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1. Introduction

We have entered the era of events exploding on social media sites such as Twitter long
before they are picked up by traditional media. With 288 million active monthly users and
500 million tweets a day worldwide in 2015, the activity on Twitter is tremendous and
growing fast. The computing cost of monitoring rapidly evolving events on Twitter and
analyzing emerging storylines in space and time makes it imperative to explore parallel
computing paradigms.

When a story such as the Boston Marathon bombings of April 15, 2013 broke out
on Twitter ; many storylines arose; several people were detained near the blast spots;
the residence of a Saudi national was searched; MIT police officer S. Collier was killed;
the Tsarnaev brothers were identified as two suspects. All these developments could be
observed on Twitter, but finding them became impractical under high data volumes. Sto-
rytelling, thus, becomes computationally intensive and constrained by slow performance
in traditional sequential processing. For example, it would be challenging for an analyst
to examine the passing of a new law and the reactions it provokes, such as protests
in nearby areas, in a relatively short amount of time. Storytelling as such falls within
the field of exploratory analysis where the main focus is discovering new patterns of
knowledge or exhaustively analyzing all connections for an entity and then scaling the
discovery so it can be performed on a larger dataset rapidly to catch emerging storylines
in nascent stage.

In this paper, storytelling is performed according to the technique of Santos et al.
(2013) which builds a graph of entities (a ConceptGraph) and uses ConceptRank to
build the storylines (ConceptRank is a variant of PageRank). One of the most challenging
aspects of spatio-temporal storytelling is relationship binding, that is, deciding on how
to link entities based on the interactions that they make. This problem arises because
there are countless ways of connecting entities: because the are mentioned in the same
document, because they are spatially close, because they share similar characteristics,
because they were observed talking to each other, etc. For different applications, some
of these interactions may be important, while for others, they may be totally irrelevant.
From a research perspective, there is no clear method to differentiate them, other than
targeting very specific applications, which diminishes the generality of the approach. One
way to minimize this problem is to apply distributed processing in order to introspect
as many different types of entities and connections as possible, and generate different
storylines based on different entities and connections. In this manner, the analyst, and
not the algorithm, would be able to decide which entity interactions are important and
which are not. Take, for instance, several storylines generated from tweets regarding the
Charlie Hebdo attacks in Paris in January 2015.

(1) islamic terrorist
mentions−−−−−−→isis

hacked−−−−→france
investigates−−−−−−−→possible cyber attack

(2) islamic terrorist
mentions−−−−−−→isis

hacked−−−−→france
defected−−−−−→soldiers

(3) islamic terrorist
mentions−−−−−−→isis

hacked−−−−→france
s′attaque−−−−−→autocensure

In the above three examples, an investigator may be interested in storylines 1 and 2, as
they appear possibly related to further cyber and military attacks, while storyline 3 is
obtained from tweets that are related to journalism and hence of less pressing concern.
In the presence of millions of such storylines from tweets, distributed storytelling allows
most of these connections to be presented and reasoned over.

A comprehensive presentation of such interactions is essential not only for completeness
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Figure 1.: Large number of storylines generated by DISCRN for evaluation by analyst. Some storylines are more
readily actionable than others but analyst evaluates all.

of the facts (e.g., finding lethal activities that may follow terrorist attacks), but also for
timeliness (e.g., preventing the acts from occurring). The above examples underscores
the need for distributed and parallelized computations, which can enable storytelling
with high accuracy and relevance in the presence of massive amounts of data. Figure 1
shows the deeper analysis possible in distributed storytelling.

To perform these tasks at scale creates a number of issues: Challenge 1) Distributing
sequence of steps in storyline creation. Storytelling involves several steps such as
geo-coding locations, extracting entities and relationships from text and binding entities.
Performing them at scale requires gluing the pieces together across multiple distributed
jobs. Challenge 2) Scaling graph algorithms utilized in storylines generation.
Calculating ranking and generating storylines using graphs is inherently hard to dis-
tribute. With large number of edges and nodes for large datasets it becomes crucial to
distribute the process in order to scale. Challenge 3) Distributed geo-coding and
associating locations with entities in storylines. Geocoding each location from a
tweet can result in large number of redundant geocoding requests causing performance
bottlenecks. Geocoding and combining geocoded location with storylines generation is
key to scaling. Challenge 4) Deeper analysis by allowing analyst to focus on
sections of large number of storylines. It is interesting to find storylines that are
relevant beyond pure ranking and push their relevance higher to allow analyst to search
through them. Researching these techniques is crucial to take full advantage of large
number of storylines generated by distributed methods.

Performing storytelling at scale can be achieved through several means. Previous re-
search in distributed spatio-temporal mining have used techniques such as MPI and
CUDA on gpu clusters as described in Qin et al. (2014) and Osterman et al. (2014).
In HPC the most commonly available tool for distribution is key-value pair paradigm.
Various open source frameworks are readily available to distribute mining horizontally
based on key-value pairs. CUDA and other tools require specialized hardware and pro-
gramming techniques for distribution that are not widely applicable for other distribution
problems. The work in this paper models the entire storytelling process in key-value pairs
and implements it in popular and widely available MapReduce paradigm. A distributed
framework DISCRN is presented as a means to generate storylines using spatio-temporal
techniques on short, ill-formed text of Twitter data . Its efficacy is proved on structured
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pre-formatted event data in GDELT. As with ConceptGraph based approach in Santos
et al. (2013), key to obtaining coherent stories is to identify regions of spatial propagation
where related entities cluster. However there is tremendous value in creating exhaustive
list of storylines and allowing analysts to sift through them as needed to discover new
emerging ones. We use big data tools on the cloud at our disposal that provide key-value
pair based distribution to perform these tasks at scale.

The key contributions of the paper can be summarized as follows:

(1) Distributed computing techniques to create and analyze storylines at
scale: Extracting entities from tweets, computing ConceptRank and computing
storylines in parallel allows the stories to be created at a large scale. Novel dis-
tribution algorithms to perform the computations are presented.

(2) Novel ConceptGraph traversal to generate storylines: Distributed story-
line generation requires traversing ConceptGraph which is a graph of entities. A
novel traversal technique ConceptSearch is presented that performs distributed
forward and bi-direction graph search to generate storylines from directed Con-
ceptGraph.

(3) Deeper analysis through Spatial filtering with large number of story-
lines evaluated: The approach with iterative ConceptSearch produces story-
lines for multiple starting points for evaluation by analyst with little incremental
computation cost for each additional starting point. Filtering on entity network
distances allows analysts to focus on smaller set of storylines.

(4) Validation on multiple large scale datasets: Experiments are performed on
Twitter and GDELT datasets. The results validate the distribution techniques
and the ability to extract deeper more meaningful results. These insights are not
obtainable from sequential storytelling.

The rest of the paper is organized as follows. Section 2 elaborates on existing work,
highlighting differences and specifically the need to scale to large data sets. In Section
3, overview of key-value pair based distribution and its use in DISCRN architecture and
flow are provided. Section 4 gives detail of key-value pair based algorithms implemented
in DISCRN including details of the ConceptSearch algorithm and distributed entity-
network based filtering based on inverted value join technique. Experiments are presented
in Section 5 and conclusions provided in Section 6.

2. Related Work

This section reviews works similar to concepts proposed in this paper that span many
areas of expertise such as storytelling, traversing graphs and analyzing sequences of
entities spatially in parallel. Section 2.1 reviews prior work in field of storytelling and
Section 2.2 presents work in distributed spatio-temporal mining.

2.1. Storytelling

Storytelling is the process of connecting entities through their characteristics, actions,
and events in Turner (1994). Information retrieval and web research have studied this
problem, i.e., modeling storylines from search results, and linking documents into stories
in Kumar et al. (2008), Hossain et al. (2011) and Hossain et al. (2012b) (the terms sto-
ries and storylines are used interchangeably). Traditional storytelling attempts to link
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disparate entities that are known ahead of time, such as the connections between two
individuals. Beyond traditional text analysis, spatio-temporal entity analysis has been
explored in Santos et al. (2012), which can fill some of the gaps left by traditional ap-
proaches. ConceptRank based storytelling is explored in Santos et al. (2013). Forecasting
events based on spatio-temporal storytelling is described in Santos et al. (2014).

