parameter 𝑃𝑃  increased, the 

impact of the noise 𝑁𝑁𝑌𝑌 on 𝑌𝑌 increased and hence the causality measure decreased, in turn, the 

power of the causal tests decreased. Finally, when 𝑃𝑃 = 0.5, with the equal probability, the noise 

𝑁𝑁𝑌𝑌 produced values 1 and 0, 𝑌𝑌 was mainly determined by noise 𝑁𝑁𝑌𝑌, the ANMs had alomost no 

power to detect causation.  

Application to Real  Data Example 

GWCS of Schizophenia 



    To further evaluate its performance, the ANMs for testing causation  were applied to the 

CATIE-MGS-SWD schizophrenia (SCZ) study dataset with 8,421,111 common SNPs typed in 

13,557  individuals.  

In both GWAS and GWCS, the 𝜒𝜒2 test was used for association analysis. A Manhattan plot of 

GWAS and GWCS was shown in Figure 5.  For viewins clarity, in the Manhattan plot of GWAS 

and GWCS, we only showed P-values of causal analysis ( in green color) and association 

analysis (in black and grey colors) of all SNPs with P-values <  10−5.    We observed that 

associated SNPs were quite uniformally distributed across the genome, but the causal SNPs 

concentrated only on some genome regions. This may indicate that the Causal SNPs contained 

more information than the associated SNPs. 

     Due to computational time limitation of permutations,  a P-value for declaring significant 

causation was 10−6.  In total, 245 SNPs in 29 genes showed significant causations with SCZ. 

The results were summarized in Supplemental Table 1 where the P-values of both causation and 

association tests were listed. The selected top 15 causal SNPs were listed in Table 5.  Among 

them, 62 causal SNPs can be confirmed from the literature and four of them were on the typical 

108 schizophrenia-associated genetic loci (Schezoprenia working group, 2014;  Sullivan et al. 

2007; Fatemi et al. 2011; Lei et al. 2013; Costas et al. 2013; Athanasiu  et al. 2013; Misztak  et 

al. 2018; Ren et al. 2011; Suzuki et al. 2003; Cho  et al. 2015; Ide and Lewis  2010). We also 

conducted GWAS for this dataset. A total of 5,917 SNPs are associated with SCZ at the 

significance level of 10−6 and only 58 showed causation.  

These resuts showed several remarkable features. First, we can observe some SNPs that 

showed both significant causation and association. For example, four SNPs: rs1324544, 

rs2829725, rs9931378 and rs12057989 showed both strong causation and association (Table 5). 



Second, the number of  causal SNPs was much smaller than the number of associated SNPs. 

Third, highly significantly asscociated SNPs may show no significant causation. Fourth, the 

SNPs that showed strong causation signals may not demonstrate association. For example, SNP 

rs12739344 in gene AKT3 showed strong causation (P-value < 10−6) , but did not reach 

threshold P-value for association (P-value for association is 8.95 × 10−6) . It is well kown that 

the genetic variation in the gene AKT3 is a top risk signal in schizophrenia  and network analysis 

identified that AKT3 contributes to four of the pathways involved in SCZ (Howell et al. 2017). 

SNP rs10986439 in gene GABBR2 showed significant causation (P-value < 10−6), but no 

association with SCZ (P-value is 0.000458).  Genetic-imaging analysis showed that gene  

GABBR2 was in  neuron development, synapse organization and axon pathways which could  

affect cognition in schizophrenia (Luo et al. 2018).  Fifth, proportion of SNPs showed both 

causation and association was small (36.3% of causal SNPs showed association and only 0.98% 

of associated SNPs schowed causation).  

Disease Prediction 

    Genomic predictors and risk estimates for a large number of diseases can be constructed from 

SNPs. The traditional methods for developing genomic risk scores (GRS) utilize  small numbers 

of SNPs, typically those identified as genome-wide significant association (Abraham and Inouye 

2015). To evaluate the predicitive ability of causal SNPs and associated SNPs, we selected the 

top 245 causal SNPs  (all P-values < 10−6) and top 245 associated SNPs for SCZ risk prediction.  

Logistic regression and 10 fold cross validation were used to calculate prediction accuracy. Table 

6 listed ten-fold cross-validated accuracy for prediction of SCZ.  Table 6 showed that using the 

same number of SNPs, all the sets of SNPs selected by causal analysis had higher prediction 

accuracy than the set of SNPs selected by association analysis. Specifically, the prediction 



accuracy of 245 top causal SNPs was about 3% higher than that of the 245 top SNPs selected by 

association analysis. This may imply that the causal SNPs contain more biological information 

than associated SNPs.  

Impact of Linake Disequilibrium 

    In this section, we investigate the impact of linkage disequilibrium (LD) on the causal 

analysis. It is well known that linkage disequilibrium has a large impact on the association 

analysis. The theoretical analysis of the impact of LD on the causal effect is gven in 

Supplementary E.  

       Next we use simulations to invesitigate the impact of LD on the causation analysis. Data for 

two markers:  rs150012736 and rs376953511 were taken from 1000 Genome Project. In the 1000 

Genome Project dataset ,  LD  (𝑟𝑟2) between rs150012736 and rs376953511 was calculated as 

0.5. Assume that SNP1 was a causal SNP.  We did not make assumptions about whether or not 

SNP2 was a causal SNP. The trait values was generated by the discrete  cyclic ANMs: 

𝑌𝑌 = 𝑓𝑓𝑌𝑌(𝑋𝑋) + 𝑁𝑁𝑌𝑌,         (16) 

where 𝑓𝑓𝑌𝑌 is a specified nonlinear integer function and 𝑁𝑁𝑌𝑌 is a bionomial variable. We fitted the 

ANMs to the data (𝑌𝑌,𝑋𝑋𝑚𝑚) where 𝑋𝑋𝑚𝑚 represented the indicator variable for genotypes of SNP2.  

The results of causation and association tests were summarized in  Tables S3 and S4, and Tables 

7 and 8.  Tables S3 and S4 showed that we can detect both association and causation between 

SNP1 and disease with a high power when sample sizes were larger than 2,000. Table 7 showed 

that  type 1 error rates of  test to detect causation between SNP2 and disease was not very high 

and decreased when sample sizes increased. In other words, we did not detect causation at SNP2. 

However, Table 8 showed that association test detected association of SNP2 with disease with 



high power.The simulation results showed that  the impact of LD on the causal tests was much 

smaller than on the association tests. 

     To further evakuate the impact of LD on causation test, real data analysis was conducted.  

From the results of GWCS of SCZ, we selected SNP rs6578689 that had P-values < 10−6 and 

2.82 × 10−7 for causation and association tests, respectively. Then, we selected 20  neighboring 

SNPs of  causal SNP rs6578689. We tested their causation and association with SCZ. Table 9 

summarized the results of the causation and association tests. These results showed that even 

neighboring SNPs  that had 𝑟𝑟2 > 0.44 demonstrated no causation with SCZ, but  strong 

associations with small P-values < 4.59 × 10−9 with SCZ.   These results of real data analysis 

demonstrated that LD had a small impact on causation analysis, but large impact on association 

tests. 

DISCUSSION 

    Alternative to GWAS, the major goal of this paper is to propose a notion of GWCS and to 

address several important issues for GWCS. The standard approach to causal discovery is to use 

interventions or randomized experiments. Many genetic epidemiologists  have always thought it 

impossible to detect causal SNPs using observational data.  However, intervension or 

randomized experiments are unethical, time-consuming,  expensive and infeasible in many cases. 

To address this critical barrier  in GWCS, we focus on causal discovery methods developed for 

causal inference from observational data, not from interventional or randomized experiments and 

propose to use discrete ANMs as a major tool for GWCS.  By large simulations and real data 

analysis we demonstrate the feasibility and limitations of the proposed  GWCS as a new 

paradigm of  genetic analysis. 



Association is to measure dependent relationships and association analysis can be deone from 

observational data. Causal inference is inductive reasoning (Causal inference in AI, 2019). In 

other words, causal inference  is reasonin   from the observed part to the  unobserved general. 

The goal of causal inference is to learn the response of taking an action and is  usually carried 

out from interventions. However, as we pointed out before, it is infeasible to conduct 

intervention experiments in humans.  Modern causal theory attempts to learn the outcome of an 

intervention from the observed data. Causation that can be inferred from observational data has 

been debated for more than a century.  In this paper, we review great progresses that have been 

made in causal inferences over the past several decades, and define causation as the effect of 

taking action in some system from observational data in terms of  interventions or 

counterfactuals (Lattimore and Ong 2018). We also review three emerging major approaches to 

bivariate causal discovery: “do” action, counterfactuals and ICM and showed that these three 

approaches can be unified. The ANMs that are widely used algorithms to implement ICM are 

explored for GWCS. In GWCS, we assume that there are no confoundings and selection bias. 

