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Neural Circuit Modulation During Deep Brain Stimulation
at the Subthalamic Nucleus for Parkinson’s Disease:
What Have We Learned from Neuroimaging Studies?

Daniel L. Albaugh1–3 and Yen-Yu Ian Shih1–4

Abstract

Deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) represents a powerful clinical tool for the
alleviation of many motor symptoms that are associated with Parkinson’s disease. Despite its extensive use, the
underlying therapeutic mechanisms of STN-DBS remain poorly understood. In the present review, we integrate
and discuss recent literature examining the network effects of STN-DBS for Parkinson’s disease, placing emphasis
on neuroimaging findings, including functional magnetic resonance imaging, positron emission tomography, and
single-photon emission computed tomography. These techniques enable the noninvasive detection of brain re-
gions that are modulated by DBS on a whole-brain scale, representing a key experimental strength given the dif-
fuse and far-reaching effects of electrical field stimulation. By examining these data in the context of multiple
hypotheses of DBS action, generally developed through clinical and physiological observations, we define a mul-
titude of consistencies and inconsistencies in the developing literature of this rapidly moving field.
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Introduction

Deep brain stimulation (DBS) therapy has rapidly been
established as a revolutionary treatment option for ad-

vanced Parkinson’s disease (PD), as well as for other neuro-
logic and neuropsychiatric disorders. With DBS, stimulating
electrodes are implanted either unilaterally or bilaterally
into a target nucleus or fiber tract, and electrical stimulation,
generally at high frequencies, confers therapeutic effects. The
symptom alleviation resulting from DBS often mirrors those
observed from target lesioning, and, indeed, DBS was devel-
oped after the serendipitous observation that electrical stim-
ulation of the ventral intermediate thalamus confers tremor
reduction akin to thalamotomy (Benabid et al., 1987, 1991).
Compared with target lesioning, DBS therapy has several
appealing qualities, including its reversibility and the capac-
ity to modulate the extent of stimulated tissue by altering
stimulation parameters and active lead configuration. The
latter advantage is particularly useful for tailoring the elec-
tric field to reduce the effect on off-target areas (McIntyre
et al., 2004a; Xu et al., 2011). Based on such considerations,
DBS has rapidly supplanted target lesioning as the premier

neurosurgical technique for advanced, treatment-refractory
motor disorders.

When used for the treatment of advanced Parkinson’s dis-
ease, the subthalamic nucleus (STN) is most commonly cho-
sen as the target for DBS. The STN is an input nucleus of
the basal ganglia that receives direct cortical input and is
also intimately connected with the dorsal pallidum or globus
pallidus (Fig. 1) (Graybiel, 2000; Obeso et al., 2008b). DBS at
this target (hereafter referred to as STN-DBS) can alleviate
several hallmark parkinsonian symptoms, including tremor,
bradykinesia, and rigidity (Fasano et al., 2012; Odekerken
et al., 2013; Weaver et al., 2012). However, despite its efficacy
and widespread clinical application, the underlying mecha-
nisms of STN-DBS remain to be fully elucidated. One possible
clue into the mechanisms of STN-DBS action lies in the strin-
gent dependence on high pulse frequencies for therapeutic ef-
fects. Commonly, the STN is stimulated at 130 Hz (or above),
and neuronal responses to such stimulation trains cannot
often be readily predicted. Depolarization block, synaptic fa-
cilitation, and synaptic failure have been observed, and a
multitude of hypotheses of DBS action have been built on
these findings (Cagnan et al., 2009; Grill et al., 2004; McIntyre
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et al., 2004b; Vitek, 2002; Zheng et al., 2011). Interestingly, the
local effects of high-frequency STN-DBS seem to converge to
some extent with DBS at other target sites. Oscillatory activity
in the beta band frequency range (13–30 Hz) has been
detected in local field potential (LFP) recordings from various
nodes within the dopamine-depleted cortico-basal ganglia-
thalamo-cortical loop, and are widely believed to be patho-
logical (Brittain and Brown, 2013; Engel and Fries, 2010;
Weinberger et al., 2006). High-frequency stimulation at
three nodes within this motor loop, the STN, internal globus
pallidus, and substantia nigra pars reticulata, are each effec-
tive in treating motor symptoms, while concurrently sup-
pressing local beta band rhythms (McConnell et al., 2012;
Sutton et al., 2013; Whitmer et al., 2013; Wingeier et al.,
2006). The establishment of a causal role for beta band
rhythms in motor impairment will do much to strengthen
this popular hypothesis of DBS action. However, it should be
noted in this context that although high-frequency stimulation
is most commonly applied, at some targets, low frequencies
may be beneficial for treating movement disorders. Indeed,
DBS at the pedunculopontine nucleus (PPN; a brainstem nuclei
intimately connected with the basal ganglia and cerebellum)
may alleviate parkinsonian symptoms of postural instability
or freezing of gait, with therapeutic outcomes occurring at
low frequencies (e.g., 35 Hz) (Follett and Torres-Russotto,
2012; Thevathasan et al., 2011). A small number of imaging
studies have examined regional neural modulation by low-
frequency PPN-DBS (Ceravolo et al., 2011; Schweder et al.,
2010; Stefani et al., 2010). Thus, the critical nature of high fre-
quencies for STN-DBS action remains to be adequately
explained, and is not a universal DBS requirement, even for sim-
ilar treatment effects, as exemplified by stimulation at the PPN.