Linking entities across documents has been done successfully using distributed infer-
ence technique in Singh et al. (2011). Named entity extraction techniques have been
exhaustively surveyed in Finin et al. (2010). Leveraging knowledge bases to extract en-
tities has been explored in Michelson and Macskassy (2010). Link analysis algorithms
often rely on graphs as a modeling abstraction, such as the evolution of entities in space
and time (Mondo et al. (2013), Chan et al. (2009)) and the identification of patterns
(George et al. (2009), Chan et al. (2008)). The spatio-temporal aspects observe how en-
tities propagate. Twitter data analysis for storytelling has been explored. GDELT is an
event database that is growing rapidly. GDELT data being structured does not need pre-
processing steps and distances are feasible as the geo-coordinates of actors and actions
in each events are explicitly provided in Leetaru and Schrodt (2013). GDELT data has
been used for several works in spatio-temporal events analysis.

2.2. Distributed graph and spatio-temporal analysis

Connecting the terms to form storylines has been an established technique for a while
with several notable techniques proposed in terms of multiple entities in Hossain et al.
(2012a) or fewer in Shahaf and Guestrin (2012). Associating users through tweets has
also been studied in Weitzel et al. (2012). There are several distributed graph traversal
algorithms. Some have been performed on GPUs in Merrill et al. (2012). Partitioning
graphs also aids distribution and traversal in Bulu and Madduri (2012). A very important
aspect of our approach is an algorithm to perform ConceptRank computations over
ConceptGraphs in parallel. Distributed computation paradigms such as MapReduce do
not easily lend themselves to parallel ConceptRank computation. However recent works
have explored parallel PageRank computations in great details with tremendous success
in Lin and Schatz (2010). Other works that have explored MapReduce and key value
pair based random walk distribution have taken Monte Carlo based approach in Sarma
et al. (2012)

Distributed storytelling proves to be highly effective on massively sized datasets such
as Twitter which are destined to get bigger, along with other sources of social media
data. Key to it is scalable joins. Ways to distribute data joins across multiple sources
using key value pairs are explored in Afrati and Ullman (2010). However these joins
are not sufficient for storytelling purposes. As far as we know there are no distributed
storytelling techniques discussed in research so far.

3. Distributed Storylines generation platform

In this section, various techniques used in building storylines and their parallelization
are described. Building storylines from social media data where news events first emerge
requires scaling computations to large amounts of data. Here, key-value pair based distri-
bution techniques are used to generate storylines at scale in DISCRN. DISCRN architec-
tural details are provided in Section 3.1 including a brief overview of Hadoop MapReduce.
Section 3.2 describes the parallelization flow in DISCRN.
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Figure 2.: Storylines building process from raw microblog data using DISCRN with input
tweets and output storylines.

3.1. DISCRN Architecture

This section describes the architecture of DISCRN. It is based on key-value pair paral-
lelization of steps on MapReduce platform. The generation of storylines from raw mi-
croblog or event data is described in Figure 2. Briefly storytelling involves 5 key tasks,
extraction of entities, geo-coding locations, building a graph of entities and relationships,
ranking, traversing graph to generate storylines, and storyline filtering based on entity
distances.
Apache and Hadoop (2014) is an open source framework which facilitates distributed

computations on large clusters. A master node orchestrates data storage and compu-
tation distribution over multiple slave nodes. Files are uploaded into distributed file
storage called HDFS, split into 64MB blocks and then processed. Master node keeps
track of all the blocks of a file and where they are stored. MapReduce in Dean and
Ghemawat (2008) allows master node to break down computation tasks into mappers
and reducers distributed over slave nodes. They work on file blocks on slave nodes ex-
ploiting co-location of computation with data. Mappers read in input data as key value
pairs <k1, v1>and emit intermediate key value pairs <k2, v2>. Reducers receive the in-
termediate key value pairs grouped by k2 and processes them to generate the final set of
key value pairs <k3, v3>. The keys k2 are sorted and custom partitioners can determine
which reducer handles a particular key-value pair.

Key-value pair based parallelization allows data records to be split into key-value pair
elements that can be then operated upon independently in parallel with other records
on multiple nodes of a cluster. The challenge then becomes to associate all sub-elements
needed to perform an operation to generate a result element in the value of key-value
pair and emit it with a key that would uniquely identify that operation. The operation
can then generate a single result value which in combination with other result values will
form the result set needed from the input data. If a result set ri from an input set ei is
needed then the key-value pair based paradigm requires emitting each input record ei as
key value pair <k,v>. All the elements needed to generate a result value ri from ei will
be in the emitted value vi with the key ki being unique so as to distribute pairs across
nodes without collisions. In most operations it is not feasible to build the key-value pair
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Figure 3.: Platform for distributed computation of storylines. Boxes are the key MapRe-
duce jobs needed to calculate the storyline.

to convert an input value to a result value in a single step. It is then required to perform a
series of the key-value pair emissions and keep sub-processing or aggregating the elements
in the value so as to bring it to the state where it can perform the final operation to
emit the result value. In simple cases, that is similar to a multi-key join where multiple
inputs combine to create a single value in order to perform an operation. In most cases
however complex computations need to be performed to bring the intermediate values
to a state that can generate a result value.

The MapReduce jobs for algorithms described in Section 4 are implemented in DIS-
CRN. Architecture of DISCRN is shown in Figure 3. It shows the key MapReduce jobs
that are run in sequence to produce the outputs for storylines. A driver calls each job
in a sequence and decides which modules need to be executed. Data is written to disk
at the end of each MapReduce job and then read again in the subsequent one. Steps
with dotted line boxes indicate multiple jobs. However the number of MapReduce jobs is
always bounded and small enough to not have disk I/O as a major issue as each of subset
of inputs are being read on separate cluster nodes. A sequence of jobs implement the
key-value pair based transforms described in following section. The spatio-temporal tech-
niques including extracting locations from tweets along with entities and relationships
which constitute the first set of jobs is performed. The locations are then used to fetch
the geo-coordinates of the locations that get associated with the entities and used to find
spatial distance between entities. Subsequently a ConceptGraph is built with the entities
as nodes and predominant relationship between entities as edges. The ConceptRank of
all the entities is calculated and associated with each entity of storyline. The last two
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Figure 4.: Parallelization Flow to build storylines. Key steps that are parallelized and
data from each stage joined and used in subsequent tasks.

sets of jobs perform iterative ConceptSearch to generate the storylines and then filter
them based on sum of pairwise entity distance. The final output is a set of storylines
filtered by distance. Distance based filtering can be turned off as well if not needed by
analyst.

The number of MapReduce jobs stays constant for storylines of certain length in DIS-
CRN. The data written to disk is generally a subset of raw tweets and GDELT data
that is initially used in processing. The larger the number of jobs, the more times disk
is hit. This however is a less significant expense as most data is generated for specific
reasons such as geo-coordinates of entities that is later joined with other datasets such
as entities in storylines to perform entity network distance based filtering or combining
storylines with the ConceptRank of entities. They are later used in sorting and filtering
of storylines.

3.2. Parallelization Flow in DISCRN

This section describes the flow of data through various steps starting from raw microblog
data to completed storylines. A parallelization flow of the entire storyline building pro-
cess is shown in Figure 4. The flow is a composite of 3 parts, the pre-processing, the
ConceptRank and ConceptSearch components and the joins based entity network dis-
tance filtering. This flow allows for key-value pair based parallelization of each step, and
then combining them together. Each step of the flow is one or more mapreduce jobs.
In Figure 3 the first set of 3 MapReduce jobs are for preprocessing. They include en-
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tity extraction, geocoding and ConceptGraph building. The ConceptRank calculation
and ConceptSearch belong to the ConceptRank and ConceptSearch block. The Entity
Distance Filtering jobs map to the Entity Network Distance Filtering component.