Methods for causation analysis with confounders will be presented elsewhere.  Therefore, we lay 

down  theoretic foundations for GWCS.  

The original ANMs are used to distinguish cause-effect direction and do not provide P-value 

calculation for testing the causation of the SNP with disease. To overcome this limitation, we 

develop a test statistic and use permutations to calculate the P-value of statistics for testing the 

causation of the SNP with disease. This provides a practical approach to GWCS. 

An essential problem for performing GWCS in practice is the type 1 error rates,  power of the 

test statistics and  feasibility of computations. We showed that type 1 error rates of the ANMs for 

testing the causation in both presence and absence of association were not significantly deviated 



from the nominal level. In other words, large simulation results demonstrated that the ANMs for 

causation analysis of genetic variants were valid. Power of the ANMs depends on the probability 

parameter 𝑃𝑃 in the bionomial distribution generating noise 𝑁𝑁𝑌𝑌 , sample sizes and significance 

levels. As we discussed in the text, probability parameter 𝑃𝑃 determines the strength of causation. 

We showed that even for significance lelvel 𝛼𝛼 = 0.01 and 𝑃𝑃 = 0.4, when sample sizes were 

5,000, the power of the ANMs was close to 80%.  If the parameter 𝑃𝑃 ≤ 0.15, using 500 sample 

sizes, we could ensure that the ANMs can reach power greater than 90% under both 𝛼𝛼 = 0.05 

and 𝛼𝛼 = 0.01. These results implied that the ANMs had high power to detect causation in many 

cases. 

Distuinguishing causation from association is an age-old problem. The most classical causal 

inference theory focuses on inferring causal relationships among more than three variables. Due 

to lack of methods for bivariate causal discovery, very few GWCS and very few results of 

significant causal genetic variants from GWCS have been reported. In the past decade, the rapid 

development in modern causal analysis theory has provided several efficient methods for 

biovariate causal discovery including ANMs. To promote application of causal inference to 

genetic analysis, we applied the ANMs to GWCS of SCZ. From the GWCS of SCZ, we have 

several important observations. 

First we observed that the number of causal SNPs (245 SNPs) was much less than the number 

of associated SNPs (5,917 SNPs). The cusal SNPs were mainly located in Chromosomes 1, 4, 5, 

6, 7, 8, 20, 11, 12 and very few causal SNPs were located in other chromosomes. However, the 

associated SNPs were located across the genome.  The results of GWCS of SCZ also challenged 

the “Omnigenic” model that  assumed that “all genes affect every complex trait” (Greenwood 

2018) and most association signals that tend to be spread across most of the genome influenced 



the phenotype variation (Boyle et al. 2017). The most identified association signals may have 

nothing to do with causing phenotype variation. 

Second, the proportion of SNPs that showed both causation and association was small (36.3% 

of causal SNPs showed association and only 0.98% of associated SNPs schowed causation). This 

implied that the majority of causal SNPs could not be discovered by association analysis and 

most associated SNPs were not involved in the mechanisms of diseases. The results of GWCS of 

SCZ strongly suggested that association  analysis will miss the majority of the causal SNPs and 

identifying and validating  causal SNPs from the set of associated SNPs will be time consuming 

and not be efficient. 

     Third, full genomic information and genomic risk prediction  has enabled new insights about 

the etiology and genetic architecture of complex disease. Although, we cannot directly validate 

the causality of the identified SNPs  from GWCS, evaluating the difference in disease risk 

prediction accuracy between the set of causal SNPs and the set of associated SNPs allows 

assessing the biological relevance of the causal SNPs and associated SNPs. The prediction 

accuracy of 245 top causal SNPs was about 3% higher than that of 245 top associated SNPs. This 

may suggest  that the causal SNPs contain more biological information than associated SNPs.  

     Fourth, both simulation and real data analysis showed that the LD had strong impact on 

association analysis, but surprisingly  much less impact on the causal analysis. It is well known 

that LD is a confounding factor for association analysis and often creats spurious associations. 

Presence of LD across the genome will limit our abaility of using association analysis to discover 

mechanism of disease.  Due to the limited impact of LD on causal analysis,  we may expect that 

GWCS will provide an alternative to association analysis to discover causal genetic structure of 

complex diseases.  



Although 62 of 245 discovered causal SNPs can be confirmed from the literature and four of 

them are on the typical 108 schizophrenia-associated genetic loci (Schizophrenia working group, 

2014), the results were very preliminary. Functional studies of causal SNPs should be 

investigated in the future.  

Causality is not only critical for us to understand disease mechanisms, but also particularly 

important for the development of efficient treatment. Much of the failure of previous efforts of 

drug development was attributable to the insufficient understanding of the disease mechanism.  

The question whether we can infer causal relationships between genetic variants and disease 

from observational data has been debated for more than a century.  Association and correlation 

analysis are the current paradigm of most genetic studies and have been used for more than a 

century.  Our study demonstrated that large proportions of causal loci cannot be discovered by 

association analysis. Finding causal SNPs only via searching the set of associated SNPs may not 

be sufficient for unravelling mechanisms of complex diseases. Causal analysis as an alternative 

to association analysis for genetic studies has neven been systematically investigated.  The main 

purpose of this paper is to stimulate discussion about causal analysis and association analysis,  

and both theoretical and practical research in genomic causal analysis. We hope that our results 

will greatly increase confidence in applying causal inference to genetic analysis, more and more 

intelligent methods for causal inference will be developed, and more and more valid GWCS of 

complex diseases will be investigated.  

 

DATA ACCESS 

Software for implementing the proposed methods for GWCS can be downloaded  from 
https://sph.uth.edu/research/centers/hgc/xiong/software.htm  and Github 
( https://github.com/jiaorong007?tab=repositories ) . 

https://sph.uth.edu/research/centers/hgc/xiong/software.htm
https://github.com/jiaorong007?tab=repositories
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Table 1. Contingency table for testing independence. 

 Genotype 
𝑑𝑑𝑑𝑑 

Genotype 
𝑑𝑑𝑑𝑑 

Genotype 
𝐷𝐷𝐷𝐷 

 

𝑁𝑁𝑌𝑌 = 0 𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 𝑛𝑛0 
𝑁𝑁𝑌𝑌 = 1 𝑏𝑏1 1 𝑏𝑏12 𝑏𝑏13 𝑛𝑛1 

 𝑎𝑎1 1 + 𝑏𝑏1 1 𝑎𝑎12 + 𝑏𝑏12 𝑎𝑎13 + 𝑏𝑏13 𝑛𝑛 = 𝑛𝑛0 + 𝑛𝑛1 
 

 

Table 2. Average type 1 error rates of the statistics for testing causal 
relationships between SNP and disease. 
  Sample Size 
Nominal Level  500 1,000 2,000 5,000 

0.05 0.044 0.046 0.048 0.051 

0.01 0.005 0.006 0.007 0.009 
 

Table 3. Type 1 error rates for association test. 
 

Nominal Level  500 1,000 2,000 5,000 

0.05 0.05 0.05 0.049 0.049 

0.01 0.01 0.01 0.01 0.01 
 

Table 4. Average type 1 error rates of the statistics for testing 
causal relationships between SNP and disease in the presence 
of association. 
Nominal Level  500 1,000 2,000 5,000 

0.05 0.042 0.046 0.047 0.046 

0.01 0.005 0.007 0.007 0.008 
 

 

 

 

 



Table 5. P-values of top 15 SNPs that had significant causal relationships with schizophrenia. 
          P-values 
RS Number Chr Position Gene Related Disease Causation Association 
rs1324544 6 9181479     <E-06 3.14E-12 
rs2829725 21 26764027    <E-06 4.53E-11 
rs9931378 16 5783022    <E-06 1.23E-09 
rs12057989 1 144617251    <E-06 1.28E-08 
rs7110863 11 112843138 NCAM1  Schizophrenia  <E-06 4.34E-08 
rs1420643 7 35874928 SEPT7  Schizophrenia  <E-06 2.02E-07 
rs1534440 6 145017328 UTRN  Schizophrenia <E-06 2.36E-07 
rs228768 17 42191893 HDAC5  Mental Depression  <E-06 3.76E-06 
rs1940713 11 112906285 NCAM1  Schizophrenia <E-06 4.57E-06 
rs1940714 11 112906391 NCAM1  Schizophrenia <E-06 4.57E-06 
rs12739344 1 243791312 AKT3  Schizophrenia <E-06 8.95E-06 
rs876983 8 18407858 PSD3  Schizophrenia <E-06 1.42E-05 
rs10075211 5 147839537 HTR4  Schizophrenia   <E-06 2.24E-05 
rs725515 16 82854696 CDH13  Mental Depression  <E-06 3.80E-05 
rs10986439 9 101262400 GABBR2  Major Depressive Disorder  <E-06 0.000457917 