The general lack of a mechanistic understanding of DBS is
at least in part due to the inherently nonselective nature of
electrical stimulation as a neuromodulatory tool. Specifically,
DBS is likely to confer circuit changes both locally and long
distances from the stimulating area, each of which could con-
fer therapeutic effects. To better understand the global effects
of STN-DBS, neuroimaging studies are often conducted,
where relatively unbiased and noninvasive mapping of neu-
ral circuit changes due to DBS can be performed. Both func-
tional magnetic resonance imaging (fMRI) and nuclear
medicine approaches have been successfully applied to exam-
ine global brain activity changes during STN-DBS. Generally,
these studies are conducted in off-medication patients and
employ a within-subject design, where subjects are evaluated
both ON and OFF DBS (DBS usually turned off before scan-
ning in a washout period of 4–12 h) (Geday et al., 2009; Hilker
et al., 2008), although between-subject studies with healthy
controls are also common. In this context, fMRI allows for
the time-locked evaluation of changes in neurovascular activ-
ity during DBS. Typically, blood-oxygen-level-dependent
(BOLD) signals are acquired with fMRI, where oxygenated
blood serves as an endogenous contrast agent to mark areas
of neural stimulation or inhibition (Bandettini et al., 1992;
Kwong et al., 1992; Ogawa et al., 1990, 1992). Nuclear medi-
cine approaches, including positron emission tomography
(PET) and single-photon emission computed tomography
(SPECT), may also be used with DBS, and allow for relatively
noninvasive imaging of multiple activity markers, such as
glucose, blood flow, oxygen metabolism, and binding poten-
tial of various types of neurotransmitter receptors (Heiss and
Herholz, 2006; Phelps, 2000). Nuclear medicine techniques
are quite powerful, but they suffer from poor spatiotemporal
resolution compared with fMRI. This is particularly problem-
atic for resolving changes in activity within the small, discrete
subcortical basal ganglia nuclei that are likely to be modu-
lated by DBS. Further, time-locked activity changes to DBS
cannot be studied, and, thus, separate within-subject baseline
scanning sessions are often required. An additional point to
be considered with regard to PET/SPECT imaging for DBS
studies involves the use of tracers with very different uptake
and clearance kinetics. Tracers used to measure cerebral
blood perfusion (including H2

15O for PET and 99mTc-bicisate
for SPECT) provide highly transient signals and, thus, reflect
blood flow changes over short time periods (commonly
1 min). To achieve a sufficient number of trials, these tracers
are often injected multiple times in a single session. In con-
trast, measurements of glucose metabolism using 18F-FDG
PET allow for multiple scans to be conducted after a single
bolus injection, as signals accumulate over a much longer
time period (scan acquisition typically begins 30–60 min
after injection) (Varrone et al., 2009). Thus, significant meth-
odological variations exist within PET scanning procedures
based on tracer kinetics, and may have implications for com-
paring data examining glucose metabolism and blood flow as
markers of brain activity.

The overwhelming use of PET and SPECT techniques com-
pared with fMRI is likely due to a number of safety concerns
that are associated with the latter [reviewed in ( Jech, 2008)].
Such safety considerations include the possibilities of thermal
lesioning, electrode lead migration, and DBS hardware mal-
function (Chhabra et al., 2010; Tagliati et al., 2009; Zekaj
et al., 2013). In response to concerns about patient safety,

FIG. 1. Simplified model of the cortico-basal ganglia-
thalamo-cortical loop. Both STN and GPi are common targets
for Parkinson’s therapy. Glu, glutamatatergic; GABA,
GABAergic; GPe, globus pallidus external segment; GPi,
globus pallidus internal segment; STN, subthalamic nucleus;
VA/VL, ventral anterior/ventrolateral. Important circuit ele-
ments not shown include cortical innervation of STN (hyper-
direct pathway), dopaminergic inputs to striatum and
extrastriatal areas via the substantia nigra pars compacta,
and the substantia nigra pars reticulata as a basal ganglia out-
put nucleus.
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fMRI studies of DBS are typically conducted using external-
ized pulse generators in the immediate days after lead im-
plantation. Thus, patients in these studies may be
experiencing microlesional effects and focal edema associated
with the implantation procedure, and therapeutic stimulation
parameters have likely not been optimized; all of these factors
may influence the obtained fMRI response profile and reduce
the relevance of such work as it pertains to chronically
implanted patients ( Jech, 2008). Recent studies describing
fMRI in patients with fully implanted DBS hardware may
pave the road for additional chronic DBS fMRI studies (Car-
michael et al., 2007; Kahan et al., 2012). The concerns associ-
ated with DBS fMRI mentioned earlier are in addition to
the already problematic MR artifacts at the tissue-lead inter-
face. Such artifacts may preclude analysis of DBS-induced ac-
tivity in the area surrounding the electrode (where DBS is
most likely to confer activity changes). However, despite
these concerns and when proper precautions are taken,
DBS-fMRI has been shown to be a highly informative tool
(Chhabra et al., 2010; Jech, et al., 2001).

The purpose of the present review is to highlight important
recent findings in the expanding field of DBS neuroimaging.
Neuroimaging techniques such as fMRI, PET, and SPECT
allow for regionally unbiased evaluations of neural modula-
tion by DBS, and are, thus, critical tools for the identification
of novel or otherwise unanticipated loci of DBS-induced brain
activity. Further, neuroimaging allows for the noninvasive
evaluation of circuit-level hypotheses of DBS action, as gener-
ally developed using physiological and histological tools in
experimental animal models. Here, we attempt to integrate
such physiological data with the results of neuroimaging ex-
periments, highlighting the resulting consistencies and incon-
sistencies in findings garnered with these toolsets. For this
purpose, we focus on DBS effects related to intrinsic basal
ganglia circuits as well as noncanonical motor areas, the latter
of which have become of increasing interest in understanding
the cognitive and emotional effects of STN-DBS.