The Entity Extraction and ConceptGraph building component describes how
distributed entity extraction and geocoding extracts entities in parallel on cluster nodes
to create adjacency lists and geocode locations to associate each entity with coordinates.
Geocoding parallelizes by fetching coordinates of locations from geonames services in
GeoNames et al. (2015) in parallel once and then joining with them subsequently in
operations where coordinates of entities are needed such as entity network distance com-
putations. The adjacency lists from each tweet are consolidated into a ConceptGraph that
has each entity as node and entities it has outgoing nodes to as connected nodes. This
graph is then used to calculate ConceptRank using modified Shimmy pattern MapReduce
jobs in Lin and Schatz (2010).

The ConceptSearch module computes ConceptRank in parallel from ConceptGraph
and then iterates over ConceptGraph with starting entities k times to build storylines of
length k entities. ConceptSearch is called iteratively such that at the end of each iteration
the length of candidate storylines is incremented by 1 and after final iteration storylines
of length k is output. ConceptSearch can traverse ConceptGraph both in forward direc-
tion following outgoing links or in bi-directional pattern by following both outgoing and
incoming links.

The Entity network distance filtering component uses inverted value join to com-
bine locations and entities of storylines together to filter out storylines with entity pair
distance sum exceeding a threshold. Threshold is provided by user as parameter. The
joins are performed such that there is no need to build large memory structures at any
stage to ensure full scalability. Entity network distance based filtering can be skipped
and storylines will still be generated without the filtering.

4. Storytelling distribution in DISCRN

This section presents the key algorithms in Storytelling and their distributed implemen-
tations in MapReduce. Section 4.1 describes preliminary processes of storytelling such
as entity extraction, location geocoding and combining adjacency lists from tweets into
ConceptGraph. Section 4.2 describes ConceptSearch in MapReduce and Section 4.3 gives
entity network distance based filtering using entity coordinates and storylines in MapRe-
duce.

4.1. Entity extraction, geocoding and building ConceptGraph in
MapReduce

Algorithm 1 describes the 3 mapreduce jobs used to perform entity extraction, geocoding
of locations and building ConceptGraph from raw microblogs input. The first step in
building storylines is extracting entities from micoblogs. Modeling that process as key-
value pairs is in MapReduce1. Parsing text and extracting entities is shown in line 3.
Here ei:ri are the entity and relationships extracted from text of the microblog snippet
contenti, as noun and preceding verb, loci is the location of post and ti the time. This
step builds adjacency lists from extracted entities. Adjacency lists consists of entities and
relationships extracted from a tweet as nouns and verbs. The first entity is the starting
node in the adjacency list and all the subsequent entities and relationships are the nodes
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with links coming in from the starting entity. The second step is geocoding each location
from microblog entry. That process is modeled as key-value pairs in MapReduce2 as
shown in line 10. The third step is consolidating adjacency lists into ConceptGraph
nodes. Modeling that process as key-value pairs requires aggregating values of a key
representing an entity in MapReduce3 in algorithm. Here ej is the starting entity in
a tweet and ec:rc;ed:rd... are the following entities and relationships extracted from it.
ej from multiple tweets and its corresponding following entities and relationships are
combined together in reducer to generate all the nodes for ej that have incoming links to
them as shown in line 15. The most frequent relationship from starting entity to following
entities in case of collision are kept. The combined result is a ConceptGraph where each
node ei is connected to a set of edges and verticies (G,V) as ({ei},{ri}).

Algorithm 1 Extract entities, geocode locations and build ConceptGraph
1: MapReduce1:
2: Mapper1:

Input:<k1, v1>→ <offseti,contenti>
3: Parse contenti and extract {ei : ri} // using nlp parser and classifier

Output:<k′
1, v

′
1>→ <tweetidi,e1:r2;e2:r2;...;loci;ti>

4: Reducer1: {I}dentity reducer
Input:<k′

1, v
′
1>→ <tweetidi,e1:r2;e2:r2;...;loci;ti>

5: parse tweet //simply output the tweetid and the entities, relationships, locations, timestamp,...
Output:<k′

1, v
′
1>→ <tweetidi,e1:r2;e2:r2;...;loci;ti>

6: MapReduce2:
7: Mapper2:

Input:<k1, v1>→ <tweetidi,e1:r1;e2:r2;...;loci;ti>
8: emit each entity ei in tweet by location loci // assume each entity in tweet has same location

Output:<k′
1, v

′
1>→ <loci,e1:e2:...:en>

9: Reducer2:
Input:<k′

1, v
′
1>→ <loci,e1:e2:...:en:...:es>

10: Geocode loci to coordi using geonames api // api is called for each location once saving compute and money
Output:<k′

1, v
′
1>→ <e1,loci:coordi>

<e2,loci:coordi>
....
<es,loci:coordi>

11: MapReduce3:
12: Mapper3:

Input:<k1, v1>→ <tweetidi,ea:ra;eb:rb;...>
<ej ,ec:rc;ed:rd...>

13: Separate and emit each entity pair {ei ea : ra} from adj list
Output:<k′

1, v
′
1>→ <ei,ea:ra>

<ei,eb:rb>
<ei,ec:rc>
...

14: Reducer3:
Input:<k1, v1>→ <ei,ea:ra>

15: Combine adjacency lists entities ei,{ea:ra...} into ConceptGraph // each entity can have multiple values that need
to be iterated over and combined
Output:<k′

1, v
′
1>→ <ei,ea:ra;eb:rb;ec:rc...>

Fourth step is passing ConceptGraph nodes to ConceptRank calculation algorithm.
This is modified Shimmy pattern based algorithm that partitions graph and iteratively
calculates ConceptRank of each node. The algorithm has 3 steps, first ingests the graph
on which to calculate ConceptRank, second divides graph into partitions, third iterates
over partitions calculating ConceptRank of each node. The ConceptGraph is then passed
into the ConceptSearch traversal algorithm with the corresponding nodes ConceptRank
values associated with the entity nodes through a join.

4.2. ConceptSearch in MapReduce

This section describes the ConceptSearch algorithm implemented in MapReduce using
key-value pair based distribution. The first entity in each microblog text or event actor
list in GDELT is considered a starting entity and all the following entities are supposed
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Figure 5.: Bi-directional and forward
only ConceptSearch. In forward traver-
sal, each entity is a starting entity in a
tweet and entities are connected in strict
sequential mode representing outgoing
direction of arrows. In bi-directional
traversal, direction does not have to fol-
low outgoing arrows, ’feminists’ is the
first entity in a tweet and has outgoing
edge to ’#NYC still’ and can still be
part of a storyline.

Figure 6.: The circles show the geo-
graphical regions over which entities are
scattered. Two storylines are depicted:
S1 links ”‘e1-e1-e3-e4”’ while S2 is ”e5-
e6-e7-e8”. Looking at each pair of con-
nected entities in the two storylines, it
can be seen that storyline S1 has a total
pairwise distance between entities less
than the storyline S2. That makes S1’s
geographic footprint smaller, which in
many intelligence analysis applications
is importance to analysts.

to have incoming links from starting entity. ConceptSearch has two variations.

(1) Forward Traversal: Traversing the ConceptGraph by only following the outgoing
edges forces traversal to be only from the starting node of an adjacency list on
to the secondary entities.

(2) Forward and Backward bi-directional Traversal: Traversing the ConceptGraph
by following the outgoing and incoming edges allowing traversal to be from any
node of an adjacency list on to the starting or secondary entities.

Figure 5 illustrates the two different types of storylines produced by the bi-directional
and forward only ConceptSearch. The figure shows two example storylines with starting
entity ’protest’, the first storyline protest → #NYC still→strong→Myanmar gives a list
of connected entities that appeared in tweets with starting entity as protest, followed by
’#NYC still’. In another tweet with starting entity as ’#NYC still’ and following entity
as ’strong’, and in a third tweet starting entity as ’strong’ followed by ’Myanmar’. In the
other storyline however ’feminist’ can be any entity in the storyline provided it also had
term ’#NYC still’ in it, and again ’UN Headquarter’ can also be anywhere in a tweet
text as an entity along with ’feminists’ in it.