 

Table 6. Ten-fold cross-validated accuracy and AUC  for SCZ risk prediction of using top 15 causal SNPs and association SNPs.  
Number of SNPs 7 8 9 10 11 12 13 14 15 245 
Accuracy of Causal SNPs 0.5511 0.5542 0.5542 0.5542 0.5542 0.5540 0.5534 0.5531 0.5521  0.5737 
AUC of Causal SNPs 0.5320 0.5340 0.5343 0.5345 0.5344 0.5342 0.5336 0.5333 0.5324 0.5491 
Accuracy of Associated  SNPs 0.5470 0.5457 0.5434 0.5423 0.5415 0.5410 0.5404 0.5401 0.5395  0.5430 
AUC of Associated SNPs 0.5204 0.5200 0.5191 0.5189 0.5178 0.5173 0.5168 0.5163 0.5158 0.5249 
 

 

 

 

 

 

 

 

 

 

 



Table 7. Type I error rates of causal test between SNP2 and 
disease.  
Significance Level  500 1,000 2,000 5,000 
0.05 0.183 0.159 0.142 0.104 
0.01 0.105 0.118 0.105 0.093 
 

Table 8. Power of test for association between SNP2 and disease.  
Significance Level  500 1,000 2,000 5,000 
0.05 0.918 0.979 0.992 0.994 
0.01 0.860 0.957 0.990 0.992 
 

Table 9. P-values for causation and association  tests of 20 neighboring SNPs of  causal SNP rs6578689.  
SNPs Chr P-values Neighbor SNPs Position r2 P-values 

  Causation Association    Causation Association 
rs6578689 11 <E-06 2.82E-07 rs10742794 5826464 0.7196 0.03 9.95E-10 
rs6578689 11   rs11039135 5836787 0.63226 0.39 2.65E-09 
rs6578689 11   rs7115498 5831847 0.53094 0.94 9.31E-10 
rs6578689 11   rs10838661 5830617 0.53093 0.96 1.03E-09 
rs6578689 11   rs35898746 5830823 0.53093 0.96 1.03E-09 
rs6578689 11   rs11039085 5823651 0.53034 0.93 6.03E-10 
rs6578689 11   rs10742791 5819152 0.5272 0.94 4.03E-10 
rs6578689 11   rs12226188 5837141 0.52658 0.9 6.80E-10 
rs6578689 11   rs10838674 5836857 0.52634 0.93 9.01E-10 
rs6578689 11   rs35271555 5833707 0.5233 0.9 7.99E-10 
rs6578689 11   rs6578687 5813985 0.52136 0.95 5.00E-10 
rs6578689 11   rs7114690 5814376 0.51743 0.88 3.83E-10 
rs6578689 11   rs80316576 5827945 0.44329 0.37 3.01E-09 
rs6578689 11   rs73390385 5809052 0.44286 0.42 3.96E-09 
rs6578689 11   rs73392251 5821745 0.44191 0.44 4.59E-09 
rs6578689 11   rs73392254 5822797 0.44191 0.54 4.59E-09 
rs6578689 11   rs73390383 5808495 0.44143 0.48 3.90E-09 
rs6578689 11   rs73392222 5817732 0.44136 0.47 2.80E-09 
rs6578689 11   rs73392226 5817797 0.44136 0.46 2.80E-09 
rs6578689 11     rs77107630 5818487 0.44136 0.47 2.80E-09 
 

  



Figure Legends 

Figure 1. Several possible causal relationships between two observed variables 𝑋𝑋 and 𝑌𝑌: (a) 

association; (b) 𝑋𝑋 causes 𝑌𝑌; (c) 𝑌𝑌 causes 𝑋𝑋; (d) temperature change causes thermometer change. 

Figure 2.   Power curves of  the ANMs for testing causation as a function of sample sizes where 

power of the tests was calculated under four scenarios: (1) 𝑃𝑃 = 0.2,𝛼𝛼 = 0.05; (2) 𝑃𝑃 = 0.2,𝛼𝛼 =

0.01; (3) 𝑃𝑃 = 0.4,𝛼𝛼 = 0.05 and (4) = 0.4,𝛼𝛼 = 0.01.  

Figure 3. Power convers of  the ANMs for testing causation as a function of the parameter 𝑃𝑃 in 

bionomial distribution where four sample sizes 500, 1,000, 5,000 and 10,000 were considered,  

assuming 𝛼𝛼 = 0.05.  

Figure 4.  Power curves of  the ANMs to test causation as a function of the parameter 𝑃𝑃 in 

bionomial distribution. Four sample sizes 500, 1,000, 5,000 and 10,000 were considered,  

assuming 𝛼𝛼 = 0.01.  

Figure 5.  A Manhattan plot of GWAS and GWCS.  
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Supplementary A   

Counterfactuals for causal inference 

This introduction focuses on how to use counterfactuals to investigate the causal effect.  The  

average causal effect (ACE) (or treatment effect) is defined as  

ACE= 𝐸𝐸[𝑌𝑌𝑖𝑖1] − 𝐸𝐸[𝑌𝑌𝑖𝑖0],       (A1) 

where 𝐸𝐸[. ] is taken over entire population (Elwert 2013) .  

    Since for each individual we can only observe one of 𝑌𝑌𝑖𝑖1 and 𝑌𝑌𝑖𝑖0, we cannot estimate ACE. 

Standard statistics to estimate ACE is given by 

𝑆𝑆 = 𝐸𝐸[𝑌𝑌𝑖𝑖1�𝑇𝑇𝑖𝑖 = 1] − 𝐸𝐸[𝑌𝑌𝑖𝑖0�𝑇𝑇𝑖𝑖 = 0].      (A2) 

where 𝐸𝐸[. ] is taken over the treatment group and control group, respectively, not over the entire 

population. If potential outcome is binary, then equations (A1) and (A2) can be rewritten as 

𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑃𝑃(𝑌𝑌𝑖𝑖1 = 1) − 𝑃𝑃(𝑌𝑌𝑖𝑖0 = 1)       (A3) 

and 

𝑆𝑆 = 𝑃𝑃(𝑌𝑌𝑖𝑖1 = 1�𝑇𝑇𝑖𝑖 = 1) − 𝑃𝑃(𝑌𝑌𝑖𝑖0 = 1|𝑇𝑇𝑖𝑖 = 0) .    (A4) 

    Since quantity 𝑆𝑆 depends on the treatment assignment, it measures the association between the 

potential outcome with the treatment asigment. Therefore, in general, the ACE is not equal to 𝑆𝑆.  

The sufficient conditions to make them equal are 

Condition I:  



              𝐸𝐸[𝑌𝑌𝑖𝑖1] = 𝐸𝐸[𝑌𝑌𝑖𝑖1�𝑇𝑇𝑖𝑖 = 1] = 𝐸𝐸[𝑌𝑌𝑖𝑖1|𝑇𝑇𝑖𝑖 = 0]                          (A5) 

or 

 𝑃𝑃(𝑌𝑌𝑖𝑖1 = 1) = 𝑃𝑃(𝑌𝑌𝑖𝑖1�𝑇𝑇𝑖𝑖 = 1) = 𝑃𝑃(𝑌𝑌𝑖𝑖1�𝑇𝑇𝑖𝑖 = 0),             (A6) 

which implies that the mean potential outcome (or the probability distribution) under treatment 

for those in the treatment group equals the mean potential outcome (or the probability 

distribution)  under treatment for those in the control group. 

Condition II: 

𝐸𝐸[𝑌𝑌𝑖𝑖0] = 𝐸𝐸[𝑌𝑌𝑖𝑖0�𝑇𝑇𝑖𝑖 = 1] = 𝐸𝐸[𝑌𝑌𝑖𝑖0|𝑇𝑇𝑖𝑖 = 0]            (A7) 

or 

𝑃𝑃(𝑌𝑌𝑖𝑖0 = 1) = 𝑃𝑃(𝑌𝑌𝑖𝑖0 = 1|𝑇𝑇 = 1) = 𝑃𝑃(𝑌𝑌𝑖𝑖0 = 1|𝑇𝑇 = 0) ,         (A8) 

which implies that the mean potential outcome (or the probability distribution) under control for 

those in the treatment group equals the mean potential outcome (or the probability distribution)  

under control for those in the control group.  

