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Abstract: Phylogenetic network is an evolutionary model that

uses a rooted directed acyclic graph (instead of a tree) to model an

evolutionary history of species in which reticulate events (e.g., hybrid

speciation or horizontal gene transfer) occurred. Tree-child network

is a kind of phylogenetic network with structural constraints. Existing
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2 1 INTRODUCTION

approaches for tree-child network reconstruction can be slow for

large data. In this paper, we present several computational approaches

for bounding from below the number of reticulations in a tree-child

network that displays a given set of rooted binary phylogenetic trees.

In addition, we also present some theoretical results on bounding

from above the number of reticulations. Through simulation, we

demonstrate that the new lower bounds on the reticulation number

for tree-child networks can practically be computed for large tree

data. The bounds can provide estimates of reticulation for relatively

large data.

1 Introduction

Phylogenetic network is an emerging evolutionary model for several complex

evolutionary processes, including recombination, hybrid speciation, horizontal

gene transfer and other reticulate events (Gusfield, 2014; Huson et al., 2010).

On the high level, phylogenetic network is a leaf-labeled rooted acyclic digraph.

Different from phylogenetic tree model, a phylogenetic network can have nodes

(called reticulate nodes) with in-degrees of two or larger. The presence of

reticulate nodes greatly complicates the application of phylogenetic networks.

The number of possible phylogenetic networks even with a small number of

reticulate nodes is very large (Fuchs et al., 2021). A common computational task

related to an evolutionary model is the inference of the model (tree or network)

from data. A set of phylogenetic trees is a common data for phylogenetic

inference. An established research problem on phylogenetic networks is inferring

a phylogenetic network as the consensus of multiple phylogenetic trees where the

network satisfies certain optimality conditions (Elworth et al., 2019; Gunawan

et al., 2020). Each phylogenetic tree is somehow “contained” (or “displayed”)
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in the network. The problem of inferring a phylogenetic network from a set

of phylogenetic trees is called the network reconstruction problem (also called

hybridization network problem in the literature). We refer to the recent surveys

(Steel, 2016; Zhang, 2019a) for the mathematical relation between trees and

networks.

The network reconstruction problem has been actively studied recently in

computational biology. There are two types of approaches for this problem:

unconstrained network reconstruction and constrained network reconstruction.

Unconstrained network reconstruction (Chen and Wang, 2012; Mirzaei and Wu,

2016; Wu, 2010, 2013) aims to reconstructing a network without additional

topological constraints. While such approaches infer more general networks,

they are often slow and difficult to scale to large data. Constrained network

reconstruction imposes some type of topological constraints on the inferred

network. Such constraints simplify the network structure and often lead to

more efficient algorithms. There are various kinds of constraints studied in

the literature. One popular constraint is requiring simplified cycle structure in

networks (e.g., so-called galled tree (Gusfield et al., 2004; Wang et al., 2001).

Another topological constraint, the so-called tree-child property (Cardona

et al., 2009), has been studied actively recently. A phylogenetic network is

tree-child if every non-leaf node has at least one child that is of in-degree one.

This property implies that every non-leaf node is connected to some leaf through

a path that is not affected by the removal of any reticulate edge (edge going

into a reticulate node; see Figure 1). A main benefit of tree-child network is

that it can have more complex structure than say galled trees, and is therefore

potentially more applicable. While tree-child networks have complex structure,

they can efficiently be enumerated and counted by a simple recurrence formula

(Pons and Batle, 2021; Zhang, 2019b) and so may likely allow faster computation
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Figure 1: An arbitrary phylogenetic network with four reticulate nodes (filled
circles) on taxa 1, 2, 3, 4 (left), a tree-child network (middle) and a phylogenetic
tree (right). Note: the tree on the right is displayed in the network to the left.

for other tasks. There is a parametric algorithm for determining whether a set

of multiple trees can be displayed in a tree-child network simultaneously (van

Iersel et al., 2022).

Given a phylogenetic networkN , we say a phylogenetic tree T (with the same

set of taxa as N) is displayed in N if T can be obtained by (i) first deleting all

but one incoming edges at each reticulate node of N (this leads to a tree), and

then (ii) removing the degree-two nodes so that the resulting tree becomes a

phylogenetic tree. As an example, in Figure 1, the tree on the right is displayed

in the network on the left. Given a set of phylogenetic trees T , we want to

reconstruct a tree-child network such that it displays each tree T ∈ T and its

so-called reticulation number is the smallest among all such tree-child networks.

Here, reticulation number is equal to the number of reticulate edges minus the

number of reticulate nodes. The smallest reticulation number needed to display

a set of trees T is called the tree-child reticulation number of T and is denoted

as TCRmin. Note that TCRmin depends on T . To simplify notations, we drop

T from TCRmin and the following lower bounds on TCRmin. There exists no

known polynomial-time algorithm for computing the exact TCRmin for multiple
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trees.

Since computing the exact tree-child reticulation number TCRmin of multiple

trees is challenging, heuristics for estimating the range of TCRmin have been

developed. Existing heuristics aim at finding a tree-child network with the

number of reticulation that is as close to TCRmin as possible. At present, the

best heuristics is ALTS (Zhang, et al, 2023). ALTS can construct near-parsimonious

tree-child networks for data that is infeasible for other existing methods. However,

a main downside of ALTS is that it is a heuristic and so how close a network

reconstructed by ALTS to the optimal one is unknown. Moreover, ALTS still

cannot work on large data (say 50 trees with 100 taxa, and with relatively large

number of reticulations).