For large datasets, ConceptGraph can not be held in memory on a single node and
needs to be created and traversed on a cluster over large number of nodes. Earlier in
this section the preprocessing for k entity storylines construction algorithm using the
key-value pair based distribution is described. In distributed forward search described
in Algorithm 2 the storylines can be generated by traversing the ConceptGraph by only
following outgoing links. The starting entities are read into distributed cache and the
ConceptGraph which is a set of nodes and its corresponding outgoing edges to connected
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Algorithm 2 Forward ConceptSearch
1: MapReduce4
2: Mapper4

Input:<k1, v1>→ <ei,ej ;ek;el...>// each graph node and its connected nodes
distributed cache: → se1, se2, se3..., sen

3: for all sei in se1, se2, se3..., sen do
4: for each starting entity
5: if sej == ei then
6: for each starting entity // match starting entity with key
7: for all ek in k1 or v1 do
8: match entity with any following entity for combinations

Output:<k′
1, v

′
1>→ <sej ,{ea}>{ea is the list of all entities other than sej}

9: end for
10: end if
11: end for{initial extraction}
12: Reducer4 {combine elements from multiple nodes and emit a consolidated list per node}

Input:<k′
1, v

′
1>→ <sej ,{ea}>

13: combine ConceptGraph entities ei,ej ;ek;el... and connected entities with starting entities sei
Output: <k′

1, v
′
1>→ <sej ,{ek}>{finish init loop}

14: for all i=1;i<k;i++ do
15: //iterate for storylines of length k
16: MapReduce5:
17: Mapper5:

Input:<k1, v1>→ <ei,ej ;ek;el...>
18: prefix value with ’entities::’
19: append ’::’ to key

Output: <k′
1, v

′
1>→ <ei ::,entities::{ei; ej , ...}>

<ej ::,entities::{ei; ej , ...}>
....

20: Mapper5’:
21: prefix value with entities ’storylines’

Input: <k2, v2>→ <e′i,sj ;sk;sl...>
{sj is a sub-story which is a combination of entities of format ej : ek...}
Output: <k′

1, v
′
1>→ <e′i,storylines::{si; sj ; ...}>

<e′j ,storylines::{si; sj ; ...}>
....

{second loop} {The second job is called iteratively to aggregate incrementally storyline entities in the key.}
22: Partitioner5:

Input:<k1, v1>,numReduceTasks → <ei[::],entities::|substories::ei; ej ...|si; sj ...>
23: extract entity from key

Output:hashCode(ei)%numReduceTasks
24: Reducer5:

Input:<k1, v1>→ <ei[::],<ei[::],entities::|substories::ei; ej ...|si; sj ...>
{second loop}

25: for all i=1..n do
26: if ei == k1 then
27: second loop // match starting entity
28: for all ek in k1 or v1 do
29: emit extended storylines

Output:<k′
1, v

′
1>→ <sj :ei,{ek}>// pull in entities in the value list

30: end for
31: end if
32: end for
33: end for

nodes is emitted from mapper and checked for the starting entity being the source node
as shown in line 6. If so, the storylines with each of the connected nodes are created.
The next set of iterations then starts until we have from the potential storylines list and
progressively following to the next level of corresponding entities for the nodes storylines
to a specified level. In MapReduce5 the partitioner in line 23 exploits the ordering of keys
by MapReduce to prevent the buildup of all possible connected entities and substorylines
in a reducer process. This traversal restricts storytelling creation to only storylines that
have first entity in a microblog text snippet as the starting entity selected by user. This
may be too restrictive for some domains but desirable in others.

Algorithm 3 traverses ConceptGraph bi-directionally to produce storylines as shown in
Figure 5. In bi-directional ConceptSearch the traversal of conceptgrah at each iteration
can begin from starting node or connected node and the next connected node can be
either a starting node or any node in its list of connected nodes. This invariably results
in much larger number of storylines. The ConceptSearch algorithm iteratively searches
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Algorithm 3 Bi-directional ConceptSearch
1: MapReduce4
2: Mapper4

Input: <k1, v1>→ <ei,ej ;ek;el...>// graph node and its connected nodes
cache → se1, se2, se3..., sen

3: for all sei in se1, se2, se3..., sen do
4: for each starting entity
5: if sej == ei OR sej in ej ,ek,el then
6: for each starting entity // match starting entity with any key or value entity of ConceptGraph node and

connecting nodes
7: for all ek in k1 or v1 do
8: // match entity with any entity for combinations

Output: <k′
1, v

′
1>→ <sej ,{ea}>{ea is the list of all entities other than sej}

9: end for
10: end if
11: end for{initial extraction}
12: Reducer4 {combine elements from multiple nodes and emit a consolidated list per node}

Input: <k′
1, v

′
1>→ <sej ,{ea}>

13: combine ConceptGraph entities ei,ej ;ek;el... and connected entities with starting entities sei
Output:<k′

1, v
′
1>→ <sej ,{ek}>{finish init loop}

14: for all i=1;i<k;i++ do
15: //iterate for storylines of length k
16: MapReduce5:
17: Mapper5:

Input:<k1, v1>→ <ei,ej ;ek;el...>
18: prefix ’entities’ to value

Output: <k′
1, v

′
1>→ <ei ::,entities::{ei; ej , ...}>

<ej ::,entities::{ei; ej , ...}> ...
19: Mapper5’:

Input: <k2, v2>→ <e′i,sj ;sk;sl...>{sj is a sub-story which is a combination of entities of format ej : ek...}
20: Append ’::’ to entity in key and prefix value with ’substories::’

Output:<k′
1, v

′
1>→ <e′i,substories::{si; sj ; ...}>

<e′j ,substories::{si; sj ; ...}>
...

{second loop} {The second job is called iteratively to aggregate incrementally storyline entities in the key.}
21: Partitioner5:

Input:<k1, v1>,numReduceTasks → <ei[::],entities::ei; ej ...|substories::|si; sj ...>
22: extract entity from key

Output:hashCode(ei)%numReduceTasks
23: Reducer5:

Input: <k1, v1>→ <ei[::],entities::ei; ej ...|substories::|si; sj ...>
{second loop} {tertiary loop}

24: for all i=1..n do
25: if ei in k1 or in v1 then
26: second loop // match starting or any subsequent entity
27: for all ek in k1 or v1 do
28: emit extended storylines

Output:<k′
1, v

′
1>→ <sj :ei,{ek}>// pull in entities in the value list

29: end for
30: end if
31: end for
32: end for

exhaustively for all entities and links by iterating over ConceptGraph nodes. The algo-
rithm starts by reading set of starting points into cache and then checking each starting
node and connected nodes to see if any of the nodes match a starting entity as shown in
line 6. If so it creates a list of partial storylines that in next iteration are built to next
level by checking all the subsequent level nodes and the appearance of any of the last
nodes in the starting or connected list. These operations can be performed iteratively by
calling the same key-value pair based traversal for each step of storylines extension.

A key advantage of distributed ConceptSearch is that each iteration traverses all nodes
and starting entities in parallel. This facilitates traversing ConceptGraph and creat-
ing storylines for multiple starting points. As ConceptGraph is created first and during
traversal multiple starting nodes or last nodes of partial storylines can be considered for
traversal to next level the incremental cost of additional starting points during each level
of storylines building during a traversal iteration is small.
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Table 1.: Twitter Storylines where one meets the user provided entity network distance
threshold and one exceeds it.