Modulation of Intrinsic Basal Ganglia Circuitry
by STN-DBS

Subthalamic nucleus

High-frequency stimulation undoubtedly modulates activ-
ity in the local environment surrounding the electrode, al-
though the nature of these changes is poorly understood
(Garcia et al., 2005). Early theories of STN-DBS action posited
that DBS inhibits STN activity and functionally disconnects
the nucleus from the basal ganglia circuitry [reviewed in
(Dostrovsky and Lozano, 2002; Vitek, 2002)], an intuitive
explanation given the clinical outcome similarities between
subthalamotomy and DBS. Physiological data have been
obtained in support of this hypothesis. Microelectrode re-
cordings in human Parkinson’s patients provide strong evi-
dence for a long-lasting suppression of STN cell firing after
STN-DBS (Filali et al., 2004; Toleikis et al., 2012). More com-
prehensive analyses conducted in rodent models further sup-
port a predominantly inhibitory local effect of high-frequency
stimulation, including observations of depolarization block-
ade after a 1 min stimulation train in STN neurons recorded
in vitro (Beurrier et al., 2001). Although this depolarization
blockade is believed to be independent of synaptic inputs,
neurotransmitter release within the STN has also been

reported during DBS in anesthetized rats, resulting in in-
creased extracellular glutamate concentrations within the nu-
cleus (Lee et al., 2007). An earlier study employing sharp
electrode intracellular recordings in brain slices detected
excitatory postsynaptic potentials within the STN during
stimulation, which were sensitive to glutamate receptor an-
tagonists (Lee et al., 2004).

Although this finding may seem discrepant with the data
from Beurrier and colleagues (2001), it should be emphasized
that the excitatory potentials detected by Lee et al. occurred
during, and not after the stimulation period. Indeed, consis-
tent with both reports, the period after a high-frequency stim-
ulation train was characterized by relative inactivity within
the STN. Of additional note, when the STN was stimulated
at 200 Hz, Lee et al. observed that STN neurons became inca-
pable of firing action potentials, which was also consistent
with a depolarization blockade.

The electrophysiological data described earlier provide a
spatially limited picture of STN-DBS effects within the target
nucleus. Single cell recordings have superior temporal resolu-
tion, yet only a small number of cells can be sampled, and the
majority of such experiments have been done in slice prepa-
rations with compromised neural circuitry. Nonetheless,
given the general consistency of inhibitory DBS effects at
the STN in such studies, the spatially broad signal detected
using neuroimaging modalities would similarly be expected
to be negative (e.g., reduced blood flow or glucose metabo-
lism). However, the opposite has been found to be true in
an overwhelming majority of imaging studies to date (Asa-
numa et al., 2006; Boertien et al., 2011; Geday et al., 2009;
Haslinger et al., 2005; Hilker et al., 2004, 2008; Jech et al.,
2001). In one of the more direct evaluations of STN modu-
lation by STN-DBS, Hilker and colleagues (2008) used
18F-FDG PET to measure changes in glucose consumption
during bilateral stimulation in a group of 12 advanced Par-
kinson’s patients and healthy age-matched control subjects
(Hilker et al., 2008). Notably, the investigators included a pre-
surgical baseline scan in addition to the more widely used
OFF-stimulation baseline scan (post DBS lead implantation),
which allowed for the observation of effects of electrode im-
plantation alone. In these patients, glucose metabolism
was reduced compared with presurgical baseline in the
OFF-stimulation condition, and significantly increased dur-
ing stimulation (when compared with the OFF-stimulation,
but not presurgical baseline scans). These findings suggest
that the STN has a reduced metabolic rate after DBS surgery,
possibly indicating a microlesional effect, and that stimula-
tion increases metabolism from this reduced baseline. STN ac-
tivation has also been observed using blood flow PET
imaging with H2

150. Haslinger et al. (2005) reported frequen-
cy-dependent bilateral hyperperfusion within the STN in five
of six subjects tested during DBS. These blood flow increases
were maximal at 190 Hz, with the highest stimulation fre-
quency tested (Haslinger et al., 2005). Finally, although
BOLD fMRI does not permit direct observation of the STN
around the electrode due to the electrode imaging artifact,
the presence of BOLD activation in the area surrounding
the electrode has been reported ( Jech et al., 2001; Jech, 2008).

Several possibilities exist for this seeming discrepancy be-
tween single-cell and neuroimaging studies of STN modula-
tion by STN-DBS. First, it is possible that the activity
enhancements detected by PET and fMRI reflect activity in
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axons located within the region of the STN, rather than cell
bodies. In addition to axons terminating within, or projecting
from the STN, the area has recently been shown to include a
large number of fibers of passage, at least in nonhuman pri-
mates (Mathai et al., 2013).

Neuroimaging techniques also differ tremendously in their
spatiotemporal resolution when compared with single-cell re-
cordings. While electrophysiological recordings can identify
cell firing dynamics on a millisecond timescale, DBS effects
detected by neuroimaging methods may reflect summed re-
gional activity changes over seconds to minutes. In addition,
neuroimaging modalities examine changes in neural activity
only indirectly, for example, as changes in blood oxygenation,
blood flow, or glucose metabolism. Thus, non-neuronal con-
tributions to effects reported in these studies cannot be ruled
out. Related to this point, when compared with multi-unit re-
cordings or LFPs, the BOLD signal detected in fMRI is more
greatly correlated with LFPs, reflecting a potential bias in
fMRI for the detection of input activity rather than local cell
spiking (Goense and Logothetis, 2008; Lippert et al., 2010;
Logothetis et al., 2001; Yen et al., 2011). Although this rela-
tionship may not hold true at high spatial resolution
(Kahn et al., 2013; Shih et al., 2013), it is worth noting that
low-frequency LFP oscillations (1–1.5 Hz) may be increased
during STN-DBS (Priori et al., 2006), with possible relevance
for the activation profile detected with BOLD fMRI.