We can view the network reconstruction heuristics as providing an upper

bound to the reticulation number. In order to gain more information on the

reticulation number, a natural approach is computing a lower bound on the

reticulation number. Such lower bounds, if practically computable, can provide

information on the range of the reticulation number. In some cases, if a lower

bound matches the heuristically computed upper bound for some data, we can

actually know the exact reticulation number (Wu, 2010). Computing a tight

lower bound on reticulation number, however, is not easy: to derive a lower

bound one has to consider all possible networks that display a set of trees T ; in

contrast, computing an upper bound on reticulation number of T only requires

one feasible network. For unconstrained networks with multiple trees, the only

known non-trivial lower bound is the bound computed by PIRN (Wu, 2010).

While this bound performs well for relatively small data, it is computationally

intensive to compute for large data. For tree-child networks, we are not aware

of any published non-trivial lower bounds.

In this paper, we present several lower bounds on TCRmin. By simulation, we



6 1 INTRODUCTION

show that these lower bounds can be useful estimates of TCRmin. In addition,

we also present some theoretical results on upper bounds of TCRmin.

Background on tree-child network

Throughout this paper, when we say network, we refer to tree-child network in

which reticulate nodes can have two or more incoming reticulate edges (unless

otherwise stated), which may not be binary. Edges in the network that are not

reticulate edge are called tree edges. Trees are assumed to be rooted binary

trees on the same taxa.

The tree-child property A phylogenetic network is tree-child if every

nonleaf node has at least one child that is a tree node. In Figure 1, the middle

phylogenetic network is tree-child, whereas the left network is not in which both

the parent u of the leaf 4 and the parent v of the leaf 3 are reticulate and the

node right above u has u and v as its children. One important property about

tree-child network is that there is a directed path consisting of only tree edges

from any node to some leaf (see e.g. Zhang, et al (2023)).

Network decomposition Consider a phylogenetic networkN with k reticulate

nodes. Let the root of N be r0 and the k reticulate nodes be r1, r2, · · · , rk. For

each i from 0 to k, ri and its descendants that are connected to ri by a path

consisting of only tree edges induces a subtree ofN . Such k+1 subtrees are called

the tree components ofN (Gunawan et al., 2017). Note that the tree components

are disjoint and the node set of N is the union of the node sets of these tree

components (see Figure 2). Network decomposition is a powerful technique for

studying the tree-child networks (Cardona and Zhang, 2020; Fuchs et al., 2021)

and other network classes (Gambette et al., 2015) (see Zhang (2019a) for a

survey).

Path decomposition The network decomposition for a tree-child network
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(a) Decompose into trees (b) Decompose into paths

Figure 2: Illustration of the decomposition of a phylogenetic network with k
reticulate nodes and n leaves. In this example, k = 3 and n = 6. Part 2(a):
decompose into k + 1 disjoint tree components. The tree component rooted
at the network root is highlighted in green; other tree components rooted at
a recirculate node are in blue. Part 2(b): decompose into n paths (each path
appears in a tree component; ordered by the leaf labels). Reticulate edges:
dashed lines. Edges in paths: thick lines. Tree edges not on paths: thin lines.

leads to a set of trees, where the trees are connected by reticulate edges. We

can further decompose each tree component into paths as follows. Suppose a

tree component contains p leaves and these leaves are ordered in some way. We

create a path for each leaf sequentially. Let a be the current leaf. We create

a path of edges from a node as close to the root of the the tree as possible,

and down to a. We then remove all edges starting at a path and ending at

a different path. This procedure (called path decomposition) is illustrated in

Figure 2(b), where the path creation follows the numerical order of the leaves.

Note that path decomposition is a valid decomposition of a network N : each

node in N belongs to a unique path after decomposition. This is because only

edges (not nodes) are removed during the above procedure. In addition, path

decomposition depends on the ordering on nodes: suppose we trace two paths

backward to the root; when two paths meet, the path ending at an earlier node

continues and the path to a later node ends. This implies that the ordering of
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leaves affect the outcome of the path decomposition. Moreover, a path starts

at either a reticulate node or a tree node in path decomposition. At least one

incoming edge is needed to connect the path to the rest of the network (unless

the path starts from the root of the network).

Displaying trees and path decomposition When a tree T is displayed

in N , there are edges in N that form a topologically equivalent tree (possibly

with degree-two nodes) as T . Now, when N is decomposed into paths, to display

T , we need to connect the paths by using (either tree or reticulate) edges not

belonging to the paths. Intuitively, tree edges connect the paths in a fixed way

while reticulate edges lead to different topology of paths. That is, to display

different trees, we need to connect the paths using different reticulate edges.

This simple property is the foundation of the lower bounds we are to describe

in Section 2.

Recall that to display a tree, we need to make choices for each reticulate

edge whether to keep or discard. This choice is called the display choice for this

reticulate edge.

2 Lower bounds on the tree-child reticulation

number

In this section, we present several practically computable lower bounds for the

tree-child reticulation number for displaying a set of trees. These bounds are

derived based on the decomposition of tree-child networks.

2.1 TCLB1: a simple lower bound

Recall that any tree-child network with n taxa {1, 2, . . . , n} can be decomposed

by path decomposition into n simple paths (possibly in different ways), where
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each path starts with some network node and ends at a taxon. Now we consider a

specific networkN and a specific decomposition ofN into n paths Pi (1 ≤ i ≤ n).

Each Pi starts from nodes in the network and ends at taxon i. We say Pi and

Pj are connected if some node within Pi is connected by an edge to the start

node of Pj or vice versa. We define a binary variable Ci,j to indicate whether

or not Pi and Pj are connected for each pair of i and j such that 1 ≤ i < j ≤ n.

Note that Ci,j is for a specific network N and a specific path decomposition of

N . For an example, in the path decomposition in Figure 2(b), We have:

C1,2 = C1,4 = C1,5 = C1,6 = C2,3 = C2,4 = C2,5 = C3,4 = 1

and Ci,j = 0 for other index pairs. Note that each of these Ci,j = 1 corresponds

to a specific (tree or reticulate) edge not inside paths.

Lemma 1. Let T be a set of trees.

