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Abstract

Instead of traditional free movement, node-based movement can be used in virtual reality (VR) games. In node-
based movement systems, players navigate by jumping to set locations. Node-based movement is similar to
hypertext navigation. We show that the hypertext lostness measure can be used as a game analytic to evaluate
navigational efficiency. In a randomized controlled trial with 25 adolescent participants, an immersive desktop
game environment and a VR game environment were compared on the transmission of in-game educational
content and navigational efficiency. Results show that the hypertext lostness measure is also valuable outside its
original hypertext domain: in VR. VR did not improve players’ retention of factual knowledge, but did
significantly improve players’ spatial knowledge and navigational efficiency. We conclude (a) the hypertext
lostness measure is also valuable for node-based VR games and (b) VR games add to spatial learning, even
when compared with already immersive desktop games.
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Introduction

Nowadays, virtual reality (VR) is used successfully
across many different industries for information acqui-

sition and skill improvement; for example, in surgery,1 the
military,2 and education.3 The next step is to explore one of
VR’s next levels: storytelling.4 However, navigation in VR
can be overwhelming for its users.5 A possible remedy was
recently found: node-based movement, where players move
between predefined positions.6

A key aim of many educational games is information
acquisition, without explicit teaching, where items must be
discovered to proceed further in the game. In particular,
narrative-centered discovery games have considerable learn-
ing potential. In these games, players are transported to another
place and time period and must explore the environment to
discover items and hear audio narratives that reveal the in-
game story.7,8 This stimulates players to construct appropriate
mental models.9,10 Narrative-centered discovery games com-
bine the learning affordances of two distinct game genres: (a)
discovery games, where learning occurs by solving problems
through exploration rather than being directly presented with
learning content11; and (b) narrative-centered games, which
use strong and emotive storylines, often presented auditorily.

These games involve two types of knowledge: story knowl-
edge, knowledge constructed from a story a person has been
told or experienced12; and spatial knowledge, knowledge
constructed from observations gathered while traveling
through an environment.13 This leads to higher and deeper
learning than expository learning14,15 as well as enhanced
retention of information16–18 as these games provide a moti-
vating, engaging, and organized learning experience.8,11,19–21

This is expected to lead to positive learning results as focused
attention and an increased effect during encoding have been
found to enhance retention of information.16–18

As in VR, navigation in hypertext systems, responsive node-
based systems with branches leading to text and other media,22

can be challenging and is frequently characterized by disorien-
tation, where users lose their sense of location and direction.23,24

This happens when navigation is too much of a cognitive burden
and leads to cognitive overload25 (i.e., an excessive amount of
load placed on a person’s working memory when carrying out a
task26). Similar effects are known from VR.5,27–29 Cognitive
overload leads to inhibited learning30 as a user simultaneously
devotes limited cognitive resources to both navigation and
comprehension.31,32

We pose that lostness,33 a measure that is used to iden-
tify disorientation and has been shown to be successful in
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predicting success in information-seeking tasks in hyper-
text,34–36 can also be used in VR games that use a node–link
approach due to the similarity in process and structure. For
a given task, lostness (L) is defined as follows:

L¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

S
� 1

� �2

þ R

N
� 1

� �2
s

,

where R is the minimum number of nodes needed to be
visited, N is the number of unique nodes a player has visited,
and S is the total number of nodes a player has visited. L
results in a value of between 0 and O2; 0 indicates that the
task has been completed perfectly (not disoriented) and O2
indicates that a user was completely disoriented, illustrating
poor navigational efficiency.