Caudate/putamen (striatum)

The striatum, along with the STN, represents the major
center of cortical input to the basal ganglia. It is composed pri-
marily of GABAergic medium spiny neurons (MSNs), which
are segregated into two groups depending on their anatomi-
cal projections and expression of dopamine receptors and
peptides. Specifically, MSNs projecting to the external globus
pallidus (GPe) (i.e., the indirect pathway) express D2 dopa-
mine receptors and enkephalin, whereas those neurons pro-
jecting to the internal globus pallidus (GPi) (the direct
pathway) express D1 dopamine receptors and substance P.
This description is greatly simplified, with caveats, including
the innervation of GPe by direct pathway MSNs (Nambu,
2008; Surmeier et al., 2011). Nonetheless, this convenient
scheme may be useful for understanding both convergent
and parallel processing within the striatum. Although direct
and indirect pathway MSNs are active during goal-directed
movements (Cui et al., 2013), the effects of selective pathway
manipulation on motor function are diametrically opposed.
Using optogenetics to selectively activate D1 or D2 receptor
expressing MSNs within the mouse dorsomedial striatum
(caudate), Kravitz et al. (2010) observed that unilateral direct
pathway stimulation induced ipsilateral turning behavior,
whereas stimulating the indirect pathway resulted in contra-
lateral turning (Kravitz et al., 2010). When bilaterally stimu-
lating each pathway selectively, the effects were again
opposing: Direct pathway stimulation increased ambulatory
behavior, while indirect pathway stimulation promoted
freezing behaviors. Lastly, given the facilitatory effects of
direct pathway stimulation on movement, the authors
examined the efficacy of this stimulation in the bilateral
6-hydroxydopamine (6-OHDA) mouse model of Parkinson’s
disease. For this model, an injection of the dopaminergic neu-
rotoxin 6-OHDA into the dorsomedial striatum resulted in a

near-complete loss of dopaminergic fiber innervation into the
striatum. Behaviorally, these mice exhibited a variety of par-
kinsonian symptoms, such as bradykinesia and freezing of
movement. Remarkably, selective stimulation of direct path-
way MSN’s was able to successfully rescue many of these def-
icits, including restoration of measures of ambulation and
motor freezing behavior to prelesion values. Taken in the con-
text of STN-DBS, such findings suggest that DBS-induced
modulation of striatal MSNs (inhibition of indirect or stimu-
lation of direct pathway MSN’s) may be a possible down-
stream therapeutic mechanism.

Neuroimaging experiments to date have not successfully
segregated activity changes within the spatially heteroge-
neous direct and indirect MSNs, although it is clear from
these studies that STN-DBS may modulate striatal activity
as a whole. In an fMRI case study of a 36-year-old Parkinson’s
patient (likely nonidiopathic PD) with comorbid depression,
Stefurak and colleagues (2003) reported BOLD signal in-
creases in striatum during STN-DBS (Stefurak et al., 2003).
Due to the limitations associated with fMRI procedures, bipo-
lar stimulation was used via an externalized pulse generator,
and both leads used in the bilateral procedure were tested in-
dependently. DBS induced striatal BOLD signal increases
(specifically within the putamen) with both leads, despite
the fact that only the left lead effectively ameliorated motor
symptoms (stimulation with the right lead resulted in pro-
found emotional disturbances without motor effects). This re-
sult suggests that striatal activation may be necessary, but not
sufficient for therapeutic motor effects. Similar results have
also been obtained with PET, demonstrating DBS-induced
striatal activation localized to the lentiform nucleus or puta-
men (Geday et al., 2009; Hilker et al., 2004).

Internal globus pallidus

The GPi represents one of the major output structures of
the basal ganglia, along with the substantia nigra pars reticu-
lata, and it provides tonic inhibitory drive to the motor thal-
amus under normal conditions. Interest in the GPi within the
context of Parkinson’s disease arises from many sources, in-
cluding the therapeutic effects exerted from lesioning (pallid-
otomy) or DBS at this target (Follett and Torres-Russotto,
2012; Obeso et al., 2001; Pizzolato and Mandat, 2012; Rouaud
et al., 2010). In classical models of Parkinson’s disease, loss of
striatal dopamine is predicted to result in hyperactivity
within the GPi with consequent over-inhibition of thalamo-
cortical motor relays (Obeso et al., 2008b; Wichmann et al.,
2011). One possible mechanism of STN-DBS action may be
the attenuation of such pathological GPi hyperactivity, and
consequent restoration of thalamic motor relay fidelity (see
next section).

A variety of experimental tools have provided converging
evidence that DBS at the STN, indeed, modulates activity
within the GPi, a finding which could be predicted by the in-
timate anatomical connectivity between these regions (Gray-
biel, 2000; Obeso et al., 2008a). However, the direction of
this modulation is under debate. In normal monkeys, high-
frequency burst stimulation of the STN predominantly inhib-
its GPi neurons, an effect that is sensitive to GABA antagonists
and thus likely represents a polysynaptic response which is
mediated by inhibitory inputs from theGPe (Kita et al.,
2005). In addition to this inhibitory action, short-latency
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excitatory responses were also noted in that study, consistent
with monosynaptic excitation via the STN. Additional data
supporting recruitment of the glutamatergic STN-GPi projec-
tion include recordings obtained in MPTP-treated monkeys,
demonstrating augmented GPi firing rates during therapeuti-
cally effective STN-DBS (Hashimoto et al., 2003). Further, in
Parkinson’s patients undergoing STN-DBS surgery, micro-
dialysis recordings have revealed elevated cGMP levels
within the GPi during STN-DBS, an effect most likely down-
stream of glutamate release from the STN (Stefani et al.,
2005). Collectively, the data cited earlier present a complex
picture of GPi modulation by STN-DBS, by which both excit-
atory and inhibitory effects may be observed.

A small number of neuroimaging studies have reported ac-
tivity changes within the GPi during STN-DBS. In Parkin-
son’s patients receiving bilateral STN-DBS, reductions in
glucose metabolism (as detected by 18F-FDG PET) were ob-
served in the left GPi (Asanuma et al., 2006). Of note, that
same study reported similar metabolic decreases within the
left GPi in a separate group of Parkinson’s patients receiving
levodopa infusions titrated for maximal therapeutic efficacy.
Why this effect was consistently unilateral was not discussed,
although it is possible that it reflects restoration of asymmet-
rically impaired motor circuit function. Supporting this possi-
bility, SPECT analysis of radiolabeled dopamine transporter
(DAT) density (an indirect measure of dopamine signaling,
detected using DAT radioligand [123I]b-CIT) has revealed sig-
nificant DAT reductions in the left, compared with right puta-
men in Parkinson’s patients compared with healthy controls,
at least for right-handed subjects (Scherfler et al., 2012). An
additional 18F-FDG-PET study of Parkinson’s patients with
unilateral STN-DBS implantations revealed a discrete locus
of hypometabolism within the contralateral, but not ipsilat-
eral, GPi (Arai et al., 2008). Thus, it may be that downstream
GPi inactivation is only required unilaterally for DBS-induced
restoration of motor function. However, complicating mat-
ters, observations of enhanced GPi activity have also been
made during therapeutic STN-DBS, including increases in
blood flow (Ceballos-Baumann et al., 1999), glucose metabo-
lism (Hilker et al., 2008), and BOLD signal enhancement ( Jech
et al., 2001). Therefore, reduction of GPi activity alone is inca-
pable of explaining motor symptom alleviation by DBS.