(1) If N is a network that displays T , C(N,D) =
∑

1≤i<j≤n C
(D)
i,j − n +

1 ≤ TCR(N), where C
(D)
i,j is obtained from the path decomposition constructed

according to an arbitrary ordering D on the taxa of the trees. Here, TCR(N) is

the reticulation number of the network N .

(2) For any ordering D on the taxa of T , we have the following lower bound

on TCRmin:

TCLB
∆
= minNC(N,D)− n+ 1 ≤ TCRmin.

Proof. (1) Assume TCR(N) = k. Let D be an arbitrary ordering on the taxa

X of T . The path decomposition constructed according to D contains n paths

P1, P2, · · · , Pn. Here, C
(D)
i,j = 1 if Pi and Pj are connected by an edge that goes

from Pi to Pj . That is, Pi is obtained prior to Pj .

If Pj starts from a tree node uj rather than the root of N , there is a unique

path Pi such that C
(D)
i,j = 1 and C

(D)
i′,j = 0 for any i′ ̸= i. This implies that
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∑
1≤i≤n C

(D)
i,j = 1 = din(uj). Here, din(u) is the in-degree of the node u. If uj

is the root of N , then
∑

1≤i≤n C
(D)
i,j = din(uj) = 0: no path exists that is prior

to Pj with regard to D.

If Pj starts from a reticulate node uj , there are din(uj) reticulate edges

entering uj . Therefore, Pj is connected with at most din(uj) paths. Therefore,∑
1≤i≤n C

(D)
i,j ≤ din(uj).

Summing these terms together, we obtain:

C(N,D)−n+1 =
∑

1≤j≤n

∑
1≤i≤n

C
(D)
ij −n+1 ≤

∑
1≤j≤n

din(uj)−n+1 = TCRmin.

(2) Let O be a tree-child network with the smallest reticulate number

TCRmin that displays T . For any ordering D on the taxa, we have that

C(O,D) ≤ TCRmin and thus TCLB = minNC(N,D) ≤ C(O,D) ≤ TCRmin.

TCLB is a lower bound because it may underestimate TCRmin because Ci,j

are binary and there can be more than one edges connecting two paths in a path

decomposition of the optimal network. While Lemma 1 leads to a lower bound,

TCLB is hard to compute because it needs to consider all possible networks N

that displays the given trees T . We now show that we can practically compute

a weaker bound TCLB1, which bounds from below TCLB and thus TCRmin.

We consider a binary tree T ∈ T . (Our bounds can be generalized to

non-binary trees.) The following lemma illustrates one structural property of

tree-child network when displaying a subtree T1 of T . Assume T1 is rooted at

node v. Let S(v) be the set of taxa under the node v. Since T1 is also displayed

in N , there exists some non-path edges (i.e., edges not on the paths in the path

decomposition) which connects the paths, one path for each leaf in S(v), that

displays T1. Let v(N) be the node in N that is the root of the displayed subtree
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in N . We say T1 is displayed at node v(N).

Lemma 2. Let N be a tree-child network displaying T and let T1 be a subtree

rooted at v of T and be displayed at a node v(N). Then, for any path decomposition,

v(N) is on some path. That is, we can always trace from a taxon from S(v)

upwards in N and reach v(N) by following only path edges for the path decomposition.

Proof. By the tree-child property, there is a leaf a that can be reached from

v(N) following only tree edges. Thus, v(N) and a must be inside the same tree

component (recall path component is obtained by further decomposition of some

network decomposition into trees). Therefore, no matter how path composition

is performed, there is always a leaf a′ where v(N) is on the path ending at

a′.

Lemma 3. Let v be an internal node of T ∈ T with v1 and v2 as its children.

In a tree-child network N displaying T , for any path decomposition of N ,

∑
i∈S(v1)

∑
j∈S(v2)

Ci,j ≥ 1

Proof. First T ∈ T is displayed in N . Then there exist edges of N that connect

the paths in a path decomposition to form T (otherwise T cannot be displayed

in N). So suppose we trace these edges to locate the two subtrees rooted at

v1 and v2. By Lemma 2, there are nodes v1(N) and v2(N) in N where the

two subtrees are displayed at, and are on some paths (denoted as P and Pj

respectively). Here, j is a taxon and j ∈ S(v2). When there are multiple such

nodes for displaying an identical subtree, we choose the one that is closest to

the root of N .

Now there is a node v(N) in the network where the subtree of T rooted at

v is displayed. Again by Lemma 2, v(N) is on a path Pi for some leaf i. This

implies either v1(N) or v2(N) is on Pi too. Without loss of generality, suppose
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v1(N) is on Pi. Then there must exist an edge between the path to i and Pj

and i ∈ S(v1). This is because (i) there exists a path in N from v(N) to v2(N)

that is taken to display T in N ; (ii) this path can have only a single edge; if

not, then there exists at least a node v3 not on P or Pj (recall v2(N) is the one

closest to the root among all choices for v2(N)); (iii) let v3 be on a decomposed

path Pk (which connects to a leaf k; but this violates the assumption that v1(N)

and v2(N) display two subtrees of v. This implies Ci,j = 1. We don’t know

which i and j for the network N . Nonetheless, there exists some i ∈ S(v1) and

j ∈ S(v2) where Ci,j = 1.

Lemma 3 leads to the following lower bound TCLB1.

Proposition 1. Let Ci,j be binary variables for 1 ≤ i < j ≤ n. Let TCLB1 =

min(
∑

1≤i<j≤n Ci,j) − n + 1 where Ci,j satisfies the following constraint: for

any internal node v of a tree T ∈ T with two children v1 and v2, the condition

stated in Lemma 3 is satisfied. Then TCLB1 is a lower bound on the tree-child

reticulation number.