    Under conditions I and II we obtain 

𝑆𝑆 = 𝐸𝐸[𝑌𝑌𝑖𝑖1�𝑇𝑇 = 1] − 𝐸𝐸[𝑌𝑌𝑖𝑖0�𝑇𝑇 = 0] = 𝐸𝐸[𝑌𝑌𝑖𝑖1] − 𝐸𝐸[𝑌𝑌𝑖𝑖0] = 𝐴𝐴𝐴𝐴𝐴𝐴 ,       (A9) 

or 

𝑆𝑆 = 𝑃𝑃(𝑌𝑌𝑖𝑖1 = 1�𝑇𝑇 = 1) − 𝑃𝑃(𝑌𝑌𝑖𝑖0 = 1�𝑇𝑇 = 0) = 𝑃𝑃(𝑌𝑌𝑖𝑖1 = 1) − 𝑃𝑃(𝑌𝑌𝑖𝑖0 = 1) = 𝐴𝐴𝐴𝐴𝐴𝐴.     (A10) 



    In other words, conditions I and II ensure that association measure 𝑆𝑆 is equal to the average 

causal effect ACE. Conditions I and II  imply and assume that the average potential outcomes of 

people in the treatment group are equal to that of the outcomes of the people in the control group.  

In other words, no difference between association measurement and causal measurement can be 

achieved by randomized treatment assignment. 

    Random experiments are often expensive, unethical and infeasible. Observational data should 

be used for causal inference. The assumption to ensure that 𝑆𝑆 is an unbiased and consistent 

estimator of the ACE is the following ignorability: 

(𝑌𝑌𝑖𝑖1,𝑌𝑌𝑖𝑖0) ⫫ 𝑇𝑇,          (A11) 

i.e., the potential outcomes must be jointly independent of treatment assignment.  

    In the observational studies, the  ignorability assumption, in general, is difficult to be satisfied. 

Therefore, we make further assumptions to extend the ignorability to conditional ignorability: 

(𝑌𝑌𝑖𝑖1,𝑌𝑌𝑖𝑖0) ⫫ 𝑇𝑇|𝑋𝑋 ,         (A12) 

where 𝑋𝑋 is a set of variables. 

    Conditional ignorability in equation (A12) assumes that the potential outcomes, 𝑌𝑌𝑖𝑖1 and 𝑌𝑌𝑖𝑖0  are 

jointly independent of treatment assignment conditional on groups defined by the value of 𝑋𝑋.  

 

 

 



Supplementary B  

Unification of the SEMs, ICM, counterfactuals and do-calculus methods for causal 
inference 

In this supplementary, we briefly show that the SEMs, ICM, counterfactuals and do-calculus 

methods for causal inference with two random variables can be unified.  

Suppose that both  𝑋𝑋 and 𝑌𝑌 are binary variables. Taking action 𝑋𝑋 = 1 implies that the equation 

𝑋𝑋 = 𝑓𝑓𝑥𝑥(𝜀𝜀𝑥𝑥) should be replaced by 𝑋𝑋 = 1.   Setting 𝑋𝑋 = 1 will not affect the function 𝑓𝑓𝑌𝑌 and 

distribution of noise 𝜀𝜀𝑌𝑌. The interventional distribution is given by 

𝑃𝑃�𝑌𝑌 = 1�𝑑𝑑𝑑𝑑(𝑋𝑋 = 1)� = ∑ 𝑃𝑃(𝜀𝜀𝑌𝑌)𝐼𝐼{𝑓𝑓𝑌𝑌(1, 𝜀𝜀𝑌𝑌) = 𝑦𝑦}𝜀𝜀𝑌𝑌 .    (B1) 

    Note that the conditional observational distribution of 𝑌𝑌 given 𝑋𝑋 is 

𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 1) = ∑ ∑ 𝑃𝑃(𝜀𝜀𝑥𝑥|𝑋𝑋 = 1)𝑃𝑃�𝜀𝜀𝑦𝑦�𝜀𝜀𝑥𝑥�𝐼𝐼{𝑓𝑓𝑦𝑦�1, 𝜀𝜀𝑦𝑦� = 𝑦𝑦}𝜀𝜀𝑌𝑌𝜀𝜀𝑥𝑥  .   (B2) 

By the assumption 𝜀𝜀𝑥𝑥 ⫫ 𝜀𝜀𝑌𝑌, we have 

𝑃𝑃�𝜀𝜀𝑦𝑦�𝜀𝜀𝑥𝑥� = 𝑃𝑃(𝜀𝜀𝑦𝑦).         (B3) 

Substituting equation (B3) into equation (B2) yields 

𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 1) = ∑ 𝑃𝑃(𝜀𝜀𝑦𝑦)𝐼𝐼{𝑓𝑓𝑦𝑦�1, 𝜀𝜀𝑦𝑦� = 𝑦𝑦}𝜀𝜀𝑦𝑦 .     (B4) 

Combining equations (B1) and (B4), we obtain 

𝑃𝑃�𝑌𝑌 = 1�𝑑𝑑𝑑𝑑(𝑋𝑋 = 1)� = 𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 1),     (B5) 

which shows that interventional distribution 𝑃𝑃�𝑌𝑌 = 1�𝑑𝑑𝑑𝑑(𝑋𝑋 = 1)� is equal to the 

observational distribution 𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 1).  



Similarly, we can prove 

𝑃𝑃�𝑌𝑌 = 1�𝑑𝑑𝑑𝑑(𝑋𝑋 = 0)� = 𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 0).     (B6) 

The causal effect of 𝑋𝑋 on the variable 𝑌𝑌 under the structural equation model is defined as 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃�𝑌𝑌 = 1�𝑑𝑑𝑑𝑑(𝑋𝑋 = 1)� − 𝑃𝑃�𝑌𝑌 = 1�𝑑𝑑𝑑𝑑(𝑋𝑋 = 0)�.    (B7) 

Equations (B5) and (B6) show that under the structural equation model (4) the interventional 

distribution is equal to the observational distribution.  

Under the ignorability assumption (𝑌𝑌𝑖𝑖1,𝑌𝑌𝑖𝑖0) ⫫ 𝑋𝑋𝑖𝑖, we obtain 

𝑃𝑃(𝑌𝑌𝑖𝑖1 = 1) = 𝑃𝑃(𝑌𝑌𝑖𝑖1 = 1�𝑋𝑋𝑖𝑖 = 1) = 𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 1),    (B8) 

𝑃𝑃(𝑌𝑌𝑖𝑖0 = 1) = 𝑃𝑃(𝑌𝑌𝑖𝑖0�𝑋𝑋𝑖𝑖 = 1) = 𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 0).     (B9) 

Combining equations (B5), (B6), (B7) and (B8), we obtain 

𝑃𝑃�𝑌𝑌 = 1�𝑑𝑑𝑑𝑑(𝑋𝑋 = 1)� = 𝑃𝑃(𝑌𝑌𝑖𝑖1 = 1),      (B10) 

𝑃𝑃�𝑌𝑌 = 1�𝑑𝑑𝑑𝑑(𝑋𝑋 = 0)� = 𝑃𝑃(𝑌𝑌𝑖𝑖0 = 1).      (B11) 

It follows from equations (A3), (B7), (B10) and (B11) that 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃�𝑌𝑌 = 1�𝑑𝑑𝑑𝑑(𝑋𝑋 = 1)� − 𝑃𝑃�𝑌𝑌 = 1�𝑑𝑑𝑑𝑑(𝑋𝑋 = 0)� = 𝑃𝑃(𝑌𝑌𝑖𝑖1 = 1) − 𝑃𝑃(𝑌𝑌𝑖𝑖0 = 1) = 𝐴𝐴𝐴𝐴𝐴𝐴. 

                      (B12)) 

Equation (B12) shows that the causal effect under the SEMs is equal to the average causal 

effect under the counterfactual model with ignorability assumption.  



Next we discuss the equivalence between ICM and SEMs. Take  the SEMs (4) as  

transformations: 

𝑋𝑋 = 𝑓𝑓𝑥𝑥(𝜀𝜀𝑥𝑥) , 

𝑌𝑌 = 𝑓𝑓𝑦𝑦(𝑋𝑋, 𝜀𝜀𝑌𝑌) . 

We need to show that ICM of 𝑋𝑋 → 𝑌𝑌 implies 𝜀𝜀𝑥𝑥 ⫫ 𝜀𝜀𝑌𝑌. 

The Jacobian matrix of the above transformation is 

𝐽𝐽 = 𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝜀𝜀𝑥𝑥

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜀𝜀𝑦𝑦

 . 