Modulation of Basal Ganglia Input/Output Structures
by STN-DBS

Substantia nigra pars compacta

A major question regarding the mechanisms of DBS effi-
cacy lies in the possibility that stimulation promotes residual
dopamine release from the substantia nigra pars compacta
(SNpc), partially restoring dopaminergic tone within the
basal ganglia. DBS at the STN has long been known to enable
reductions in dopaminergic therapies such as levodopa, con-
sistent with this hypothesis (Moro et al., 2010; Odekerken
et al., 2013; Weaver et al., 2012). Levodopa responsiveness
is also a strong predictor of DBS efficacy, further hinting
that dopamine release may be an important downstream
mechanism of STN-DBS action.

If STN-DBS is indeed recruiting SNpc dopamine cells, a
straightforward anatomical means for such downstream
stimulation has been described in the rat (Groenewegen
and Berendse, 1990) and mouse (Watabe-Uchida et al.,

2012) in which the STN monosynaptically and reciprocally in-
nervates the SNpc (Cragg et al., 2004). In vivo recordings in
normal, anesthetized rats have shown enhanced rates of
SNpc firing during high-frequency STN stimulation (Benaz-
zouz et al., 2000), although a recent report using longer
pulse trains ( > 15 min) has failed to replicate this finding in
slice recordings (Ledonne et al., 2012). In one of the more
convincing demonstrations of dopamine release by STN-
DBS to date, Shon and colleagues (2010) applied fast-scan
cyclic voltammetry (FSCV) to measure extracellular dopa-
mine concentrations in the striatum of normal pigs. FSCV
benefits from its nanomolar-range chemical detection sensi-
tivity and submillisecond temporal resolution in resolving
dopamine release events in vivo (Robinson et al., 2003).
Using this technique, dopamine concentrations in pig stria-
tum were found to vary in a voltage and stimulation fre-
quency-dependent manner during STN-DBS. Specifically,
release was maximal at high frequencies ( ‡ 120 Hz) and volt-
ages (7 V, highest tested). The use of a normal animal model
weakens the therapeutic relevance of these findings, al-
though microdialysis studies in rats with nigrostriatal le-
sions have also found increased striatal dopamine release
by STN-DBS (Meissner et al., 2002, 2003).

Confirmation of dopamine release by STN-DBS in human
Parkinson’s patients is possible using PET imaging to visual-
ize displacement of radiolabeled dopamine receptor ligands
by endogenous neurotransmitter (Thobois et al., 2004; Vol-
kow et al., 1996, 2009). Despite the attractive simplicity of
the dopamine hypothesis of STN-DBS action, the few recep-
tor displacement studies conducted to date have generally
not provided support for such a mechanism [though see
(Nozaki et al., 2013)]. In a direct test of the DBS dopamine
hypothesis, Hilker and colleagues (2003) measured DBS-
induced striatal dopamine release using radiolabeled 11C-
raclopride (reversible D2/D3 receptor agonist). In six PD
patients with therapeutically effective bilateral STN-DBS im-
plantations, no significant changes were observed in dopa-
mine receptor binding by DBS in caudate/putamen, either
ipsi-or contralateral to the most therapeutically effective stim-
ulation side (Fig. 2). An additional study using radiolabeled
L-DOPA, a dopamine precursor (18F-DOPA), in four subjects
with unilateral DBS leads also failed to find differences in
striatal dopamine levels on or off DBS, either ipsi- and contra-
lateral to the stimulation side (Arai et al., 2008). Although
these findings suggest that striatal dopamine release does
not occur during STN-DBS, detection sensitivity may be an
issue. For example, using 11C-raclopride displacement, an in-
crease in dopamine concentrations in excess of 10% is re-
quired to visualize a change (Volkow et al., 1994). Thus, it
remains possible that residual dopamine release may be an
important component of STN-DBS action, but adequate test-
ing of this hypothesis will require more sensitive (and likely
more invasive) measures of endogenous transmitter release.
It will also be interesting to test the ability of STN-DBS to
promote dopamine release in extra-striatal targets of SNpc
innervation, including the GPi, GPe, and STN itself (Rommel-
fanger and Wichmann, 2010).

Ventral anterior/ventrolateral thalamus

The ventral anterior/ventrolateral (VA/VL) thalamic
motor relay nuclei serve as intermediary structures to connect
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the basal ganglia output to cortical targets. Interest in the
motor thalamus as a downstream target for DBS arises from
many sources, including its intimate anatomical relationship
with the basal ganglia and the presence of tremor cells within
this region in Parkinson’s patients. Modeling studies suggest
that, in Parkinson’s disease, overactivity within the GPi ob-
structs signal relay fidelity within the motor thalamus (Guo
et al., 2008; Meijer et al., 2011). In these models, DBS at
high, but not at low frequencies restores the relay fidelity of
these thalamocortical cells. Physiological evidence suggests
that VA/VL thalamic neurons alter their firing rates in re-
sponse to STN-DBS, again suggesting a possible role for
motor thalamus activity in therapeutic stimulation. The
mechanisms by which STN-DBS affects thalamic activity
have not been adequately worked out, although as men-
tioned earlier, the upstream GPi is likely an important player.
Supporting this idea, microdialysis sampling of GABA con-
tent in the VA thalamus has revealed reductions in this trans-
mitter during DBS (Stefani et al., 2011), possibly due to
inhibition of pallidal afferents.