VR might have the disadvantage of disorientation. In par-
allel, it also has many benefits37 in addition to its key feature:
natural observation through its head tracking enabled stereo-
scopic three-dimensional rendering38; most noteworthy ben-
efits are as follows: (a) greater presence39 (i.e., a player feeling
being physically present in VR40), which aids learning out-
comes in VR41; (b) improved engagement42 (i.e., heightened
concentration, interest, involvement, and enjoyment43), which
catalyzes learning44,45; and (c) cognitive interest46 (i.e., un-
derstanding topics and becoming more interested47), which
serves as intrinsic motivation to explore and experience new
and unfamiliar things,48 a key part of narrative-based dis-
covery games. Although these three aspects are known to
positively influence learning,49 there is no consensus on the
differences in in-game experience between VR and non-VR
games.39

There is general agreement on VR’s contribution to visual
(spatial) information processing.50–52 However, there is
disagreement on VR’s contribution to learning.27,51,53–55

This can at least partly be explained by two factors: (a) most
research compared VR with traditional educational methods
rather than comparing the same game presented in VR with a
non-VR/desktop environment56 and (b) the vast majority of
studies did not make use of fully immersive VR by using
either low-end headsets or primitive controls or both.27,51,53

This study deviates from existing studies as it (a) gives a
direct comparison between VR and a non-VR/desktop game
and (b) uses fully immersive VR and hence aids natural
observation38,57 and natural control.58

Research Questions

We will examine possible differences between a node-
based non-VR and VR game on navigational efficiency and
knowledge retention. We will control for possible differ-
ences in experienced presence, engagement, and cognitive
interest (see the previous section). This brings us to the
following research questions: Compared with a node-based
non-VR game (control condition), will VR have a positive
effect on

a. navigational efficiency?
b. retention of the educational story content?
c. retention of spatial knowledge?

We expect that each of these three research questions will
be answered in the affirmative.

Methods

Participants

Twenty-five adolescents (i.e., 12 males and 13 females)
aged 13–18 years (mean: 15.00, SD: 1.32) participated. They
represent the target audience for the game used. Participants
were randomly assigned to either the VR (six males and
seven females) or non-VR (six males and six females) con-
dition. Given the design of the study and our previous ex-
periences with a similar setup,59 this number of participants
is expected to be adequate to both verify the results and
unveil sufficient power to generalize the results.

None of the participants had a medical reason dis-
qualifying them from using VR. All were recruited from a
University Technical College in the United Kingdom. This
college is open to new, alternative technical methods of
teaching, which minimized the risk that eventual differences
between VR and non-VR would be caused by a negative
attitude. Both individual and parental informed consent was
obtained.

VR game environment

A Sony PlayStation VR game, The Chantry,60 a narrative-
centered discovery game using a node-based movement
system, was used. This game takes place in the house of
Dr. Edward Jenner and tells the story of the invention of the
smallpox vaccine. Players are required to find items related
to descriptions on a list (Fig. 1), which reveal the story in-
formation through audio narratives. The tasks can be com-
pleted in a predefined minimum number of steps, so the
lostness measure can be applied.

Apparatus

In both conditions, the game ran at 60 Hz, reprojected to
120 Hz, and was rendered identically. A DualShock 4 con-
troller (model: CUH-ZCT1) was used to control the game.
Standard over-ear headphones provided the audio.

In the VR condition, participants wore a Sony PlayStation
VR headset (model: CUH-ZVR1) to play the game on a Base
PlayStation 4 Development Kit (DUH-D1000AA). In the
non-VR condition, participants were seated 50 cm away from
a standard 22† HD screen (resolution: 1920 · 1080).

To specify the level of the immersion in the non-VR/
desktop setting, we calculated participants’ horizontal in-
stantaneous field of view (IFOV) as follows56:

2 · tan� 1 Dcþ de

2l

� �
,

where Dc is the screen size, de is the standard eye separation
parameter of 0.63 cm, and l is the distance from the eyes to
the screen. This resulted in an IFOV of 55 degrees.

To control the VR condition, participants used natural
observation to look at a node and used a button on the con-
troller to move to that node or pick up an item. The item was
moved and rotated naturally by tracking the controller, which
moved with the participants’ hands. In the non-VR condition,
participants used the controller’s left analog stick to move
the game camera to look at nodes and the right analog stick to
rotate an item after it was picked up. The key difference
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between conditions was that both the natural head and hand
controls in the VR condition were replaced by traditional
game controls in the non-VR condition. The navigation
mode and node-based movement remained the same across
conditions, enabling the use of the lostness measures.

Measurements: calculating lostness

To assess different aspects of navigation behavior, two
versions of the lostness measure, global and local, were de-
veloped. These reflect global and local path analysis, re-
spectively,61 also see the Introduction section.