As an example, consider the tree on the right in Figure 1. We have the

following constraints: C2,4 ≥ 1, C1,3 ≥ 1, C1,2 + C1,4 + C2,3 + C3,4 ≥ 1. When

there are multiple trees, we create such constraints for each tree. TCLB1 takes

the minimum over all choices of Ci,j that satisfy all the constraints.

While we don’t know how to efficiently compute TCLB1, it is straightforward

to apply integer linear programming formulation (ILP) to compute TCLB1. Our

experience in using ILP modelling shows that TCLB1 can usually be computed

efficiently (in practice) even for large data: for 100 binary trees with 100 taxa,

it usually takes less than one second even using a very basic ILP solver.
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2.2 TCLB2: a stronger lower bound

We now present techniques to strengthen it to obtain a stronger lower bound

called TCLB2. We start with a stronger version of Lemma 3. We need a special

kind of path decomposition, called “ordered path decomposition”, of a network

N . An ordered path decomposition is a path decomposition where its paths

can be arranged in a total order, and all reticulate and non-path tree edges

are oriented in one direction relative to this total order. Such ordered path

decomposition always exists. To see this, recall that N is a digraph. Thus,

all components of N obtained by network decomposition can be arranged in

a total order. Then we can obtain a tree decomposition by decomposing each

component into paths. This leads to a tree decomposition where paths are

linearly ordered from left to right and all reticulate edges and all non-path tree

edges are oriented from left to right.

We now consider an ordered path decomposition. We let f(v) be the taxon

in S(v) that is ordered the first among all the taxa in S(v). That is, f(v) is the

taxon under node v that is ordered the first among all the taxa (leaves) under

v.

Lemma 4. Let v1 and v2 be the two children of node v of some tree. Then,

Cf(v1),f(v2) = 1

Proof. Recall the proof of Lemma 3. When we trace the subtree rooted at v1,

the root of this subtree must be located within the simple path for f(v1). This is

because the network is acyclic and the simple paths are ordered as in the specific

path decomposition. Recall that all reticulate and non-path edges are oriented

from left to right. So when we trace edges in a bottom up order (starting from

leaves), we must reach the node (i.e. f(v1)) that is ordered the first (i.e., the
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leftmost). The situation for v2 is similar. Thus, by the same reason as in Lemma

3, Pf(v1) and Pf(v2) must be connected.

Lemma 4 leads to a stronger lower bound TCLB2. This is because if Ci,j

values satisfy the conditions in Lemma 4, they also satisfy the conditions in

Lemma 3.

Let O∗ be the total order of the n taxa in an ordered path decomposition.

We let B(O∗) =
∑

i,j Ci,j , where Ci,j = 1 if Lemma 4 specifies which two taxa i

and j must have Ci,j = 1, when we consider all internal nodes of each tree in T .

If i and j are not forced by Lemma 4, Ci,j = 0. That is, B(O∗) is fully decided

if O∗ is given. By Lemma 4, B(O∗)− n+ 1 is a lower bound on TCRmin. One

technical difficulty is that we don’t know O∗ for N . Nonetheless, we can derive

a lower bound on TCRmin by taking the minimum over all possible O. Thus,

we have the following observation.

Proposition 2. TCLB2
∆
= minO(B(O) − n + 1) is a lower bound on the

tree-child reticulation number.

Naively, to compute TCLB2, we have to consider all possible total orders of

the taxa. Enumerating all possible total orders of n taxa is infeasible even for

relatively small n value. To develop a practically computable bound, we again

apply ILP. We only provide a brief description of the ILP formulation.

We define binary variable Ai,j for all 1 ≤ i, j ≤ n where Ai,j = 1 if taxon

i is ordered earlier than taxon j. We need to enforce the ordering implied by

Ai,j is valid. That is, if taxon i is earlier than j and j is earlier than k, then i

is earlier than k. This can be enforced in ILP as: for all 1 ≤ i, j, k ≤ n where

i, j, k are distinct:

Ai,k + 1 ≥ Ai,j +Aj,k (1)
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We enforce the condition in Lemma 4 by considering each taxon i ∈ S(v1)

and taxon j ∈ S(v2):

∑
p∈S(v1),p̸=i

Ai,p +
∑

q∈S(v2),q ̸=j

Aj,q ≤ Ci,j + |S(v1)|+ |S(v2)| − 3

This constraint enforces that Ci,j = 1 if i (respectively j) is the first taxon

among S(v1) (respectively S(v2)). Under these constraints, we use ILP to

compute the TCLB2 by minimizing
∑

1≤i<j≤n Ci,j .

The number of variables in this ILP formulation is O(n2), while the the

number of constraints is O(n3) (n is the number of taxa). The number of

constraints (which is dominated by Equation 1) can be large when n increases.

Note that since ILP formulation computes a lower bound, even if we skip some

constraints in Equation 1, the ILP still computes a lower bound. Empirical

results appear to show that discarding some constraints often does not lead to

a much weaker lower bound.

3 Bound in terms of cherries in the trees

There is no known polynomial time algorithm for computing the lower bounds in

Section 2. A natural research question is developing good lower bounds that are

polynomial time computable. In the following, we describe an analytical lower

bound (called cherry bound) on tree-child reticulation number. Compared with

the ILP-computed bounds in Section 2, cherry bound is much easier to compute.

However, experience shows that cherry bound tends to be weaker than the

ILP-computed bounds. Cherry bound is expressed in terms of the number of

distinct cherries in given trees T . Here, a cherry is a two-leaf subtree in some

T ∈ T . We let C be the number of distinct cherries in the given trees T .

Consider a tree-child network N with r reticulate nodes that displays T ,
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where |T | ≥ 2. Note that a reticulate node in N has two or more incoming

edges. We let nR be the total number of reticulate edges of N . That is, nR is

equal to the sum of in-degrees of each reticulate node. The reticulation number

R of N is equal to nR − r.