The outlined framework for DBS-induced restoration of
motor thalamic relay fidelity predicts that the motor thalamus
will show increased activity during DBS (due to reductions in
inhibitory inputs). A wealth of neuroimaging data have been
collected showing that this is generally the case (Arai et al.,
2008; Hershey et al., 2003; Hilker et al., 2004; Jech et al.,
2001; Karimi et al., 2008; Phillips et al., 2006). However, at
least two studies have reported reduced ventral thalamic ac-
tivity (regional cerebral blood flow [rCBF] decreases) during
bilateral STN-DBS (Cilia et al., 2009; Geday et al., 2009). In one
of these studies, Geday and colleagues (2009) examined blood
flow changes in nine subjects with bilateral STN-DBS. Six
scans were performed in the ON and OFF-stimulation condi-
tions, randomized and separated by a 4 h stimulation recov-
ery period (Geday et al., 2009). During PET scan sessions,

subjects viewed emotionally salient stimuli, although all ef-
fects reported were independent of this manipulation. DBS
was found to induce a wealth of rCBF changes, including de-
activation of the left (but not right) VA/VL thalamus. In dis-
cussing this finding within the context of previous studies
showing ventral thalamic activation during STN-DBS, the au-
thors raise the possibility that activation of the neighboring
STN may be the true source of some reported increases in
thalamic blood flow and glucose metabolism. Interestingly,
unmedicated Parkinson’s patients at rest show hypermetabo-
lism in the thalamus, part of the so-called Parkinson’s
Disease-Related Spatial Covariance Pattern (PDRP), which
also includes GPi and primary motor cortex hyperactivity,
as well as hypoactivity within supplementary motor cortices
(Ma et al., 2007; Niethammer et al., 2012). In the context of the
PDRP, the ventral thalamic inactivation reported by Geday
et al. may represent a normalization of pathological hyperac-
tivity within the thalamocortical motor circuit. However,
other findings reported in that study, for example, reduced
blood flow within supplementary motor cortex, are more dif-
ficult to reconcile with the PDRP profile.

Primary and premotor cortices

The contributions of sensorimotor cortex to STN-DBS ef-
fects are under intense debate, largely due to conflicting re-
ports regarding the therapeutic efficacy of direct primary
motor cortex stimulation (Arle et al., 2008; Brittain et al.,
2013; Cilia et al., 2007, 2008; Dejean et al., 2009; Gradinaru
et al., 2009; Gutierrez et al., 2009; Lefaucheur et al., 2004;
McAllister et al., 2013; Strafella et al., 2007). A number of ab-
normal features have been observed in motor cortical circuits
of PD patients, including hyperconnectivity between motor
cortex and STN and disease-specific oscillatory interactions
(Baudrexel et al., 2011; Shimamoto et al., 2013). Notably, elec-
trophysiological recordings have consistently demonstrated
that such pathological circuit activity can be corrected by
STN-DBS, in both animal models (Dejean et al., 2009; Li
et al., 2012, 2007) and Parkinson’s patients (de Hemptinne
et al., 2013; Shimamoto et al., 2013).

Many possible routes exist by which STN-DBS may be pos-
tulated to affect motor cortical activity. The canonical cortico-
basal ganglia-thalamo-cortical loops (Alexander et al., 1986;
DeLong and Wichmann, 2009) include an excitatory connec-
tion from the STN to the GPi, which influences sensorimotor
cortical activity via the VA/VL thalamus. In addition to this
feedforward route, DBS at the STN may recruit the motor cor-
tex directly via antidromic spike propagation along the sub-
stantial corticosubthalamic projection (the ‘‘hyperdirect’’
route) (DeLong and Wichmann, 2009). The net effect of these
antidromic spikes on motor cortical activity is likely complex,
although modulation can be assumed to occur with a shorter
latency than the polysynaptic thalamic route. A thorough char-
acterization of antidromic spikes was recently conducted by Li
and colleagues (2012), who ultimately demonstrated that high-
frequency STN stimulation does, in fact, modulate intrinsic
motor cortical activity via antidromic signals (Li et al., 2012).
When these spikes were observed, they tended to result in
an early suppression and delayed excitation of cellular activity.
How such biphasic changes, which occurred on a millisecond
timescale, affect the global response to DBS within motor cor-
tex cannot be readily predicted.

FIG. 2. Lack of effect of STN-DBS on endogenous striatal
dopamine release within the putamen, as detected by posi-
tron emission tomography imaging of 11C-raclopride (D2/
D3 receptor agonist) displacement. Figure displays raclopride
displacement volume ratio (DVR) averaged within the puta-
men for each of six advanced Parkinson’s patients, both dur-
ing bilateral STN-deep brain stimulation (DBS) and after a
nonstimulation period of at least 12 h. Figure modified from
Hilker et al. (2003).
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Neuroimaging studies have generated conflicting data re-
garding how STN-DBS may modulate motor cortical activity.
A number of PET studies have reported hypoactivation in
motor cortex (primary and/or premotor) during stimulation,
as indicated by either reduced rCBF or glucose metabolism
compared with nonstimulated conditions (Asanuma et al.,
2006; Ceballos-Baumann et al., 1999; Geday et al., 2009;
Haslinger et al., 2005; Karimi et al., 2008; Trost et al., 2006).
For example, in a prospective study conducted by Cilia et al.
(2009), 21 Parkinson’s patients underwent two sets of PET
scans, one before and another 6 months after STN-DBS surgery
(off-medication during both sessions) (Cilia et al., 2009). The
majority of brain regions showing significant changes during
stimulation (as compared with presurgery baseline) were char-
acterized by hypoperfusion, including large decreases in rCBF
within primary and premotor cortices. Similar results have
been obtained in a number of smaller studies, including one re-
port demonstrating that the extent of rCBF decreases in motor
cortex during stimulation positively correlates with DBS-
induced motor improvement (Haslinger et al., 2005). Remark-
ably, a similar study in a larger patient population and using
SPECT found robust increases in rCBF within the premotor
cortex that positively correlated with DBS efficacy (Paschali
et al., 2013). Additional studies have similarly found DBS-
induced rCBF increases within motor cortex, using both
SPECT (Sestini et al., 2005, 2007) and PET modalities (Limousin
et al., 1997). That the PET/SPECT data mentioned earlier so
directly conflict, even considering methodological variation,
is perplexing. One possible explanation for this discrepancy in-
volves subtle variations in active electrode contacts within the
STN that may occur between studies, a topic which has only
recently been explored (Hill et al., 2013).