Outside 100km threshold Within 100km threshold

1
protest 41.4822:-81.6697 → america
41.4808:-81.8003 → the realm 41.3996:-
81.6457→ la chine 51.89842:4.50328

protest 41.4822:-81.6697 → america
41.4808:-81.8003 → selma protesters
41.3996:-81.6457 → the chants 41.4172:-
81.6722

4.3. Entity network distance based filtering in MapReduce

This section describes a technique to focus storylines to ones that have the sum of pair-
wise distance between entities within a certain threshold. This provides for the analyst
to focus on storylines with geographical footprint within a threshold. Figure 6 shows
the filtering of storylines by entity network distance threshold. The operation is key in
limiting the number of storylines an analyst has to explore and focusing on entities in
a particular geographic area. A spatial entity is one for which location can be obtained,
while temporal entities are associated with a timestamp. When neither location nor time
is available, the entity is denoted as purely textual. The claim that space and time are
important to storytelling leads to investigating the influence of spatio-temporal enti-
ties on the storylines by calculating distances between entities as their spatial distances
assuming temporal ordering using Time Matrix in Santos et al. (2013). This spatial dis-
tance between entity pairs is used to filter storylines. The spatio-temporal filtering allows
analyst to focus on a certain segment of storylines. An example of a storyline that meets
the 100km threshold requirement and another that exceeds the threshold is shown in
Table 1. The storyline that exceeds the threshold has one of its entities ’la chine’ in
Nigeria while the remaining entities are in Ohio, USA. Entity network distance filtering
requires identifying and applying the best coordinates for an entity in a storyline. It uti-
lizes inverted value join where the elements of values of key storyline is emitted and then
enriched and combined again into the key. This is a classic example of multi-stage value
preparation in order to consolidate all values needed to perform entity network distance
geo-coordinate calculation on a single key value pair as one operation. The details of
key-value pair based operations are shown in Algorithm 4.

Mapper6 and Reducer6 in Algorithm 4 start with input as set of key-value pairs rep-
resenting a storyline and its corresponding entities and relationships. It then splits a
storyline into a set of entity and storyline key-value pairs. Mapper7 combines an entity
and its coordinate location as key-value pairs that are then combined with the entity
and all the storylines it appears in to generate a list of storylines and the coordinates
of each entity. Reducer7 then creates a key-value pair for each storyline in an entity
value as key along with the entity and coordinate location as value. Multiple key-value
pairs with key as storyline are then combined together to give the entire list of entities
along with their coordinate locations as value for a storyline key Si. The final trans-
form in Reducer8 generates key-value pair with storyline Si as key only if its sum of
entity pair distances entitydisti is below a threshold. The sequence in MapReduce7 and
MapReduce8 in figure illustrates the inverted value join operations in MapReduce that
is utilized to perform entity network distance based filtering. In MapReduce implemen-
tation of storyline network distance computation several joins are needed to perform the
network distance based storyline culling. With each entity details large number of keys
are emitted during the generation of entities within storylines. Those keys are essential
to fully parallelize the pairwise network distance computation, and are required to land
all the requisite entities and their locations as values for a storyline key in a reducer
after multiple mapreduce jobs. In order to emit each set of entities for storylines for a
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Algorithm 4 Inverted value join
1: MapReduce6:
2: Mapper6:

Input:<k1, v1>→ <Si,e1:r1;e2:r2;....en:rn>
3: emit each entity ei with its corresponding storyline Si

Output:<k′
1, v

′
1>→ <e1,Si>

<e2,Si>// emit each entity and storyline its in separately
....

4: Reducer6: // remit all storylines for an entity
Input:<k1, v1>→ <ei,Sj>

5: emit the storylines for each entity ei with suffix
Output:<k′

1, v
′
1>→ <ei::,Si>

6: MapReduce7:
7: Mapper7: // join with pre-fetched coordinates as input

Input1:<k1, v1>→ <ei,coordi>
8: emit the coordinates for each entity ei with suffix

Output:<k′
1, v

′
1>→ <ei,Location::coordi>

9: Mapper7’: // emit each entity and its corresponding storylines as is from previous job
Input2:<k2, v2>→ <ei::,S1>

<ei::,;S2;...>//emit the entities as is in with suffix
<ei::,;Sn;>

10: emit the storylines for each entity ei with suffix
Output:<k′

1, v
′
1>→ <ei::,S1>

<ei::,S2>// output each entity with suffix with storyline
....
<ei,Sn>

11: Partitioner7:
Input: <k1, v1>,numReduceTasks → <ei[::],coordi|Si>

12: direct each entities location and storylines to same reducer // take advantage of key sorting in MapReduce
Output:hashCode(ei)%numReduceTasks // ensures that coordinates are ahead of entities and storylines in sorted

key list and each entity key value pairs sent to same reducer
13: Reducer7:

Input:<k1, v1>→ <ei,S1;S2;...Sn>
<k1, v1>→ <ei::,coordi>

14: combine location with storylines of keys as they come in order location first with storylines following
Output:<k′

1, v
′
1>→ <S1,ei;coordi>

<S2,ei;coordi>//emit each storyline with its constituent entity and coordinate
....
<Sn,ei;coordi>

15: MapReduce8:
16: Mapper8:

Input:<k1, v1>→ <Si,ej ;coordj>
17: emit each storyline with entity and location

Output:<k′
1, v

′
1>→ <Si,ej :coordj>

18: Reducer8:
Input:<k1, v1>→ <Si,ej ;coordj :ek;coordk:el;coordl...>

19: Combine entities and corresponding location of a storyline
20: Calculate distance //these are coordinate distances not euclidean and
21: if dist(ej : ek+ek : el+...) <threshold then
22: compare with threshold //threshold is a parameter passed in provided by user

Output <k′
1, v

′
1>→ <Si,ej :coordj ;ek;coordk...>

23: emit only storylines within the threshold
24: end if

large dataset of millions of entities and storylines, the number of pairs of entities and
storylines will be enormous, which can be a significant performance bottleneck. However
since entities are often repeated the inverted value join inherently limits the number of
keys as entities.

To alleviate issue of having a key with too many values when entities are emitted with
all storylines they are a part of, it is crucial to utilize the natural sorting of keys provided
in MapReduce. Constructs available in MapReduce paradigm allow us to exploit natural
ranking of elements and order within the entities and storylines data to limit our key-
value pair emissions and reduce the number of jobs by eliminating ones purely used
for sorting. Since the keys are sorted on text fields in default ascending text order,
it is useful to leverage that order to give keys with storylines a lower sort order and
ones with location a higher sort order so that they can be re-emitted as values for keys
as storylines in order to join the values as entities along with their ConceptRank and
locations. A custom partitioner ensures the keys for an entity go to a particular reducer
e.g. <e1, Location::lat;lon>will appear earlier in sorted key list than <e1 ::, S1; ...>...
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which can then be exploited to associate location of e1 in emission in Reducer6 in line
5. This prevents having to store the storylines in memory until the location value is
received potentially causing memory errors. Section 5 shows empirically that the network
path based storyline pair culling gives good results on limiting the number of storyline
pairs calculated and improving the quality and reducing the quantity of storylines to be
reviewed by an analyst.

4.4. Complexity

In sequential processing the computation complexity of entity extraction for Twitter
data is O(T) where T is the number of tweets, performance of storylines construction
is O(N) with order of ConceptRank computations O(N) where N is network size. The
complexity of building storylines based on ConceptRank is O(N) or number of nodes in
ConceptGraph. In distributed environment, the order of extracting entities is O(T/k)
where k is the number of distributed processes, order of building storylines by distance
computations is O(N/k), to perform distributed ConceptRank is O(logN/ε) where (1-
ε) is the dampening factor and that of building storylines based on distributed iterative
storyline generation is O(N/k). These numbers clearly show the scalability of distribution
as the processing can be rapidly scaled by adding nodes with each node running multiple
mappers and reducers. For forward versus bi-directional ConceptSearch computation
complexity is the same even though vastly different number of storylines are generated
in bi-directional ConceptSearch. For multiple starting points the set of starting entities
is greater than 1 yet the order of traversal is still O(N/k) as each new starting point does
not increase number of passes made through ConceptGraph data.