Now suppose we collapse common cherries in T . Here, a common cherry is

present in each of the trees in T . We collapse such common cherry into a single

(new) taxon and repeat until there is no common cherry left. Note that this

step is identical to common subtree collapsing, which is a preprocessing step

commonly practiced in phylogenetic network construction. Collapsing identical

subtrees in given set of trees is a common practice for computing Rmin (see,

e.g., Huson et al. (2010); Zhang, et al (2023)). So in the following, we assume

there is no common cherry in T .

Since cherry is a subtree of two leaves in T , each cherry needs to be displayed

in N by obtaining a tree T (through making display choices for reticulate

edges) where T displays this cherry. One can view the process of obtaining

T is traversing certain nodes of N . We have the following observation.

Lemma 5. To obtain a cherry in T , we need to traverse either the tail or the

head of some reticulate edge in N . That is, displaying a cherry must depend on

the choices we make about which reticulate edges to keep for displaying a tree.

Proof. Suppose displaying a cherry in N can be achieved by following a path

that doesn’t contain either the head or the tail of some reticulate edge. Then

for any display choice (keep or discard) we make for reticulate edges, such path

leading to the cherry that is always present. So, this cherry is a common cherry

in T , which contradicts our assumption of no common cherry.

By Lemma 5, each cherry in the given phylogenetic trees is related to the

display choices in N . It is obvious that a cherry displayed in a tree must also be

displayed in the network N . Therefore we consider the cherries displayed in the
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network. Suppose we add reticulate edges one by one to the network. Adding

a reticulate edge can lead to new cherries to be displayed in the network. The

more distinct cherries there are, the more reticulation is needed. We now make

this more precise by establishing an upper bound on the number of distinct

cherries that can be displayed by adding a single reticulate edge, which is an

edge entering a reticulate node. Note that displaying a cherry can involve more

than one reticulate edge. Suppose there are R reticulations and so there are at

least 2R reticulate edges.

Lemma 6. Selecting a reticulate edge er to display a tree in a network N can

add at most 2 distinct cherries.

Proof. Recall a cherry is a size-two subtree and is so displayed in the network

N . To display a cherry in N , there are a set of tree or reticulate edges of N

that connect the two taxa of the cherry when displaying choices are made. We

refer these edges as the cherry display of this cherry. We classify the cherries

into two cases based on the types of edges in a cherry display.

Type 1. The cherry display contains at least one reticulate edge. That

is, keeping a reticulate edge can only generate a type-1 cherry.

Type-2. The cherry display contains only tree edges. That is, a type-2

cherry is only related to discarding (but not keeping) some

reticulate edges.

We now argue that keeping a reticulate edge er can only generate at most

one type-1 cherry and at most one type-2 cherry. To see this, we first consider

the case of keeping er. We call a taxon a a tree-taxon under an ancestor node

v if a can be reached from v by following a simple path with only tree edges,

i.e. a is a descendant of v in the tree component containing v. Due to the

property of tree-child network, at most one type-1 cherry can be obtained by
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keeping er: there must be only one tree-taxon a below the destination of er,

and one tree-taxon b below the other child of the source of er, and keeping er

can only create a single distinct cherry (a, b). Note that otherwise, no cherry

can be formed by keeping er. If er is kept, we have to remove its twin reticulate

edges e′r, this may display another cherry in the tree component containing the

source node of e′r, which is of type-2.

Therefore, we conclude that at most two distinct cherries can be associated

with a reticulate edge.

By Lemma 5, each distinct cherry in T is associated with the display choices

of some reticulate edge. By Lemma 6, one reticulate edge can lead to at most

two distinct cherries. So 2nR ≥ C. Note that reticulation number R = nR − r

and nR ≥ 2r (there are at least two reticulate edges per reticulate node). So,

R = nR − r ≥ nR

2 . So,

R ≥ nR

2
≥ C

4

Proposition 3. [Cherry bound two on reduced trees] Let C be the number of

distinct cherries in a set of trees T which have no common cherries. We let

TCLB0 = C
4 (called the cherry bound). Then TCRmin ≥ TCLB0 (i.e., TCLB0

is a lower bound).

Note that cherry bound is also valid when we restrict to binary tree-child

networks.

3.1 Another cherry-based lower bound

We now present another efficiently computable lower bounds based the number

of distinct cherries.

Let N be a tree-child network displaying a set T of trees on n taxa. Let C
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be the number of distinct cherries in the trees T . Let N have r reticulations

and R denote the hybridization number of N . Then, the total in-degree of the

r reticulate nodes is R + r. Then there are (n − r − 1) + (R + r) = n − 1 + R

internal tree nodes.

Let ℓ1 and ℓ2 be two leaves of a cherry Ch in a tree T ∈ T . Then, (ℓ1, p) ∈

E(T ) and (ℓ2, p) ∈ E(T ) for some p ∈ V(T ). In the display of Ch in N , p is

mapped a tree node ϕ(p), (ℓ1, p) and (ℓ2, p) mapped to two node-disjoint paths

P1 and P2. There are two possibilities: (i) ℓ1 and ℓ2 belong to one tree-node

component and (ii) ℓ1 and ℓ2 are two different tree-node components.

If ℓ1 and ℓ2 belong to a tree-node component, ϕ(p) is also in the same

tree-node component. In this case, there are no other leaves below ϕ(p). Thus,

ϕ(p) is uniquely determined by the two leaves.

If ℓ1 and ℓ2 are in two different tree-node components, ϕ(p) and ℓ1 are in the

same tree-node component, or ϕ(p) and ℓ2 are in the same tree-node component.

Without loss of generality, we may assume the former holds. In this case, one

child of ϕ(p) is the reticulate node on the top of the tree-node component P

containing ℓ2. Furthermore, ℓ2 is the only leaf in P . Therefore, ϕ(p) is also

determined by the two leaves.

In summary, we have proved the following property.