Then, by transformation theorem (Ross 1985), we obtain 

𝑃𝑃(𝑋𝑋,𝑌𝑌) = 𝑃𝑃(𝜀𝜀𝑥𝑥,𝜀𝜀𝑦𝑦)

|𝜕𝜕𝑓𝑓𝑥𝑥𝜕𝜕𝜀𝜀𝑥𝑥

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜀𝜀𝑦𝑦

|
 ,         (B13) 

𝑃𝑃(𝑋𝑋) = 𝑃𝑃(𝜀𝜀𝑥𝑥)

|𝜕𝜕𝑓𝑓𝑥𝑥𝜕𝜕𝜀𝜀𝑥𝑥
|
 ,          (B14) 

which implies that 

𝑃𝑃(𝑌𝑌|𝑋𝑋) =

𝑃𝑃(𝜀𝜀𝑥𝑥,𝜀𝜀𝑦𝑦)

|𝜕𝜕𝑓𝑓𝑥𝑥𝜕𝜕𝜀𝜀𝑥𝑥
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜀𝜀𝑦𝑦

|

𝑃𝑃(𝜀𝜀𝑥𝑥)

|𝜕𝜕𝑓𝑓𝑥𝑥𝜕𝜕𝜀𝜀𝑥𝑥
|

= 𝑃𝑃(𝜀𝜀𝑥𝑥,𝜀𝜀𝑦𝑦)

𝑃𝑃(𝜀𝜀𝑥𝑥)|
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜀𝜀𝑦𝑦

|
.       (B15) 

ICM states that distributions 𝑃𝑃(𝑋𝑋) and 𝑃𝑃(𝑌𝑌|𝑋𝑋) are independent, or 𝑃𝑃(𝑌𝑌|𝑋𝑋) contains no 

information of  𝑃𝑃(𝑋𝑋). Therefore, 𝑃𝑃(𝜀𝜀𝑥𝑥, 𝜀𝜀𝑦𝑦) must be equal to 𝑃𝑃(𝜀𝜀𝑥𝑥)𝑃𝑃(𝜀𝜀𝑦𝑦), i.e., 𝜀𝜀𝑥𝑥 ⫫ 𝜀𝜀𝑌𝑌. 

Otherwise, from equation (B15), we know that 𝑃𝑃(𝑌𝑌|𝑋𝑋) involves both 𝜀𝜀𝑥𝑥 and   𝜀𝜀𝑦𝑦, which implies 



the distribution 𝑃𝑃(𝑌𝑌|𝑋𝑋) will contain information of  𝑃𝑃(𝑋𝑋) , and ICM will not hold. This shows 

that ICM of 𝑋𝑋 → 𝑌𝑌 implies the structural equation model (4).  

Supplementary C   

Identifiability of the direction of discrete ANMs 

Conditions for identifiability  were summarized in Theorem 4 in the paper (Peters et l.  2011) . 

They assumed that 𝑌𝑌 = 𝑓𝑓𝑦𝑦(𝑋𝑋) + 𝑁𝑁𝑦𝑦, 𝑋𝑋 ⫫ 𝑁𝑁𝑦𝑦, 𝑃𝑃(𝑋𝑋 = 𝑘𝑘) ≠ 0,𝑃𝑃(𝑁𝑁𝑌𝑌 = 𝑙𝑙) ≠ 0,∀𝑘𝑘, 𝑙𝑙 and 

considered three cases: 

(1) Both 𝑓𝑓𝑌𝑌 and 𝑓𝑓𝑋𝑋 are bijective. If the ANM 𝑋𝑋 → 𝑌𝑌 is reversible,  then 𝑋𝑋 and 𝑌𝑌 are 

uniformly distributed; 

(2) 𝑓𝑓𝑋𝑋 is  bijective. Suppose that 𝑓𝑓𝑋𝑋(𝑌𝑌1) = 𝑓𝑓𝑋𝑋(𝑌𝑌2). If the ANM 𝑋𝑋 → 𝑌𝑌 is reversible, then                                 

 𝑃𝑃(𝑁𝑁𝑌𝑌=𝑌𝑌1−𝑓𝑓𝑌𝑌(𝑋𝑋))
𝑃𝑃(𝑁𝑁𝑌𝑌=𝑌𝑌2−𝑓𝑓𝑌𝑌(𝑋𝑋))

= 𝑃𝑃(𝑌𝑌=𝑌𝑌1)
𝑃𝑃(𝑌𝑌=𝑌𝑌2)

,∀𝑋𝑋, in many cases, 𝑃𝑃(𝑌𝑌 = 𝑌𝑌1) = 𝑃𝑃(𝑌𝑌 = 𝑌𝑌2). 

(3) 𝑓𝑓𝑌𝑌 is  bijective. Suppose that 𝑓𝑓𝑌𝑌(𝑋𝑋1) = 𝑓𝑓𝑌𝑌(𝑋𝑋2). If the ANM 𝑋𝑋 → 𝑌𝑌 is reversible, then  

𝑃𝑃(𝑋𝑋=𝑋𝑋1)
𝑃𝑃(𝑋𝑋=𝑋𝑋2)

= 𝑃𝑃(𝑁𝑁𝑋𝑋=𝑋𝑋1−𝑓𝑓𝑋𝑋(𝑌𝑌))
𝑃𝑃(𝑁𝑁𝑋𝑋=𝑋𝑋2−𝑓𝑓𝑋𝑋(𝑌𝑌))

,∀𝑌𝑌, in many cases, 𝑃𝑃(𝑋𝑋 = 𝑋𝑋1) = 𝑃𝑃(𝑋𝑋 = 𝑋𝑋2) . 

In our cases, 𝑋𝑋 is an indicator variable for genotypes and 𝑌𝑌 is a binary variable for disease 

status. Therefore, in general, in any of the three cases,  reversible is impossible and hence the 

direction of the ANMs is identifiable.           

 

Supplementary D  

Distance covariance and correlation between two random vectors 

The distance covariance 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋,𝑌𝑌) between two random vectors 𝑋𝑋 and 𝑌𝑌 with finite first 

moments  is defined as 



𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋,𝑌𝑌) = ||𝑓𝑓𝑋𝑋,𝑌𝑌(𝑡𝑡, 𝑠𝑠) − 𝑓𝑓𝑋𝑋(𝑡𝑡)𝑓𝑓𝑌𝑌(𝑠𝑠)||2 = 1
𝑐𝑐𝑝𝑝𝑐𝑐𝑞𝑞

∫
|𝑓𝑓𝑋𝑋,𝑌𝑌(𝑡𝑡,𝑠𝑠)−𝑓𝑓𝑋𝑋(𝑡𝑡)𝑓𝑓𝑌𝑌(𝑠𝑠)|2

|𝑡𝑡|𝑝𝑝
1+𝑝𝑝|𝑠𝑠|𝑞𝑞

1+𝑞𝑞𝑅𝑅𝑝𝑝+𝑞𝑞 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (D1) 

where 𝑐𝑐𝑝𝑝 = 𝜋𝜋
1+𝑝𝑝
2

Γ(1+𝑝𝑝2 )
 and 𝑐𝑐𝑞𝑞 = 𝜋𝜋

1+𝑞𝑞
2

Γ(1+𝑞𝑞2 )
. 

 Similarly, distance variance 𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉2(𝑋𝑋) is defined as 

𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉2(𝑋𝑋) = 1
𝑐𝑐𝑝𝑝2
∫

|𝑓𝑓𝑋𝑋,𝑋𝑋(𝑡𝑡,𝑠𝑠)−𝑓𝑓𝑋𝑋(𝑡𝑡)𝑓𝑓𝑋𝑋(𝑠𝑠)|2

�𝑡𝑡|𝑝𝑝
1+𝑝𝑝�𝑠𝑠|𝑝𝑝

1+𝑝𝑝𝑅𝑅2𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 .          (D2) 

 The square of distance correlation 𝑅𝑅2(𝑋𝑋,𝑌𝑌)is defined as 

𝑅𝑅2(𝑋𝑋,𝑌𝑌) = �
𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋,𝑌𝑌)

�𝑑𝑑𝑉𝑉𝑎𝑎𝑎𝑎2(𝑋𝑋)𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉2(𝑌𝑌)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑋𝑋)𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉2(𝑌𝑌) > 0

0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2(𝑋𝑋)𝑑𝑑𝑉𝑉𝑉𝑉𝑉𝑉2(𝑌𝑌) = 0
 .       (D3) 

  The distance covariance and  correlation can be easily estimated as follows (Sze´kely et al. 

2007). Assume that pairs of nkYX Kk ,...,1 ),,( =  are sampled. Calculate the Euclidean distances: 

nlnkYYbXXa qlkklplKkl ,...,1,,...,1,||||  , |||| ==−=−= . 

    Define 

∑=
=

n

l klk a
n

a
1.

1 , ∑ =
=

n

k kll a
n

a
1.

1 , ∑ ∑= =
=

n

k

n

l kla
n

a
1 12..

1 , 

∑=
=

n

l klk b
n

b
1.