Neuroimaging findings of motor cortex recruitment by
STN-DBS are further clouded when considering the small
number of functional MRI studies examining DBS effects on
BOLD signal. The first of such reports was made in 2001 by
Jech and colleagues, where three patients with unilateral elec-
trodes in the STN were assessed acutely, before subclavicular
placement of an internal pulse generator ( Jech et al., 2001). In
that case study, motor cortical modulation by DBS was ob-
served in only one subject, where stimulation resulted in
BOLD increases. No subject showed BOLD decreases in any
region during stimulation. A more recent study in a slightly
larger patient population failed to observe any DBS-induced
modulation of motor cortical regions during DBS, although
robust activation of the neighboring insula was noted
(Kahan et al., 2012).

Although difficult to compare with human studies, a com-
prehensive analysis of global BOLD signal changes during
STN-DBS has also been undertaken in animal models. In a re-
cent report studying normal, unlesioned pigs, widespread,
positive BOLD signal changes were noted during DBS, with-
out any evidence of suppressed regional activity during stim-
ulation (Min et al., 2012). The motor and premotor cortices
represented the first and second largest areas of BOLD activ-
ity, respectively, and were similarly active during stimulation
of the internal globus pallidus (another common DBS target
for movement disorders). Lai and colleagues (2013) also
found similar positive BOLD responses in the motor cortex
of normal rats during high-frequency stimulation of either
the STN or GPi. In this study, multiple DBS frequencies
were tested (10–400 Hz), with the rationale that, similar to

motor alleviation for Parkinson’s, the neural correlates of ef-
fective DBS may demonstrate stringent frequency depen-
dence. In line with this hypothesis, the largest BOLD signal
enhancements during STN-DBS occurred within the motor
cortex, peaking at 130 Hz (within the traditional therapeutic
frequency range for STN-DBS) (Fig. 3). The relationship be-
tween these animal studies and the PET results mentioned
earlier, generally demonstrating reduced activity in the
motor cortices during STN-DBS, is not clear. However, the
use of a normal animal model in the fMRI studies precludes
all but casual comparison. Further, a study of fMRI signal
changes induced by DBS in both humans and parkinsonian
animal models is greatly needed.

Modulation of limbic and executive circuits by STN-DBS

The modulation of nonmotor limbic and executive circuits
by STN-DBS is apparent from a number of studies examining
emotional and cognitive changes in PD patients (Denheyer
et al., 2009; Strutt et al., 2012; Temel et al., 2006; Wolz et al.,
2012; Zangaglia et al., 2009). Perhaps the greatest example
of nonmotor circuit recruitment by STN-DBS exists in the re-
cent targeting of the STN for the neurosurgical treatment of
psychiatric disorders, primarily obsessive-compulsive disor-
der (OCD). This nontraditional application arose from the
serendipitous observation that, in PD patients with comorbid
OCD, STN-DBS could effectively treat symptoms arising
from both pathologies (Fontaine et al., 2004; Mallet et al.,
2002). Further evaluation in large clinical studies confirmed
the therapeutic efficacy of STN-DBS for OCD (Mallet et al.,
2008), ultimately resulting in FDA approval of DBS for this
disorder.

The pathways by which STN-DBS contributes to emotional
and cognitive processing are very poorly understood com-
pared with its motor effects (Temel et al., 2005). Thus, region-
ally unbiased neuroimaging studies of nonmotor STN circuits
are particularly valuable, as they hold the potential to identify
unpredicted and behaviorally therapeutic circuits with the ul-
timate goal of DBS target refinement and extension. A num-
ber of PET studies have identified activity changes in
canonical limbic/executive regions during STN-DBS in Par-
kinson’s patients, including the dorsolateral prefrontal cortex
and cingulate gyrus (Geday et al., 2009; Hilker et al., 2004;
Limousin et al., 1997). Hilker and colleagues (2004) per-
formed an 18F-FDG PET study in advanced Parkinson’s pa-
tients with bilateral STN-DBS, both before and 4 months
after the surgical procedure (Hilker et al., 2004). Although
no regional differences in glucose metabolism were noted
for the off-stimulation state before and after surgery, DBS
evoked metabolic changes in a variety of brain areas, both ca-
nonically motor and limbic. With regard to limbic areas, the
left anterior cingulate and right medial temporal lobe,
among others, showed increased glucose metabolism during
stimulation. The authors additionally administered a battery
of neuropsychological tests before and after DBS surgery to
determine the consequences of chronic DBS for emotional
and cognitive function. Interestingly, although the majority
of these tests showed no change between time points, perfor-
mance was enhanced in two measures of delayed recall dur-
ing DBS. This result suggests that long-term memory
functions may be particularly influenced by stimulation, a
finding in line with other studies (Halpern et al., 2009).
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Following clinical success in treating OCD symptoms
comorbid with Parkinson’s disease using STN-DBS, recent
studies have been extended to include STN stimulation as ap-
plied therapeutically for OCD alone. In a small sample of
OCD patients with bilateral STN-DBS, PET imaging of glu-
cose metabolism has been compared in the ON- and OFF-
stimulation conditions (Le Jeune et al., 2010). The therapeutic
efficacy of DBS in these patients was measured using the
Yale–Brown Obsessive Compulsive Scale, demonstrating a
mean reduction in OCD symptoms after chronic stimulation.
Compared with the OFF-stimulation condition, DBS also
resulted in significant loci of hypoactivity in the cingulate
gyrus and orbitofrontal cortex, major hubs for emotional
and executive functioning (Fig. 4). This finding is significant,
because these same areas may be hyperfunctional in un-
treated OCD, hinting at normalization of prefrontal circuit ac-
tivity as a possible mechanism of DBS action for this disorder
(Bourne et al., 2012; Evans et al., 2004; Milad and Rauch,
2012).