Proposition 4. Let v be a tree node of N where a cherry in T is displayed at.

Then, there are at most two leaves below v in its tree-node component. If there

are only two leaves ℓ1 and ℓ2 below v in the tree-node component containing v,

only the cherry consisting of ℓ1 and ℓ2 can be displayed at v. If there is only

one leaf ℓ below v in its tree-node component, then at most one cherry can be

displayed at v under the condition that there is a unique leaf below the tree-node

component rooted at the reticulate child of v.

By the above proposition, distinct cherries are displayed at different tree
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nodes in N , Therefore,

n− 1 +R ≥ C.

or

R ≥ C − n+ 1.

Experiments show that while this bound is easily computable, it is often not

as strong as TCLB0 especially when n is relatively large.

4 On upper bounds on tree-child reticulation

number

So far we have focused on lower bounds on tree-child reticulation number

TCRmin. A natural research question is developing sharp upper bounds on

TCRmin. Existing methods (e.g., Zhang, et al (2023)) can compute an upper

bound for a given set of trees. However, little theoretical results are known for

the computed bounds. In this section, we provide some theoretical results on

upper TCRmin.

We consider a set of K trees T . We consider a pair of trees T1, T2 ∈ T .

We let the tree-child reticulation number of T1 and T2. It is known that for

two trees, tree-child reticulation number is equal to unconstrained reticulation

number (which is also called hybridization number in the literature) (Linz

and Semple, 2019). Hybridization number for two trees have been studied

actively in the literature (see, e.g., Bordewich et al. (2007); Wu and Wang

(2010); Linz and Semple (2019), among others). There are algorithms that can

practically compute the hybridization number for two trees (see, for example,

Bordewich et al. (2007); Wu and Wang (2010) among others). So we assume

the hybridization number of T1 and T2 is known. We now describe an upper
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Figure 3: Two trees T1 (left), T2 (middle) on four taxa (left) and the tree-child
network (right), which displays the T1 and T2 simultaneously. In T1 (resp. T2),
the red (resp. blue) edges connect different paths of its decomposition. In each
of the five tree components (vertical paths) of the network, the first node is its
reticulate node; the unshaded vertices form the non-trivial paths appearing
in the decomposition of T1, while the shaded vertices form the non-trivial
paths appearing in the decomposition of T2. The red and blue reticulate edges
correspond with the edges connecting different paths in the decomposition of
T1 and T2, respectively.

bound on TCRmin that uses the pairwise hybridization number. First, we need

the following lemma, which is based on a result in Wu and Zhang (2022) (also

in Zhang, et al (2023)). The proof is based on a related proof in Wu and Zhang

(2022).

Lemma 7. [Wu and Zhang (2022)] For any two rooted binary phylogenetic

trees T1 and T2 (over the same n taxa), there exists a tree-child network N

that displays T1 and T2 with at most n − 2 reticulations. Moreover, for any

ordering of path components, there exists such an N with this ordering of the

path components in N .

Proof. Let T1 and T2 be two trees on n taxa from 1 to n. Without loss of

generality, we order these n taxa as 1, 2, . . . , n. We first decompose Ti into

disjoints paths Pik (1 ≤ k ≤ n) for i = 1, 2 as follows.

1. Pi1 is the path consisting of the ancestors of leaf 1, together with
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the edges between them.

2. For k = 2, · · · , n, Pik is the the direct path consisting of the

ancestors of leaf k that do not belong to ∪k−1
j=1Pij together with the

edges between them.

Let pi(k) be the parent of leaf k in Ti. Note that Pi1 starts from the root of Ti to

pi(1). For k ≥ 2, Pik is empty if pi(k) is in ∪k−1
j=1Pij and non-empty otherwise.

For example, for T1 in Figure 3, P11 is a 2-node path; P12 is empty; P13 is a

2-node path; and P14 and P15 are both empty. We construct a tree-child network

N on 1-n with n− 1 reticulate nodes (i.e. n non-complex tree components) as

follows.

The first component Q1 of N is obtained by connecting P11, P21 and leaf 1

by edges (Figure 3). For k > 1, the k-th component Qk is the concatenation of

a reticulate node rk, P1k, P2k and leaf k. Moreover, we connect the node that

corresponds with the parent of the first node of Pik or pi(k) (if Pik is empty)

to rk using (red or blue) edges for i = 1 and 2. In Figure 3, the red and blue

reticulate edges are added according to the path decomposition of T1 and T2,

respectively.

Since the edges not within a tree component are oriented from a node of

a tree component containing a leaf i to the reticulate node of another tree

component containing a leaf j such that i < j, the resulting network is acyclic.

It is easy to see that the network is also tree-child. Moreover, T1 is obtained

from N if blue edges are removed and T2 if red edges are removed.

The number of reticulations inN is equal to the edges added in the algorithm

above to connect T2. Note that the first tree can be viewed as the “tree part”

of N . Thus, the number of reticulations is n − 1. Since there is no other taxa

between taxa 1 and 2, we can only keep a single edge from 1 to 2 (i.e., merge

the two edges between 1 and 2 in Fig. 3). This leads to n− 2 reticulations.
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We now have the following upper bound on TCRmin.

Theorem 5. For K phylogenetic trees T where there are two trees with d as

their pairwise hybridization number, then:

TCRmin ≤ (K − 2)(n− 2) + d

Proof. We first observe that Lemma 7 can be naturally extended to K trees.

Intuitively, we can “stack” one tree after another using the constructive procedure

in Lemma 7. Here, we use the same order of paths for the path decomposition

of all trees in T . This implies there is a tree-child network for the K trees in T

with at most (K − 1)(n− 2) reticulations.