1 , ∑ =
=

n

k kll b
n

b
1.

1  and ∑ ∑= =
=

n

k

n

l klb
n

b
1 12..

1 . 

    Define two matrices: 

nnklAA ×= )(   and nnklBB ×= )( , 

    where  

.... aaaaA lkklkl +−−= , 



.... bbbbB lkklkl +−−= , nlk ,...,1, = . 

    Finally, the sampling distance covariance ),( YXVn , variance )(XVn  and correlation 

),( YXRn  are defined as 

∑ ∑= =
=

n

k

n

l klkln BA
n

YXV
1 12

2 1),( ,            (D4) 

∑ ∑= =
==

n

k

n

l klnn A
n

XXVXV
1 1

2
2

22 1),()( ,  ∑ ∑= =
=

n

k

n

l kln BYV
1 1

22 )( , 









=

>
=

, 0)()(0

0)()(, 
)()(
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22

22
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YVXV
YVXV

YXV
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nn
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n       (D5) 

respectively.  

 Supplementary E 

Theoretical Analysis of the Impact of LD on the Causal Effects 

For the convenience of presentation, we first consider the true linear model for a quantitative trait 

(Xiong 2018): 

𝑌𝑌 = 𝜇𝜇 + 𝑋𝑋𝑋𝑋 + 𝑁𝑁𝑌𝑌,𝑋𝑋 ⫫ 𝑁𝑁𝑌𝑌 ,              (E1) 

where 𝑋𝑋 is an inicater variable for the genotype at the true causal locus and distribution of  𝑁𝑁𝑌𝑌 is 

not normal.  

    Suppose that 𝑋𝑋𝑚𝑚 is an indicator variable for the genotype at a marker locus with marker allele 

frequencies 𝑃𝑃𝑀𝑀 and 𝑃𝑃𝑚𝑚 and LD measure 𝐷𝐷𝑚𝑚 between the marker and true causal loci. Then, we 

have the following linear regression model for the marker locus: 

𝑌𝑌 = 𝜇𝜇 + 𝑋𝑋𝑚𝑚𝛼𝛼𝑚𝑚 + 𝑁𝑁𝑌𝑌𝑚𝑚 .            (E2) 



 Then, we can show (Xiong 2018) that 

𝛼𝛼𝑚𝑚
𝑎𝑎.𝑠𝑠 
�� 𝐷𝐷𝑚𝑚

𝑃𝑃𝑀𝑀𝑃𝑃𝑚𝑚
 𝛼𝛼.             (E3) 

    Equation (E3) implies that in the presence of LD, the marker locus still shows some 

association with genetic additive effect 𝐷𝐷𝑚𝑚
𝑃𝑃𝑀𝑀𝑃𝑃𝑚𝑚

 𝛼𝛼 approximately.   

     Now we investigate the impact of LD on causal inference.  Substituting equation (E1) into 

equation (E2), we obtain 

𝑁𝑁𝑌𝑌𝑚𝑚 = 𝑁𝑁𝑌𝑌 + 𝑋𝑋𝑋𝑋 − 𝑋𝑋𝑚𝑚𝛼𝛼𝑚𝑚 .                       (E4) 

    Define  

∆= 𝑋𝑋𝑋𝑋 − 𝑋𝑋𝑚𝑚𝛼𝛼𝑚𝑚 ≈ (𝑋𝑋 − 𝐷𝐷𝑚𝑚
𝑃𝑃𝑀𝑀𝑃𝑃𝑚𝑚

𝑋𝑋𝑚𝑚)𝛼𝛼.         (E5) 

    When ∆≠ 0, distance covariance 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋𝑚𝑚,𝑁𝑁𝑌𝑌𝑚𝑚) is equal to 

0 ≤ 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋𝑚𝑚,𝑁𝑁𝑌𝑌𝑚𝑚) = 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋 + 𝑋𝑋𝑚𝑚 − 𝑋𝑋,𝑁𝑁𝑌𝑌 + ∆)  

                                     ≤ 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋,𝑁𝑁𝑌𝑌) + 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋𝑚𝑚 − 𝑋𝑋,∆)  

                                     = 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋𝑚𝑚 − 𝑋𝑋,∆),     (E6) 

where 𝑋𝑋 and 𝑁𝑁𝑌𝑌 are independent by the ICM. 

    𝑋𝑋𝑚𝑚 → 𝑌𝑌 must imply that ∆= 0 (Sze´kely and Rizzo, 2009) or 

𝑋𝑋 = 𝐷𝐷𝑚𝑚
𝑃𝑃𝑀𝑀𝑃𝑃𝑚𝑚

𝑋𝑋𝑚𝑚.              (E7) 

    Equation (E7) indicates that 𝑋𝑋𝑚𝑚 → 𝑋𝑋 . However, in general, SNPs do not have causal 

relationships. Therefore, 𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶2(𝑋𝑋𝑚𝑚,𝑁𝑁𝑌𝑌𝑚𝑚) ≠ 0 and 𝑋𝑋𝑚𝑚,𝑁𝑁𝑌𝑌𝑚𝑚 are not independent, which implies 

that 𝑋𝑋𝑚𝑚 does not cause 𝑌𝑌.  

    Now we calculate the causal measure. Let 𝐶𝐶𝑋𝑋→𝑌𝑌 = 1 − 𝑅𝑅(𝑋𝑋,𝑁𝑁𝑌𝑌) be the causal measure of the 

causal SNP 𝑋𝑋. Then, the causal measure of the marker 𝑋𝑋𝑚𝑚 is given by 

𝐶𝐶𝑋𝑋𝑚𝑚→𝑌𝑌 = 𝐶𝐶𝑋𝑋→𝑌𝑌 − 𝑅𝑅(𝑋𝑋𝑚𝑚 − 𝑋𝑋,𝑋𝑋 − 𝐷𝐷𝑚𝑚
𝑃𝑃𝑀𝑀𝑃𝑃𝑚𝑚

𝑋𝑋𝑚𝑚).           (E8) 



    1 ≥ 𝑅𝑅(𝑋𝑋𝑚𝑚 − 𝑋𝑋,𝑋𝑋 − 𝐷𝐷𝑚𝑚
𝑃𝑃𝑀𝑀𝑃𝑃𝑚𝑚

𝑋𝑋𝑚𝑚) ≥ 0  implies 

𝐶𝐶𝑋𝑋→𝑌𝑌 ≥ 𝐶𝐶𝑋𝑋𝑚𝑚→𝑌𝑌 ≥ 0.             (E9) 

    Causation measure 𝐶𝐶𝑋𝑋𝑚𝑚→𝑌𝑌 depends on the distance correlation between 𝑋𝑋𝑚𝑚 − 𝑋𝑋 and 𝑋𝑋 −

𝐷𝐷𝑚𝑚
𝑃𝑃𝑀𝑀𝑃𝑃𝑚𝑚

𝑋𝑋𝑚𝑚. 

    For  qualitative trait, we can use a logistic integer function as a nonlinear function. After some 

algebraic operations, we  have the model: 

𝑌𝑌 = 𝑒𝑒𝑋𝑋𝑋𝑋

1+𝑒𝑒𝑋𝑋𝑋𝑋
+ 𝑁𝑁𝑌𝑌              (E10) 

or  

𝑌𝑌 = 𝑓𝑓(𝑋𝑋𝑋𝑋) + 𝑁𝑁𝑌𝑌 ,            (E11) 

where  𝑓𝑓(𝑋𝑋𝑋𝑋) is a nonlinear function.   

Equation (E11) can be approximated by 

𝑌𝑌 = 𝑓𝑓(0) + 𝑓𝑓′(0)𝑋𝑋𝑋𝑋 + 𝑁𝑁𝑌𝑌 .              (E12) 

    Thus, the model (E11) is reduced to model equation (E1). Using the same arguments from the 

model equation (E1), we can define the causality measure for marker 𝑋𝑋𝑚𝑚: 

𝐶𝐶𝑋𝑋𝑚𝑚→𝑌𝑌 = 𝐶𝐶𝑋𝑋→𝑌𝑌 − 𝑅𝑅(𝑋𝑋𝑚𝑚 − 𝑋𝑋,𝑋𝑋 − 𝑓𝑓′(0)𝐷𝐷𝑚𝑚
𝑃𝑃𝑀𝑀𝑃𝑃𝑚𝑚

𝑋𝑋𝑚𝑚).         (E13) 

    For the discrete ANMs, we cannot find 𝑓𝑓′(0), the causal measure for the marker may simply 

be written as 

𝐶𝐶𝑋𝑋𝑚𝑚→𝑌𝑌 = 𝐶𝐶𝑋𝑋→𝑌𝑌 − 𝑅𝑅(𝑋𝑋𝑚𝑚 − 𝑋𝑋,𝑋𝑋 − 𝛾𝛾𝛾𝛾𝑚𝑚
𝑃𝑃𝑀𝑀𝑃𝑃𝑚𝑚

𝑋𝑋𝑚𝑚),         (E14) 

where  𝛾𝛾 is a appropriate constant. 