Global lostness compares the path followed throughout to
complete a task with the optimal path multiplied by the
number of subtasks that the task included (e.g., see Glou-
cestershire in Fig. 1). This is done throughout the complete
game. Subsequently, all global lostness values are summed
and divided by the sum of the number of subtasks per task.
This way, the tasks are normalized within the full game.

Local gathering compares the path followed throughout to
complete a subtask with the optimal path (e.g., see County
Map in Fig. 1). Throughout the complete game, the R, S, and
N values are calculated for each subtask and summed. After
the full game is finished, the summed R, S, and N values are
used in the original lostness equation to determine the local
lostness. No normalization is needed.

Measurements: questionnaires

Knowledge retention was measured through a bespoke
knowledge test consisting of 24 randomized true/false
statements (50 percent true and 50 percent false). Sixteen
were related to the story (e.g., ‘‘Vaccination was already
popular in England by 1800.’’) and eight to spatial aspects

(e.g., ‘‘The library was very close to the dining room and
located on the first floor.’’).

Three standard in-game questionnaires were used: the
Game Engagement Questionnaire62 (example item—‘‘I feel
like I can’t stop playing’’), the igroup Presence Ques-
tionnaire63 (example item—‘‘I felt present in the virtual
space’’), and the Perceived Interest Questionnaire64 (exam-
ple item—‘‘I thought the game’s topic was fascinating’’).
Each of these questionnaires consists of 5-point Likert
scales, with high Cronbach’s coefficient alphas being, re-
spectively, 0.85, 0.85, and 0.91.

Procedure

Upon being seated, participants were given health and
safety information, as well as instructions on how to play the
game, both in oral and written form. In addition, an informed
consent form was given. They were asked whether or not
everything was clear to them. If not, additional explanation
was provided. After this, they signed the informed consent
form.

The participants were given 30 minutes to play the game.
Next, they completed the knowledge test and the three ex-
perience questionnaires. Finally, participants were debriefed
and informed about the nature of both the study and the
game.

Results

Given the rather small sample size and the accompanying
non-normal data distribution, the Wilcoxon signed-rank test
was used to compare the VR and non-VR/desktop conditions
on lostness (both local and global) and both story-based and
spatial-based knowledge. Additionally, we controlled for
effects on presence, engagement, and cognitive interest. The

FIG. 1. Using node-based movement to complete the Gloucestershire task in The Chantry. The two objectives shown on
the list are completed when the player picks up the relevant items and hears the information attached to it. Color images are
available online.
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means and standard deviations of these measures in each
condition are provided in Table 1.

Participants in the VR condition showed a higher navi-
gational efficiency (i.e., were less disorientated) when car-
rying out the in-game tasks than in the non-VR/desktop
condition. This is shown by both the global lostness (desktop
median = 0.758, VR median = 0.617, Z = 10, p = 0.023) and
local lostness (desktop median = 0.627, VR median = 0.511,
Z = 5, p = 0.008) measures (Fig. 2).

Participants in the VR condition performed better on
spatial-based knowledge questions (desktop median = 0.5,
VR median = 0.75, Z = 55.5, p = 0.041). In contrast, no sig-
nificant difference was found for story-based knowledge
(Fig. 3).

No significant differences were found with regard to the
presence, cognitive interest, and engagement.

Discussion

Using a game employing a node-based movement system,
fully immersive VR and non-VR/desktop were compared
on both learning and navigational efficiency parameters.

Compared with the non-VR/desktop game, the VR game
leads to both higher navigational efficiency (confirming re-
search question a) and to higher retention of spatial infor-
mation (confirming research question c). In contrast, no
difference was found on the retention of story-based educa-
tional content (denying research question b). As expected,
none of the control variables, presence, engagement, and
cognitive interest, unveiled any difference between VR and
non-VR/desktop.