Let T1 and T2 be two trees in T whose hybridization number is d. By Linz

and Semple (2019), there exists a tree-child network N with d reticulations that

displays T1 and T2. We consider a topological order O of the path components

of N . Now we build N ′ that displays all trees in T by “stacking” each Ti into

N ′ using the algorithm in Lemma 7. Here, we start with T1 and T2 as the first

two trees to add into N ′. Also, all trees in T are decomposed into paths with

regarding to the order O. Therefore, we need d reticulations to “stack” T2 on

top of T1. By Lemma 7, “stacking” each additional Ti (3 ≤ i ≤ K) needs at

most n− 2 reticulations.

5 Results

We have implemented the lower bounds in the program PIRN, which is downloadable

from https://github.com/yufengwudcs/PIRN. To compute the TCLB1 and

TCLB2 bounds, PIRN uses GLPK, an open-source ILP solver by default. While

GLPK can practically compute TCLB1 for most data we tested, it becomes

slow for computing TCLB2 for relatively large data. Our experience shows that

https://github.com/yufengwudcs/PIRN
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Table 1: A list of parameters and their default values used in the simulation.
Description Symbol Simulated values (default: boldface)

Number of taxa n 10, 20, 50
Reticulation level r 1.0,3.0, 5.0
Number of gene trees K 10, 50

TCLB2 can be practically computed using Gurobi, a more powerful ILP solver,

even the data becomes relatively large. However, Gurobi is not open-source. In

order to support Gurobi, PIRN outputs the ILP formulation in a file which can

be loaded into Gurobi so that TCLB2 can be computed in an interactive way.

The results we presented below were computed using Gurobi in this interactive

approach.

5.1 Simulation data

To test the performance of lower bounds, we use the simulation data analyzed in

Zhang, et al (2023). The simulation data were generated using the approach first

developed in Wu (2010). Briefly, we first produced reticulate networks using a

simulation scheme similar to the well-known coalescent simulation backwards

in time. At each step, there are two possible events: (a) lineage merging

(which corresponds to speciation), and (b) lineage splitting (which corresponds

to reticulation). The relative frequency of these two events (denoted as r)

influences the level of reticulation in the simulated network: a larger r will lead

to more reticulation events in simulation. The following lists the simulation

parameters.

We used the average over ten replicate data for each simulation settings.

The following three lower bounds (all developed in this paper) were evaluated:

1. TCLB0: the cherry bound

2. TCLB1: the practically computable bound by ILP.
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3. TCLB2: slower to compute by ILP but usually more accurate bound.

In order to measure the accuracy of lower bounds, ideally we want to compare

with the exact tree-child reticulation number. However, these methods tend to

be slow for the data we tested. Therefore, we use the following two heuristic

upper bounds instead as a rough estimate on tree-child reticulation number.

1. ALTS. This method calculates a heuristic upper bound on tree-child reticulation

number.

2. PIRNs. Note: PIRNs outputs a unconstrained network. Since the output

network may not be optimal, its reticulation number can occasionally

be smaller than the computed lower bounds for tree-child reticulation

number. But this is rare.

We use the following statistics for benchmarking various methods.

1. Average value of the (lower/upper) bounds.

2. For each lower bound, the average percentage of differences between a

lower bound LB and the ALTS bound UBa:
UBa−LB

UBa
.

3. Running time (in seconds).

Figure 4 shows the performance of the tree lower bounds, TCLB0, TCLB1

and TCLB2 on relatively small data (ten gene trees over ten taxa). Our results

show that TCLB2 clearly outperforms the other two lower bounds in terms of

accuracy. At lower reticulation level (r = 1), the gap between TCLB2 and ALTS

is only a little over 10%. At higher reticulation levels, the gap between TCLB2

and ALTS is larger but is still much smaller than the other two lower bounds.

Recall that ALTS is restricted to tree-child network while PIRNs works with

unconstrained networks.
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(a) Average lower/upper bound
values

(b) Average gap between lower and
the ALTS bound (normalized by
ALTS)

Figure 4: Closeness of three lower bounds (TCLB0, TCLB1 and TCLB2) on
10 trees over 10 taxa under three reticulation levels r = 1, 3, 5. Two upper
bounds, ALTS and PIRNs, are used for comparison. Part 4(a) shows the average
lower/upper bound values. Part 4(b) shows the gap between each of the tree
lower bounds and the ALTS bound (divided by the ALTS bounds).

We also examined the closeness of the lower bounds on larger data. We

simulated 50 gene trees with varying number of taxa: 10, 20 and 50. Our results

(Figure 5) show that TCLB2 still performs the best among the three lower

bounds in term of the accuracy.

Time to compute the bounds Figure 6 shows the running time to compute

the bounds. We vary the reticulation levels (which may lead to networks with

different number of reticulations), and also the number of taxa. Our results

show that computing TCLB2 takes longer time than the other two bounds. All

lower bounds are faster to compute than the two upper bounds. ALTS is more

efficient than PIRNs, while the ALTS bounds tend to be larger than the PIRNs

bounds. PIRNs cannot be applied on large data (say n = 50). ALTS also

appears to be close to its practical range when n = 50: there is one instance

where ALTS failed to complete the computation by exhausting the memory in

a Linux machine with 64 G memory).
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(a) Average lower/upper bound values
for larger data

(b) Average gap between lower and
the ALTS bound (normalized by
ALTS)

Figure 5: Performance of three lower bounds (TCLB0, TCLB1 and TCLB2)
on larger data. Reticulation level: r = 3. 50 gene trees. Vary the number of
taxa (n): 10, 20 and 50. Two upper bounds, ALTS and PIRNs, are used for
comparison. PIRNs is too slow for n=50, and no result is given for this setting.
Part 5(a) shows the average lower/upper bound values. Part 5(b) shows the
gap between each of the tree lower bounds and the ALTS bound (divided by
the ALTS bounds).