 

 



Table S1. P-values of  causation and assication of 214 SNPs showing significant causal  relationships 
with schizophrenia.  
SNPs Chr Gene Related Disease P-values 

  
  

    Causation 
 
Association 

rs1324544 6     <E-06 3.14E-12 
rs4715076 6     <E-06 6.90E-12 
rs2829725 21 

 
  <E-06 4.53E-11 

rs9931378 16 
 

  <E-06 1.23E-09 
rs12057989 1 

 
  <E-06 1.28E-08 

rs11784724 8 
 

  <E-06 1.76E-08 
rs13167565 5 ADAMTS19  Premature Menopause <E-06 2.33E-08 
rs1820353 11 

 
  <E-06 2.83E-08 

rs1433979 11 
 

  <E-06 3.09E-08 
rs11746536 5 KIAA1024L  <E-06 4.23E-08 
rs10791112 11 

 
  <E-06 4.29E-08 

rs7110863 11 NCAM1  Schizophrenia (S2) <E-06 4.34E-08 
rs990323 5 

 
  <E-06 4.86E-08 

rs6578683 11 
 

  <E-06 5.60E-08 
rs28817943 8 

 
  <E-06 5.68E-08 

rs1118137 11 
 

  <E-06 6.52E-08 
rs1465402 5 ADAMTS19  Premature Menopause <E-06 6.64E-08 
rs929683 12 

 
  <E-06 7.96E-08 

rs7942900 11 
 

  <E-06 8.14E-08 
rs1347283 11 

 
  <E-06 1.03E-07 

rs6822457 4 
 

  <E-06 1.05E-07 
rs7118907 11 NCAM1  Schizophrenia (S2) <E-06 1.32E-07 
rs961491 11 

 
  <E-06 1.35E-07 

rs2212450 11 
 

  <E-06 1.38E-07 
rs1481216 4 

 
  <E-06 1.50E-07 

rs11251290 10 
 

  <E-06 1.95E-07 
rs4937872 11 

 
  <E-06 1.95E-07 

rs1420643 7 SEPT7  Schizophrenia (S2) <E-06 2.02E-07 
rs9442081 1 

 
  <E-06 2.10E-07 

rs1534440 6 UTRN  Schizophrenia (S2) <E-06 2.36E-07 
rs7122268 11 

 
  <E-06 2.45E-07 

rs2090636 11 
 

  <E-06 2.51E-07 
rs2324316 11 

 
  <E-06 2.55E-07 

rs10892831 11 
 

  <E-06 2.74E-07 
rs2186710 11 

 
  <E-06 2.75E-07 

rs6578689 11 
 

  <E-06 2.82E-07 
rs9850533 3 

 
  <E-06 3.33E-07 

rs7314348 12 
 

  <E-06 3.38E-07 
rs1940720 11 NCAM1  Schizophrenia (S2) <E-06 3.50E-07 
rs2324317 11 

 
  <E-06 3.59E-07 



rs1940718 11 NCAM1  Schizophrenia (S2) <E-06 3.76E-07 
rs2298526 11 NCAM1  Schizophrenia (S2) <E-06 3.76E-07 
rs8028364 15 

 
  <E-06 3.78E-07 

rs10864120 1 
 

  <E-06 4.27E-07 
rs4479020 11 NCAM1  Schizophrenia (S2) <E-06 4.32E-07 

rs32215 
5 

FBN2  
Congenital contractural 
arachnodactyly <E-06 

4.53E-07 

rs7121047 11 NCAM1  Schizophrenia (S2) <E-06 4.98E-07 
rs1587327 11 

 
  <E-06 4.99E-07 

rs11251291 10 
 

  <E-06 6.19E-07 
rs961143 4 

 
  <E-06 6.49E-07 

rs11251292 10 
 

  <E-06 7.35E-07 
rs12626328 21 

 
  <E-06 7.81E-07 

rs11724067 4 
 

  <E-06 8.48E-07 
rs10937187 3 MAGEF1  <E-06 8.51E-07 
rs7126748 11 NCAM1  Schizophrenia (S2) <E-06 9.30E-07 
rs13233180 7 SEPT14  Glioblastoma <E-06 9.66E-07 
rs4895650 6 UTRN  Schizophrenia (S2) <E-06 9.72E-07 
rs11710643 3 

 
  <E-06 9.97E-07 

rs10751039 11 
 

  <E-06 1.01E-06 
rs11251289 10 

 
  <E-06 1.02E-06 

rs28579610 10 
 

  <E-06 1.05E-06 
rs11251286 10 

 
  <E-06 1.15E-06 

rs12359941 10 
 

  <E-06 1.16E-06 
rs12817135 12 

 
  <E-06 1.19E-06 

rs12817138 12 
 

  <E-06 1.19E-06 
rs7105462 11 NCAM1  Schizophrenia (S2) <E-06 1.21E-06 
rs1155447 10 

 
  <E-06 1.32E-06 

rs12356215 10 
 

  <E-06 1.38E-06 
rs7673072 4 

 
  <E-06 1.41E-06 

rs11251283 10 
 

  <E-06 1.41E-06 
rs2029604 10 

 
  <E-06 1.41E-06 

rs4937870 11 
 

  <E-06 1.49E-06 
rs7673034 4 

 
  <E-06 1.50E-06 

rs17340760 12 
 

  <E-06 1.51E-06 
rs10751040 11 

 
  <E-06 1.59E-06 

rs58624222 1 
 

  <E-06 1.60E-06 
rs4615154 4 

 
  <E-06 1.61E-06 

rs593748 11 
 

  <E-06 1.65E-06 
rs9733402 10 

 
  <E-06 1.66E-06 

rs10027852 4 
 

  <E-06 1.66E-06 
rs4403029 4 

 
  <E-06 1.77E-06 

rs11532093 11 
 

  <E-06 1.85E-06 
rs71661923 1 

 
  <E-06 1.88E-06 

rs331090 5 FBN2  Congenital contractural <E-06 1.92E-06 



arachnodactyly 
rs4034950 4 

 
  <E-06 1.92E-06 

rs12679517 8 
 

  <E-06 1.96E-06 
rs7115124 11 

 
  <E-06 2.03E-06 

rs7119114 11 
 

  <E-06 2.05E-06 
rs7305111 12 

 
  <E-06 2.10E-06 

rs11712584 3 MAGEF1  <E-06 2.21E-06 
rs138810467 12 

 
  <E-06 2.23E-06 

rs10903785 10 
 

  <E-06 2.33E-06 
rs10791113 11 

 
  <E-06 2.33E-06 

rs11596010 10 
 

  <E-06 2.35E-06 
rs4452753 7 SEPT14  Glioblastoma <E-06 2.44E-06 
rs1117428 12 

 
  <E-06 2.47E-06 

rs10243009 7 SEPT14  Glioblastoma <E-06 2.55E-06 
rs6592883 11 

 
  <E-06 2.65E-06 

rs4976939 8 
 

  <E-06 2.67E-06 
rs10032875 4 

 
  <E-06 2.67E-06 

rs4510809 7 SEPT14  Glioblastoma <E-06 2.71E-06 
rs4439551 11 NCAM1  Schizophrenia (S2) <E-06 2.82E-06 
rs1940726 11 NCAM1  Schizophrenia (S2) <E-06 2.88E-06 
rs9302051 13 ABCC4  Prostatic Neoplasms <E-06 2.94E-06 
rs4754522 11 

 
  <E-06 2.96E-06 

rs30645 5 ADAMTS19  Premature Menopause <E-06 3.03E-06 
rs4720832 7 

 
  <E-06 3.04E-06 

rs847501 14 
 

  <E-06 3.08E-06 
rs641472 1 

 
  <E-06 3.11E-06 

rs512802 1 
 

  <E-06 3.31E-06 
rs6972161 7 SEPT14  Glioblastoma <E-06 3.32E-06 
rs11929982 4 RELL1  Liver Cirrhosis, Experimental <E-06 3.50E-06 
rs2212328 11 

 
  <E-06 3.63E-06 

rs11180229 12 
 

  <E-06 3.65E-06 
rs10891492 11 NCAM1  Schizophrenia (S2) <E-06 3.65E-06 
rs4476962 7 SEPT14  Glioblastoma <E-06 3.72E-06 
rs9656760 8 