The space complexity of the distribution techniques is O(E) where E is the maximum
number of entities to which a ConceptGraph node has outgoing connections. This is vast
improvement over sequential implementation’s space complexity which is O(N). The con-
strained size of data structures on each process also avoids memory issues. MapReduce
allows iterating all the connected nodes of a ConceptGraph node without storing them in
memory which suffices for operations such as entity network distance filtering. With high
memory usage in sequential processing, even if nodes in structures for ConceptGraph in-
clude reading in from disk as needed the paging rate increases deteriorating performance
further. For multiple starting points memory usage stays constrained to O(E). In some
algorithms there is need to combine all storylines that contain an entity such as in in-
verted value join which is of order O(N) which can cause memory errors. Keep space
complexity in a process to E which is of lower order than N hence is crucial along with
iterating over the connected nodes instead of storing them in a process memory. With
the astute use of partitioners the memory footprint in each reducer for inverted value join
is kept to order O(E) for storylines filtering. The memory footprint of ConceptSearch
iterations is also kept as O(E). This allows for node level operations on ConceptGraph
be performed in single reducer in ConceptSearch.

The marked improvement in space and time complexity and capping the space complex-
ity in distributed operations even for large datasets that allows the distributed technique
to sale to massive datasets.
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5. Empirical Evaluation

Experiments for building storylines from Twitter and GDELT data are performed includ-
ing forward and bi-directional ConceptSearch and entity distance based filtering with
pre-determined thresholds in DISCRN. This section presents the experimental valida-
tion of scalability and efficiency of storytelling techniques described in previous sections.
Our experiments focused on showing the performance enhancements brought about by
parallelization of various stages of storytelling. Section 5.1 gives high level overview of
experiment design and computing environment used. Section 5.2 provides results of ex-
periments with Twitter data. In Section 5.3 efficiency of distributed ConceptSearch and
in Section 5.4 entity network distance based filtering of storylines is shown. GDELT
experiments are described in Section 5.5 followed by discussion of results in Section 5.6.

5.1. Experiment Design

Data Sources: Twitter and GDELT data were used for experiments. Twitter dataset
is composed of approximately 60GB of Twitter data obtained from Twitter streaming
API with over 15,000,000 tweets related to civil unrest in South America for time period
September 2012 to April 2013. The GDELT experiments were performed using GDELT
reduced eventset data from 1979-2014.
Environment: The computations are performed using Amazon AWS Elastic MapRe-
duce with the data files in Amazon S3 data store as text files. The cluster consists of
2 data nodes for small, 4 for medium and 8 for large cluster. Each cluster node is of
size large. Each cluster also has a large node as master orchestrating the work between
data nodes. Each large node has 4 mappers and 2 reducers running on them. The worker
nodes are controlled by master node. For any custom partitioners 4, 8 and 16 reducers are
assumed. Custom partitioners allows for sending data to same reducer in inverted value
join after shuffle for the distributed geocoding and entity network distance computations
and not overly increasing size of data structures in memory. The sequential experiments
are performed on a machine with 12GB RAM and a quad core Intel i7 processor. MapRe-
duce code is in Java and the sequential operations are also performed using java 7 code.
An overview of the distributed system architecture is shown in Figure 3. The distributed
application runs on a cluster on Amazon Web Services (AWS). MapReduce jobs are run
on AWS Elastic MapReduce (EMR) and data is read from and written to S3 buckets
similar to distributed file system HDFS. Cluster uses Hadoop 2.5.1 and MapReduce2.
Comparison Methods: The flow of experiments is shown in Figure 7. The distributed
algorithms do not limit the number of storylines with parameters such as Ripleys k-
function or top connected entities by ConceptRank as in sequential storytelling in Santos
et al. (2013). Other parameters such as calculating ConceptRank based on relationship
types between entities, selecting relationship between entities, dampening factor for Con-
ceptRank and selecting a good time window for entities for building storylines are kept
the same as in Santos et al. (2013). To provide deep understanding of performance of
distributed algorithms against sequential techniques, the next subsections describe four
sets of experiments. The distributed storyline generation in Section 5.2 gives results of
end-to-end storylines generation from raw tweets. It then breaks the overall process into
constituent steps starting with distributed extraction of entities using NLP libraries in
standfordner (2013) in Twitter data and compares sequential results against distributed
results on multiple data and cluster sizes to show scalability in processing increasing
larger data sizes with larger clusters. It also performs the same comparisons of distributed
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Figure 7.: Experiment flow for Twitter and GDELT tasks. Shows the various compar-
isons performed with sequential tasks and distributed tasks and overall performance
incorporating multiple steps. Describes the various size datasets used in experiments.

geocoding using geonames geocoding api in GeoNames et al. (2015) and ConceptRank
calculations against sequential implementations. The ConceptSearch graph traversal in
Section 5.3 describes the bi-directional and forward only tree wise traversal of Concept-
Graph to generate storylines on various data and cluster sizes. Results show small impact
of using multiple starting points to perform storyline exploration instead of single pre-
selected storyline starting point on performance and system scalability upon incremental
demands on ConceptSearch. The entity network distance based filtering section describes
the impact on reducing the number of storylines by filtering based on total distance be-
tween entity pairs. Thresholds of 10km and 100km coordinate distance between entity
pairs is used in experiments. It shows the scalability of the filtering on multiple data
and cluster sizes. The GDELT experiments in Section 5.5 discusses using the distributed
platform to generate storylines using structured GDELT data. It compares GDELT dis-
tributed entity extraction against sequential results and then proceeds to show stability
of GDELT distributed end-to-end performance and ability of entity distance filtering to
limit number of storylines.

5.2. Experiments with Twitter data

The experiments with Twitter data based storytelling include the several distributed
computations in steps. The comparisons of distributed operations and corresponding se-
quential ones are discussed in this section. The experiments for generating storylines
from raw tweets including all the steps in generation are discussed first. Distributed
storytelling generation includes distributed entity extraction, distributed ConceptRank
computation, distributed ConceptSearch and entity network distance based filtering. An
iterative ConceptSearch is performed of ConceptGraph with the starting point as start-
ing point and creates all paths with nodes and edges from the starting node to all other
connected nodes. Since these computations are performed using Ripleys k-function on
a ConceptGraph in memory in sequential generation after user selects starting entity
from a list, there are no exact comparisons with distributed implementation. Iterative
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Table 2.: Twitter Storylines generated from sequential vs distributed approach. These
storylines are all from starting point ’protest’ for tweets collected in December 2014. They
are sorted in order of ConceptRank and additional storylines generated in Distributed
column are due to all storylines generated exhaustively in distributed paradigm.

Sequential Distributed

1
protest 1.7631

mentions−−−−−−−→ #nyc still

1.4864
going−−−−→ strong 1.6992

mentions−−−−−−−→
enforcement 1.5901

protest 1.7631
mentions−−−−−−−→ #nyc still

1.4864
going−−−−→ strong 1.6992

mentions−−−−−−−→
enforcement 1.5901

2 protest 1.7631
mentions−−−−−−−→ #nyc still

1.4864
going−−−−→ strong 1.6992

mentions−−−−−−−→
myanmar 1.6537

protest 1.7631
mentions−−−−−−−→ #nyc still

1.4864
going−−−−→ strong 1.6992

mentions−−−−−−−→
myanmar 1.6537

3 protest 1.7631
mentions−−−−−−−→ #nyc still

1.4864
going−−−−→ strong 1.6992

unites−−−−−→
malaria 1.5901

protest 1.7631
mentions−−−−−−−→ #nyc still

1.4864
going−−−−→ strong 1.6992

unites−−−−−→
malaria 1.5901

4 protest 1.7631
mentions−−−−−−−→ #nyc still

1.4864
going−−−−→ strong 1.6992

descends−−−−−−→
parish council meeting 1.4864

5 protest 1.7631
mentions−−−−−−−→ #nyc still

1.4864
going−−−−→ strong 1.6992

mentions−−−−−−−→
feministabulous 1.4864

ConceptGraph search based storyline generation is highly computationally intensive and
produces a lot more storylines than sequential ConceptGraph traversal. The final per-
formance results of the entire distributed storyline generation algorithm with varying
cluster and data sizes is shown in Figure 8. As the results clearly show, distribution does
allow for scaling of Storytelling steps and makes the end to end process run in scalable
and more robust way providing deeper insights. The starting point ’Mexico’ was used in
these experiments.