5.1.1 More on large data

TCLB0 can be easily computed for large data because it is based on simple

properties of input trees and can be easily computed in polynomial time. While

we don’t have a polynomial time algorithm for computing TCLB1, our experience

shows that TCLB1 can usually be easily computed even when only an open

source ILP solver such as GLPK is used. This can be seen from Figure 6.

TCLB2 can be practically computed using a state-of-the-art ILP solver such

as Gurobi for moderately large data (e.g., 50 gene trees with 50 taxa). As an

example, on a dataset with 50 trees (each with 50 taxa), a lower bound of 16 is

computed within a few seconds using Gurobi. The TCLB1 bound of 8 blue was

computed in a fraction of seconds even with an open source ILP solver. PIRNs

took 10 hours to compute a unconstrained network with 20 reticulations. ALTS

took over 10 minutes to find a tree-child network with 23 reticulations. While

the lower bound doesn’t match the best upper bound, the lower bound can
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(a) Average run time for computing
the lower/upper bounds with three
different reticulation levels

(b) Average run time for computing
the lower/upper bounds with varying
numbers of taxa

Figure 6: Running time (in seconds) to compute three lower bounds (TCLB0,
TCLB1 and TCLB2). Two upper bounds, ALTS and PIRNs, are used for
comparison. Part 6(a) shows the average run time (in seconds) for on 10 trees
over 10 taxa under three reticulation levels r = 1, 3, 5. Part 6(b) shows the
average run time (in seconds) for varying numbers of taxa (n): 10, 20 and 50
(reticulation level fixed at r = 3 and 50 gene trees).

provide a range of the solution for large data. We note that Gurobi usually

computes TCLB2 much faster than GLPK. Unless the data is small (say with

10 taxa or less), we recommend to use Gurobi.

To test its scalability, we simulated 50 gene trees with 100 taxa. TCLB1

can still be practically computed in less than one second even using GLPK.

TCLB2 can be computed using Gurobi, but in a long time. As an example, it

took over 10 hours for obtaining TCLB2 = 48 on a dataset with 50 simulated

tree over 100 taxa. In contrast, TCLB1 = 37 and TCLB0 = 15. Our experience

shows that for very large data, the difference between TCLB1 and TCLB2 is not

very large. Therefore, TCLB1 can provide a quick estimate on the reticulation

number since it can be practically computed for large data, In fact, TCLB1 is

perhaps the only practical method that can provide a reasonable strong estimate

on reticulation for large data. We are not aware of any other existing approaches

for estimating either a lower or upper bound that can be computed for the large

simulated data we use here. Here, the large dataset mentioned here has 50 gene

trees, 100 taxa and is simulated using reticulation parameter r = 3.0 (which
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can lead to a tree-child reticulation number of over 40).

5.2 Real biological data

To evaluate how well our bounds work for real biological data, we test our

methods on a grass dataset. The dataset was originally from the Grass Phylogeny

Working Group Grass Phylogeny Working Group (2001) and has been analyzed

by a number of papers on phylogenetic networks. There are some variations in

the exact form of data, depending on the preprocessing steps performed. The

grass data we analyze here have five trees over 14 taxa. Earlier analyses focus

on calculating the so-called subtree prune and regraft distances between pairs of

these trees Bordewich et al. (2007); Wu (2009); Wu and Wang (2010). The first

attempt for reconstructing phylogenetic network for all five trees is Wu (2010).

In Wu (2010), the (unconstrained) reticulation number of these fives tree are

known to be between 11 (lower bound) and 13 (upper bound). The upper bound

was improved to 12 by PIRNs (Mirzaei and Wu, 2016). Regarding to tree-child

reticulation number, ALTS found a tree-child network with 13 reticulations. No

non-trivial lower bounds for tree-child reticulation number for these five grass

trees are known before.

We compute the three lower bounds on the five grass trees. The cherry

bound TCLB0 is 2, while the fast ILP bound TCLB1 is 3. These two bounds

can be calculated very fast but obviously the bounds are not very precise. It

takes 75 seconds to compute TCLB2 using Gurobi, which gives a lower bound of

11. This matches the lower bound in Wu (2010). Note that the lower bound in

Wu (2010) is based on pairwise distances between the five trees, and takes much

longer time to compute: when the number of tree increases, that bound becomes

more difficult to compute. Although TCLB2 just provides the same bound as

Wu (2010), it is close to the currently best upper bound (13). Our results
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show that TCLB2 can indeed produce good estimates on tree-child reticulation

number.

6 Conclusion

Our results show that the lower bounds (especially TCLB0 and TCLB1) are

faster to compute than existing upper bounds (namely ALTS) on large data.

Our results show that there are trade-offs in accuracy and efficiency when

computing lower bounds. The TCLB2 bound is the most accurate, but is also

the slowest to compute. The simple cherry bound is very easy to calculate but

usually is not very accurate. For large trees, the fast ILP-based TCLB1 bound

may be a good choice to obtain quick estimate on tree-child reticulation number.

We note that upper bound heuristics such as ALTS can construct a plausible

phylogenetic network for the given gene trees, while lower bounds only provide

a range of the reticulation number. Still, our lower bounds can provide quick

estimate about the reticulation level of a set of phylogenetic trees for large data

which is beyond the current feasibility range of existing upper bound methods.

Regarding to upper bounds, Theorem 5 also gives an upper bound for

hybridization number of T , since a tree child network is a special case of

hybridization network. However, reticulation number (with or without the

tree-child condition) of three or more trees is still poorly understood. We are

not aware of stronger upper bound than the bound in Theorem 5 for three or

more trees.

The tree-child network model often allows faster computation. The lower

bounds on tree-child reticulation number are much faster to compute than lower

bounds (Wu, 2010) on the general reticulation number. There are a number

of open questions about lower bounds for tree-child reticulation number. For

example, is there a polynomial time algorithm for computing the TCLB1 bound?
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Can one develop a new lower bound that has better (or similar) accuracy as

TCLB2 and is faster to compute?
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