 
  <E-06 3.72E-06 

rs228768 17 HDAC5  Mental Depression (S7) <E-06 3.76E-06 
rs11715252 3 

 
  <E-06 3.89E-06 

rs2155292 11 NCAM1  Schizophrenia (S2) <E-06 3.92E-06 
rs3802847 11 NCAM1  Schizophrenia (S2) <E-06 3.99E-06 
rs3924086 7 

 
  <E-06 4.23E-06 

rs7942723 11 NCAM1  Schizophrenia (S2) <E-06 4.26E-06 
rs7303492 12 

 
  <E-06 4.39E-06 

rs10894306 11 
 

  <E-06 4.47E-06 

rs331092 
5 

FBN2  
Congenital contractural 
arachnodactyly <E-06 

4.53E-06 

rs1940713 11 NCAM1  Schizophrenia (S1, S2) <E-06 4.57E-06 



rs1940714 11 NCAM1  Schizophrenia (S1, S2) <E-06 4.57E-06 
rs4480572 11 NCAM1  Schizophrenia (S2) <E-06 4.57E-06 
rs7935745 11 NCAM1  Schizophrenia (S2) <E-06 4.57E-06 
rs34988996 10 

 
  <E-06 4.62E-06 

rs61835737 10 
 

  <E-06 4.62E-06 
rs7938812 11 NCAM1  Schizophrenia (S2) <E-06 4.64E-06 
rs3802848 11 NCAM1  Schizophrenia (S2) <E-06 4.70E-06 
rs10212515 3 MAGEF1  <E-06 4.73E-06 
rs10927075 1 AKT3  Schizophrenia (S5) <E-06 4.76E-06 
rs2052801 8 

 
  <E-06 4.79E-06 

rs4589334 11 NCAM1  Schizophrenia (S2) <E-06 4.80E-06 
rs1892981 11 NCAM1  Schizophrenia (S2) <E-06 4.94E-06 
rs1940699 11 NCAM1  Schizophrenia (S2) <E-06 4.99E-06 
rs34691721 8 SCRIB  Neural Tube Defects (S4) <E-06 5.01E-06 
rs2186874 11 NCAM1  Schizophrenia (S2) <E-06 5.06E-06 
rs2155646 11 NCAM1  Schizophrenia (S2) <E-06 5.10E-06 
rs7947502 11 NCAM1  Schizophrenia (S2) <E-06 5.13E-06 
rs4294596 11 NCAM1  Schizophrenia (S2) <E-06 5.23E-06 
rs7113099 11 NCAM1  Schizophrenia (S2) <E-06 5.31E-06 
rs12011 3 MAGEF1  <E-06 5.52E-06 
rs1940697 11 NCAM1  Schizophrenia (S2) <E-06 5.82E-06 
rs7128314 11 NCAM1  Schizophrenia (S2) <E-06 5.90E-06 
rs2212449 11 NCAM1  Schizophrenia (S2) <E-06 5.94E-06 
rs695134 11 IGSF9B  Schizophrenia  (S2) <E-06 5.94E-06 

rs331089 
5 

FBN2  
Congenital contractural 
arachnodactyly <E-06 

6.03E-06 

rs723599 11 NCAM1  Schizophrenia (S2) <E-06 6.12E-06 
rs4820386 22 CAC1I    <E-06 6.13E-06 
rs999851 11 NCAM1  Schizophrenia (S2) <E-06 6.20E-06 
rs7113596 11 NCAM1  Schizophrenia (S2) <E-06 6.30E-06 
rs10891487 11 NCAM1  Schizophrenia (S2) <E-06 6.44E-06 
rs507378 11 IGSF9B  Schizophrenia (S2) <E-06 6.59E-06 
rs10750019 11 NCAM1  Schizophrenia (S2) <E-06 6.67E-06 
rs7127712 11 NCAM1  Schizophrenia (S2) <E-06 6.73E-06 
rs7127930 11 NCAM1  Schizophrenia (S2) <E-06 6.73E-06 
rs1940733 11 NCAM1  Schizophrenia (S2) <E-06 6.74E-06 
rs4821910 22 CAC1I    <E-06 6.81E-06 
rs2186707 11 NCAM1  Schizophrenia (S2) <E-06 6.87E-06 
rs13147397 4 

 
  <E-06 6.91E-06 

rs9919620 11 NCAM1  Schizophrenia (S2) <E-06 6.92E-06 
rs10750021 11 NCAM1  Schizophrenia (S2) <E-06 7.15E-06 
rs10092551 8 SCRIB  Neural Tube Defects  <E-06 7.20E-06 
rs1940725 11 NCAM1  Schizophrenia (S2) <E-06 7.32E-06 
rs1940727 11 NCAM1  Schizophrenia (S2) <E-06 7.32E-06 
rs1954826 11 NCAM1  Schizophrenia (S2) <E-06 7.32E-06 



rs1940702 11 NCAM1  Schizophrenia (S1, S2) <E-06 7.93E-06 
rs4144892 11 NCAM1  Schizophrenia (S2) <E-06 8.14E-06 
rs1940716 11 NCAM1  Schizophrenia (S2, S6) <E-06 8.20E-06 
rs7950836 11 NCAM1  Schizophrenia (S2) <E-06 8.20E-06 
rs9919670 11 NCAM1  Schizophrenia (S11) <E-06 8.54E-06 
rs1940701 11 NCAM1  Schizophrenia (S2, S5) <E-06 8.82E-06 
rs12739344 1 AKT3  Schizophrenia (S5) <E-06 8.95E-06 
rs7108081 11 NCAM1  Schizophrenia (S9) <E-06 9.03E-06 
rs4255098 8 

 
  <E-06 9.17E-06 

rs1911723 12 
 

  <E-06 9.78E-06 
rs12538049 7 SEPT14  Glioblastoma <E-06 9.96E-06 
rs8097665 18 DOK6  Tobacco Use Disorder <E-06 1.03E-05 
rs4733144 8 

 
  <E-06 1.05E-05 

rs876983 8 PSD3  Schizophrenia (S1)  <E-06 1.42E-05 
rs11993154 8 SCRIB  Neural Tube Defects (S4) <E-06 1.51E-05 
rs1911724 12 

 
  <E-06 1.56E-05 

rs16875703 8 
 

  <E-06 1.69E-05 
rs4947524 7 

 
  <E-06 1.78E-05 

rs2039461 9 
 

  <E-06 1.96E-05 
rs4869972 6 MTHFD1L  Alzheimer's Disease (S8) <E-06 1.98E-05 
rs12419623 11 RS2    <E-06 2.22E-05 
rs7035838 9 

 
  <E-06 2.23E-05 

rs714031 22 CAC1I    <E-06 2.23E-05 
rs10075211 5 HTR4  Schizophrenia (S1)  <E-06 2.24E-05 
rs2409138 21 

 
  <E-06 2.34E-05 

rs3812442 8 TSTA3  Malignt neoplasm of breast <E-06 2.50E-05 
rs6468144 8 

 
  <E-06 2.60E-05 

rs6582447 12 
 

  <E-06 3.14E-05 
rs55648724 6 

 
  <E-06 3.33E-05 

rs7775684 6 
 

  <E-06 3.34E-05 
rs7385206 7 

 
  <E-06 3.56E-05 

rs5757766 22 CAC1I    <E-06 3.63E-05 
rs725515 16 CDH13  Mental Depression (S10) <E-06 3.80E-05 
rs7014454 8 

 
  <E-06 3.90E-05 

rs114180690 6 
 

  <E-06 3.95E-05 
rs866154 10 

 
  <E-06 4.09E-05 

rs116414669 6 
 

  <E-06 5.63E-05 
rs114954038 6 

 
  <E-06 6.24E-05 

rs34259118 9 BNC2  Craniofacial Abnormalities <E-06 8.50E-05 
rs7283105 21 

 
  <E-06 9.01E-05 

rs10986439 9 GABBR2  Major Depressive Disorder (S3) <E-06 0.00045792 
rs181555294 6 

 
  <E-06 0.00087933 

rs4531108 9 
 

  <E-06 0.00186101 
 



     

Table S2. Power to detect association between SNPs and 
disease 
Sample Size 500 1000 2000 5000 

 0.05 0.999 1 1 1 
 0.01 0.992 0.992 0.993 0.992 
  

Table S3. Power to detect association between SNP1 
and Disease. 
Sample Sizes 500 1000 2000 5000 
0.05 0.999 1 1 0.999 
0.01 0.992 0.992 0.993 0.992 

 

Table S4. Power to detect association between 
SNP1 and disease.  
Sample Sizes 500 1000 2000 5000 
0.05 0.684 0.888 0.949 0.949 
0.01 0.418 0.701 0.936 0.948 

 

 

 

 

 

 

 