We ran distributed storytelling against several interesting tweet datasets. Table 2 shows
some of the storylines created from Twitter data extracted with keywords ’protest’ and
’demonstration’ for January 2015. The two columns show storylines that would be gener-
ated in distributed computation that would otherwise be dropped in sequential process-
ing due to slightly lower ConceptRank of the last entity in storyline even though these
storylines would likely be ones analyst would like to dig deeper into. The relationship
’mentions’ is used when there is no verb enumerating relationship between entities. These
storylines show protest activities in NYC over law enforcement, Myanmar and impacting
parish council meeting. All these storylines need to be evaluated by analysts instead of
only a few based on ConceptRank.

5.2.1. Distributed Entity extraction

Performance of distributed entity extraction using key-value pair based operations
proposed in previous sections is shown in Figure 9. Applying the distributed entity ex-
traction technique clearly shows the parallel scalable nature of the problem. Using the
nlp package and a classifier, extracting entities from each individual tweet in parallel
shows remarkable performance improvement over sequential extraction. The sequential
execution does not even complete for 15 million tweets dataset as the program runs out
of memory. The initial overhead in starting the mapreduce job is the reason it starts out
taking longer for smaller number of tweets but then scales well for very large number of
tweets to the extent that a 2 node cluster is able to comfortably complete distributed
extraction for the largest 15 million tweet set.
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Figure 8.: Performance of distributed
Storylines generation process combining
various distributed tasks.

Figure 9.: Distributed entity extraction
comparisons against sequential. Dis-
tributed experiments were performed on
multiple size clusters.

Figure 10.: Distributed and sequential
performance of fetching geo coordinates
of tweet locations from Twitter meta-
data.

Figure 11.: Performance of distributed
ConceptRank calculations compared to
Sequential.

5.2.2. Distributed Entity GeoCoding

It is a lot more efficient to use distributed computing paradigm to geo-encode each
entity location once and apply it to all the entities which were found at that location.
This drastically cuts down on the computing and financial cost for calling the web based
geonames geo-coding api and associating geo coordinates for the location. The improved
performance of distributed geocoding is shown in Figure 10. As large part of the task is
network requests, performance of various cluster sizes is similar and significantly better
than sequential geocoding.

5.2.3. Distributed ConceptRank calculation

Computing ConceptRank of storylines is key to sorting them. The result of Concep-
tRank calculation on different datasets is shown in Figure 11. Distributed ConceptRank
calculation using Shimmy pattern in Lin and Schatz (2010) is iterative and inherently
different from the ConceptRank calculation on a single node. Sequential ConceptRank
traverses ConceptGraph in memory and iteratively computes ConceptRank of each node
while distributed ConceptRank partitions the graph and iteratively updates Concep-
tRank in each partition hence being highly scalable. The results in Figures 11 clearly
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Figure 12.: Number of storylines cre-
ated by multiple starting points. Bi-
directional ConceptSearch is used.

Figure 13.: Performance with 5 starting
points ConceptSearch. Starting points
are ’Brazil’,’Mexico’, ’Gracias’, ’Caro’
and ’Photo’.

highlight the scalability of ConceptRank calculation based on Shimmy paradigm over se-
quential ConceptRank calculation. This performance gap become even more pronounced
with larger graphs which invariably happen with dense entities and relationships and
makes it imperative to use the distributed approach. The results are less pronounced
than entity extraction because of the iterative nature of the distributed solutions but
the distribution pays off in a major way when the size of graph increases. Since Shimmy
algorithm first partitions data and then performs ConceptRank computation on each
partition in parallel, the performance of 2 node and 4 node clusters for smaller data sets
is worse compared to sequential execution due to the overhead of starting 3 mapreduce
jobs involved, but with increasing number of nodes and increasing size of clusters the
advantage of distribution started to show clearly.

5.3. Distributed ConceptSearch

In this experiment, ConceptGraph traversal is performed using the distributed Concept-
Search algorithm. Each iteration generates storylines one level deeper and is a separate
MapReduce task. The results in Figure 14 show performance of ConceptSearch that gen-
erated storylines 4 entities long. The experiments are considered successful if the set
of storylines found with sequential execution are found with parallel algorithm as well
along with others. The performance results on tweets is shown in Figure 14. Bi-directional
ConceptSearch scales well with increasing data sizes for each cluster. The dataset is com-
posed of tweets from which a ConceptGraph of entities and relationships was generated.
Cluster size is incrementally increased to compare parallel performance of algorithms on
increasing data sizes.

The result of forward and bi-directional traversals and the number of storylines gener-
ated is shown in Figure 15. With bi-directional ConceptSearch as shown in Figure 15 the
number of storylines increases significantly, the large dataset of 5m tweets produces over
22 million storylines. Switching to forward ConceptSearch can be useful in containing the
number of storylines to a few hundred thousand in this case. The starting point ’Brazil’
was used in these experiments.

The results for performance of forward traversal are given in Figure 17 and Figure
16 shows storylines count for forward traversal. The performance for this dataset indi-
cates effectiveness of parallelization on processing graph data after extraction of semantic
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Figure 14.: Performance of distributed
bi-directional ConceptSearch. It scales
well with increasing cluster and data
sizes.

Figure 15.: Number of storylines for-
ward vs bi-directional ConceptSearch.
Shows the effectiveness in containing
storylines count with forward Concept-
Search.

Figure 16.: Storylines count forward
ConceptSearch with entity network dis-
tance based filtering. Combination of
forward traversal which is stricter in sto-
rylines generated along with entity dis-
tance filtering limits storylines signifi-
cantly.

Figure 17.: Performance of distributed
forward ConceptGraph traversal. For-
ward traversal comptation and space
complexity is similar to bi-directional.

keywords from text and then building storylines from starting points. The distribution
techniques do not pay off with smaller datasets as there is some overhead involved in
using a distributed framework to process the task as subtasks but with increasing data
size the paradigm becomes effective and at some stage becomes the only way to perform
storytelling beyond a certain data size.

ConceptSearch supports incremental provision of multiple starting points as most of
the storyline generation process remains independent of starting points and in each Con-
ceptGraph traversal iteration multiple starting points can be processed for respective
storylines with little incremental cost to MapReduce processes. The 5 starting points
used in experiments are ”Brazil, Mexico, Gracias, Cara and Photo”. We run experiments
with first 2, first 3 and all 5 starting points and show the relative stability of the story-
line generation flow and the ConceptSearch expense. The number of storylines generated
with multiple starting points are shown in Figure 12. The performance of the multiple
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Figure 18.: Reducing the number of sto-
rylines by entity network distance filter-
ing. This allows analyst to focus on sec-
tions of total possible storylines.

Figure 19.: Distribution of storylines
generation based on pairwise distance
between all entities between story-
lines distance computation. Perfor-
mance changes little from one threshold
to another. Distance is chosen as 10km
for these experiments.

starting points under different dataset sizes and different cluster sizes for all the 5 start-
ing points is shown in Figure 13. It clearly shows the stability of performance of storyline
generation flow and its key component ConceptSearch under multiple starting points.

5.4. Entity Network distance filtering

In storylines entity network distance experiments, the efficacy of lowering the number
of storylines using distances between entity pairs calculated in a distributed fashion is
shown. Experiments with limiting the number of storylines is conducted by calculating
pairwise distances of entities and combining for filtering based on the total length between
entities in sequence. Domain experts have observed that stories with long distance length
between entities tend to be less important than ones with lesser distance. Hence the focus
on calculating the distances between entity pairs and keeping the storylines with lower
edge pairwise distance from start to end node for evaluation and filtering out the rest.
The decrease in number of storylines with lower entity network distance thresholds are
shown in Figure 18. It clearly shows the marked reduction in number of storylines once
we limit the threshold to 100km and even more significant reduction when lowering the
threshold to 10km. The performance impact of applying filtering is shown in Figure 19.
It shows performance of storylines generation along with entity distance based filtering
for threshold of 10km and the improvement in performance with increase in cluster
size is consistent with storylines generation experiment proving that additional filtering
does not significantly add to processing and is linearly scalable with additional nodes.
In addition Figure 16 shows the combination of entity network distance filtering with
forward ConceptSearch for limiting storylines generation provides the maximum filtering
in order for an analyst to start with the most contextually and spatially relevant storylines
and work their way outwards.
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Figure 20.: Distribution of GDELT sto-
rylines end to end computation. The
data is structured and requires fewer
processing steps before storylines are
calculated compared to Twitter data.