Compared with the participants playing the game in a
desktop/non-VR environment, participants in VR had both
lower local and global lostness values, identifying that they
were more efficient in navigation. This implies that VR aids
spatial information processing on both a local level (i.e., fact
finding) and a global level (i.e., information gathering).
Moreover, this finding confirmed the value of lostness as a
measure for in-game navigation. Further research is required
to investigate the full potential and validity of both measures
as both gave the same effect. For future research, we rec-
ommend using these measures as game analytics to enable
real-time game adaptation based on player performance.65–67

Retention was also higher for spatial knowledge in the VR
condition than in the non-VR/desktop condition. This re-
affirms the view that VR has a positive effect on spatial
memory50–52 and vindicates its use in disciplines that rely
heavily on spatial knowledge.1,2 Moreover, the combination
of higher spatial knowledge retention and higher naviga-
tional efficiency found in VR compared with the non-VR/
desktop condition mirrors hypertext findings that spatial
ability is a predictor of navigational performance.68,69

In contrast to spatial information, no significant difference
was found for retention of story-based information. A simple
explanation is that no significant difference, across condi-
tions, was found in two of the control variables: cognitive
interest and engagement, which are thought to be related to
learning.70,71 An additional explanation for the lack of dif-
ference in retention scores could be related to previous
findings that visual information is retained better in VR than

Table 1. Mean and Standard Deviation of All

Measures for Both Non-Virtual Reality

and Virtual Reality Conditions

Non-VR VR

Mean SD Mean SD

Local lostness 0.62 0.13 0.47 0.11
Global lostness 0.71 0.13 0.57 0.15
Spatial correct (max 8) 3.67 1.30 4.92 1.38
Fact correct (max 16) 7.75 1.78 9.23 2.68
Presence (1–5) 3.11 0.43 3.01 0.35
Cognitive interest (1–5) 3.71 0.54 3.65 0.52
Engagement (1–5) 3.04 0.53 2.91 0.52

SD, standard deviation; VR, virtual reality.

FIG. 2. Comparison of the local (left) and
global (right) lostness measures for the
desktop and VR environment. Error bars
indicate standard error. VR, virtual reality.
Color images are available online.
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in non-VR due to the increased visual information, but at the
expense of information presented in other ways.51 Previous
research also suggested that multimodal synergy (i.e., the
synergy of information originating from multiple modali-
ties72) could improve with increasing IFOV.51 In this study,
multimodal synergy was likely already maximally exploited
with the non-VR/desktop condition, which already had a large
IFOV, and VR could not improve the synergy effect further.

When it comes to learning, cognitive overload is often
mentioned as being a problem with VR.5,27–29 Although we did
not examine this directly, our data do not suggest this when a
VR game is compared with a non-VR/desktop game. Never-
theless, as knowledge test scores were relatively low in both
conditions, it could be argued that cognitive overload occurred
in both conditions as participants were not familiar with the
game and the node-based movement system. With more ex-
perience in using these games and VR, the cognitive load could
reduce. Again, this encourages followup research on adaptivity
to assist a disoriented and overloaded player using the lostness
measure. This would be in line with previous research, which
found significantly higher retention of educational story con-
tent when players were guided through the environment, re-
ducing the cognitive burden of navigation.59

Finally, it should be noted that this study’s participants are
from a University Technical College and study technical sub-
jects rather than the subject addressed by the game (history).
These students follow education on a level less advanced than
university students, which are often used as participants. This
could explain their relatively low knowledge test scores.
A followup study is needed to reliably generalize the findings
to a larger population.

In conclusion, we integrated the hypertext lostness measure
in an educational game that uses a node-based movement
system and features goal-directed information-seeking tasks.
The lostness measure showed that VR improves in-game
navigational efficiency compared with non-VR. Additionally,
we found that VR also improves spatial knowledge acquisition.
In contrast, in addition to a lack of effect on in-game experi-
ence: engagement, presence, and cognitive interest, VR did not

aid in story-based knowledge retention. This partially sup-
ported findings that only visually presented information is
better retained in VR,51 while differing from other research that
found that VR hindered learning.27 Followup research should
examine the best way to present learning content in VR for
better learning. Finally, this study showed the value of hyper-
text lostness measures in node-based games and VR and
showed that even within a gaming context, VR’s merit is
significant.
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