Although it is tempting to compare STN-DBS studies in
Parkinson’s and OCD patients, some major caveats need to
be considered. First, although the sensorimotor territory of
the STN is generally targeted for PD, surgeons often choose
the associative or limbic regions of the STN for OCD treat-
ment (Le Jeune et al., 2010). These areas of the STN function

within distinct basal ganglia loops, and, thus, may be
expected to differentially modulate global brain activity
(DeLong and Wichmann, 2009). Second, the nonstimulated
brain of the PD and OCD patient are likely to be quite dissim-
ilar, reflecting unique pathological circuit activity, and may
be predicted to differentially interact with electrical stimula-
tion. Related to this, such patients are generally on very dif-
ferent medication regimens, which may be expected to
induce persistent circuit plasticity. Thus, although limbic
and executive cortical areas are subject to modulation by
STN-DBS in both disorders, the nature of this activity and
its therapeutic relevance may vary between them.

Conclusions and Future Directions

STN-DBS represents a powerful clinical tool for the treat-
ment of advanced Parkinson’s disease, although the mech-
anism(s) of therapeutic action are poorly understood.
Although a large number of studies have been conducted to
uncover its basic mechanisms, in both human patients and
animal models, general inconsistencies in their conclusions
continue to plague the STN-DBS literature. Notably, these
differences in findings do not appear to vary according to the
experimental technique used in any meaningful way. Neuro-
imaging methods benefit from their relatively noninvasive

FIG. 3. STN-DBS evokes frequency-dependent blood-oxygen-level-dependent (BOLD) activation in sensorimotor cortex of
normal rats. The amplitude of DBS-induced activation peaked at 130 Hz, and was largest in the ipsilateral motor cortex during
unilateral stimulation. (A) BOLD activation maps in different brain slices with reference to bregma; (B) averaged traces of
BOLD response profiles in cortical subregions depicted in A. Figure modified from Lai et al. (2013).
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nature, and whole-brain responses to DBS can be detected gen-
erally with adequate sensitivity. Placed in the context of the ex-
tensive physiological data collected in animal models, imaging
studies allow for the translational analysis of theories of DBS
action. However, for most brain regions that have been identi-
fied, the direction of DBS modulation is ambiguous. Perhaps
the one exception would be the STN, where activation is
reported in most neuroimaging studies, though this finding is
discrepant with physiological data showing inhibition at a sin-
gle-cell level.

Several possibilities exist to explain such inconsistencies.
Neuroimaging studies may be prone to spurious results,
depending on basal neural activity, vascular reactivity and,
with PET or SPECT imaging, possible mislocalized areas of
DBS-induced activity changes. Furthermore, and not specific
to imaging experiments, certain areas of modulation may be
irrelevant for DBS effects, and these areas would be expected
to vary in the presence and/or direction of modulation far
more than therapeutic circuits. This point is highly pertinent
to DBS as an extremely nonselective method of stimulation; it
is quite unlikely that all areas affected downstream of the
electrical field are clinically valuable, although some may rep-
resent the neural correlates of adverse or otherwise unin-
tended stimulation effects (e.g., parasthesias, emotional and
cognitive changes). Unfortunately, imaging studies are inher-
ently correlative, and often not capable of distinguishing be-
tween such circuits. To understand which of these areas are
truly therapeutically relevant will require experimental ap-
proaches that are capable of selective circuit manipulation
during therapeutic DBS. In parkinsonian animal models,
the tools of opto- and pharmacogenetics may plausibly be
used to manipulate genetically defined circuits during DBS,
as an extension of the DBS mimicry studies that have already
been conducted with such techniques (Gradinaru et al., 2009;
Kravitz et al., 2010). With these tools, it may be possible to iso-
late neural circuits where modulation is necessary for thera-
peutic DBS.

Ultimately, validation of any mechanism of DBS action will
need to be performed in human subjects, not animal models.
Although genetically based circuit manipulations are not
possible in humans, recent developments in noninvasive
functional connectivity analysis, the so-called resting-state
connectivity profile, may provide powerful network-level
information about DBS (Fox and Greicius, 2010; Fox and
Raichle, 2007; Pawela et al., 2008). In resting-state analyses,

spontaneous fluctuations in BOLD signals (generally below
0.1 Hz) are identified as the intrinsic markers for functional
connectivity (Biswal et al., 1995). In the simplest form of
this technique, a seed region is identified and correlated
with other brain areas to determine areas of functional con-
nectivity. The clinical utility of this approach comes from its
capacity to identify aberrant functional connectivity in dis-
ease, and its amelioration by therapeutic intervention.
While this technique has yet to be widely employed for the
analysis of functional connectivity changes during STN-
DBS, initial findings are promising. Vidal and colleagues
(2013) recently reported an increase in connectivity within
the premotor cortical hub during STN-DBS in 13 Parkinson’s
patients. Notably, the magnitude of this premotor hub con-
nectivity was positively correlated with alleviation of disease
symptoms (Vidal et al., 2013). A similar correlation between
resting-state connectivity changes and therapeutic DBS out-
comes has been obtained in patients receiving nucleus accum-
bens (NAc)-DBS for OCD (Figee et al., 2013). In these patients,
DBS was found to normalize aberrant hyperconnectivity be-
tween the NAc and lateral and medial prefrontal cortices,
and this reduction in connectivity correlated well with scores
for OCD symptom relief. Based on such early observations, it
is conceivable that resting-state functional connectivity analy-
ses will yield a tremendous number of insights into network
modulation by DBS.
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