Figure 21.: Distribution of GDELT raw
data processing and entity and relation-
ship extraction. Shows due to structured
nature of GDELT events the advantages
in distributed paradigm do now show
up until volume of data parsed increases
significantly.

5.5. Experiments with GDELT data

Storylines generation against GDELT data is performed to ensure relevant storylines are
generated using more structured data sets. The Global Database of Events, Language,
and Tone (GDELT) is a project that crawls various data sources around the world in-
cluding broadcast, print and online news sources to capture significant events along with
other information such as geographical locations, actors, time etc. The format of the
data is a csv file with fields such as eventid, actorname, actorcountry, actorrelegion,
actiongeolat, actiongeolong etc. Since the data is inherently structured, it is extremely
efficient to extract entities and relationships from it. The efficiencies are accentuated fur-
ther with each event being self contained and no geocoding needed to get coordinates of
locations. The ConceptRank and ConceptSearch algorithms are performed in the same
way as Twitter data.

Figure 20 shows the vast performance improvements in processing GDELT data in-
herently taking advantage of its structured nature compared to more unstructured text
processing in tweets. Text parsing based entity extraction and location geocoding and
combining entities with their geo-coordinates using inverted value join need not be per-
formed. That also means importance of distributed technique is less for GDELT data
parsing than Twitter. However for much larger datasets the distribution advantage begins
to reassert itself. Figure 21 shows the scalability of extracting entities from structured
GDELT events. Figure 22 shows the performance of GDELT storytelling when applying
entity network distance thresholds while Figure 23 shows the decrease in storylines when
the thresholds are applied to aid analysts. Since coordinates are available for each event
in each structured record in GDELT data the entity network distance based filtering
is more computationally intensive. Table 3 shows some of the storylines created from
GDELT data. Here looking up the CAMEO codes for actors and events from GDELT
metadata in Leetaru and Schrodt (2013), ABW stands for Aruba, AUSGOV for Aus-
tralian Government, NLD for Netherlands, BEL for Belgium, AUSCOP is Australian
police force, AUSOPP is Australian opposition and AUSEDU is Australian education.
For the event codes 010 is code for ’Make Statement’, 091 is ’Investigate crime, corrup-
tion’, 112 is ’Accuse’, 190 is ’Use conventional military, force’, 036 is ’Express intent to
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Figure 22.: Entity Network distance
based filtering for GDELT. The perfor-
mance of storylines generation remains
stable with the additional filtering step.

Figure 23.: Number of storylines at
varying entity network distance thresh-
olds. Shows the effectiveness in contain-
ing number of storylines allowing ana-
lyst to focus.

Table 3.: GDELT Storylines generated from sequential vs distributed approach. The dis-
tributed column shows the additional storylines that top k ConceptRank based traversal
in sequential implementation will not generate. Analysts find additional storylines im-
portant.

Sequential Distributed

1
abw 1.4317

010−−→ nld 2.0534
112−−→ ausgov

1.6697
091−−→ auscop 1.7121

abw 1.4317
010−−→ nld 2.0534

112−−→ ausgov

1.6697
091−−→ auscop 1.7121

2 abw 1.4317
010−−→ nld 2.0534

112−−→ ausgov

1.6697
190−−→ ausopp 1.7121

abw 1.4317
010−−→ nld 2.0534

112−−→ ausgov

1.6697
190−−→ ausopp 1.7121

3 abw 1.4317
010−−→ nld 2.0534

112−−→ ausgov

1.6697
036−−→ ausedu 1.4579

4 abw 1.4317
010−−→nld 2.0534

112−−→ ausgov

1.6697
030−−→ bel 1.3948

meet or negotiate’ and 030 is for ’Express intent to cooperate’. These storylines show
interaction between Australian government and Netherlands over activities in Aruba.

5.6. Discussion

This subsection discusses the results shown in charts earlier in the section. The results
show the efficiency and effectiveness of bi-directional and forward ConceptSearch to build
storylines relevant to the subject domain in large volumes. They also show the effective-
ness of filtering storylines by entity network distance to allow analyst to focus on smaller
set of spatially connected storylines.

Location based filtering: The large number of storylines with distributed technique
also allows them to find the connections not previously possible. However, due to large
number of storylines produced by distributed technique, to discover stories of interest
it is imperative that the search space be limited by location. For example, the concepts
discussed earlier in section 5 (demonstrations, protest) are general, until they are com-
bined with locations specific to the NYC protests. If not bounded by the location radius,
the semantic constraint protest could generate stories for the NYC protests, Ferguson
protests, or any others around the country making it difficult for analyst to sift through
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the large number of storylines generated. Hence, the importance of the spatial component
of our proposed work to narrow down the number for storylines to specific events.

Impact of bi-directional and forward ConceptSearch on storylines: The sto-
rylines generated connect entities across tweets hence are very powerful. The assumption
of starting with the first entity of each tweet as having outgoing links to other entities
in tweets is weak and there would be times when even in short text of tweets the key
entity in a tweet will be a following entity after first. That makes bi-directional search
even though marginally more expensive compared to forward ConceptSearch important.
However due to increase in analysis complexity when all potential stories are generated
using bi-drectional ConceptSearch, the filtering applied to storylines by forward Concept-
Search allows analyst to not have to search exhaustively through storylines generated by
any entity in a tweet but focus on ones that propagate via first tweet entity and re-
fine the analysis on storylines. To deal with the sheer volumes of tweets generated from
bi-directional search the entity network distance based filtering becomes even more im-
portant. From 5 million tweets in Figure 15 experiments over 20 million storylines are
generated which will be overwhelming for any analyst. Hence the various ways of filter-
ing storylines and focus on subsets of them becomes crucial to take full advantage of
the opportunities offered by distributed storytelling without the overwhelming number
of storylines making the tool of little value.

GDELT validation: GDELT results also validate the same conclusions that Twitter
results provide regarding scaling of storylines generation from GDELT data in parallel
and the effectiveness of entity network distance based filtering on generated storylines.
The structured nature of data makes entity extraction easier hence less impact of dis-
tributed entity extraction in scaling yet the remainder of storytelling steps such as Con-
ceptRank calculation and ConceptSearch being same as Twitter makes use of distributed
technique critical. Availability of coordinate locations of all actors in each event makes
entity distance filtering more effective and relevant.

6. Conclusion

In this paper we proposed a technique for exploring interactions from spatio-temporal
dynamic real-world storylines generated from microblog and event data sources and per-
formed at scale using distributed computing paradigm. Our approach distributes multiple
step storytelling that includes entity extraction, geocoding, ConceptGraph creation and
traversal for storylines generation and entity network distance based filtering of story-
lines. Novel techniques such as ConceptSearch perform graph traversal operations at scale
and inverted value join allow disparate sets of values to be combined together efficiently
in key-value pair paradigm. Experiments on Twitter and GDELT data sources show
the power of distribution techniques in scaling computations and usefulness of storylines
generated. With the use of distributed approach, analysis does not need to limit itself
to much smaller number of entities and storyline generated from raw Twitter data in
sequential storytelling. Examples of storylines generated demonstrate the high potential
for exploratory analysis using current events such as the NYC protests, Ferguson protests
and the Charlie Hebdo attacks. The deeper insights from results generated by distributed
approach are significant improvement over limited insights from smaller output by se-
quential approach.
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