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Abstract

Dynamic network analysis based on resting-state magnetic resonance imaging (rsMRI) is a fairly new and po-
tentially powerful tool for neuroscience and clinical research. Dynamic analysis can be sensitive to changes
that occur in psychiatric or neurologic disorders and can detect variations related to performance on individual
trials in healthy subjects. However, the appearance of time-varying connectivity can also arise in signals that
share no temporal information, complicating the interpretation of dynamic functional connectivity studies.
Researchers have begun utilizing simultaneous imaging and electrophysiological recording to elucidate the neu-
ral basis of the networks and their variability in animals and in humans. In this article, we review findings that
link changes in electrically recorded brain states to changes in the networks obtained with rsMRI and discuss
some of the challenges inherent in interpretation of these studies. The literature suggests that multiple brain pro-
cesses may contribute to the dynamics observed, and we speculate that it may be possible to separate particular
aspects of the rsMRI signal to enhance sensitivity to certain types of neural activity, providing new tools for basic
neuroscience and clinical research.
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Introduction

Functional connectivity mapping with resting-state
magnetic resonance imaging (rsMRI) has grown rapidly

in popularity, as its introduction in Biswal and associates
(1995) as the power of the technique to demonstrate clini-
cally and cognitively relevant differences in brain networks
has become apparent. Until recently, analysis methods as-
sumed that the functional networks were stationary, main-
taining the same structure over the course of the scan.
Since improved imaging and analysis methods reduced con-
tributions from physiological noise and increased sensitivity,
interest began to grow in examining variability in the net-
works over time, creating a need for new twists on the classic
analysis techniques (Hutchison et al., 2013a). Most of these
methods involve using sliding windows or temporal segmen-
tation to create network maps that vary over time (Allen
et al., 2014; Chang and Glover, 2010; Hutchison et al.,
2013b; Keilholz et al., 2013; Kiviniemi et al., 2011). Others
identify spatiotemporal patterns of activity that repeat over
time (Handwerker et al., 2012; Liu and Duyn, 2013; Majeed
et al., 2011) or activity related to single events (Liu and
Duyn, 2013; Petridou et al., 2013). These dynamic analysis
methods are sensitive to changes that occur in psychiatric

or neurologic disorders (Leonardi et al., 2013; Li et al.,
2014b; Sakoglu et al., 2010) and are also related to variations
in performance on individual trials in healthy subjects
(Thompson et al., 2012; Yang et al., 2014). However, the ap-
pearance of time-varying connectivity can also arise in sig-
nals that share no temporal information, complicating the
interpretation of dynamic functional connectivity studies
(Handwerker et al., 2012; Keilholz et al., 2013). A few
labs have begun utilizing simultaneous imaging and elec-
trophysiological recording to elucidate the neural basis of
the networks and their variability in animals (Magri et al.,
2012; Pan et al., 2011, 2013; Scholvinck et al., 2010; Shmuel
and Leopold, 2008; Thompson et al., 2013a, 2013b) and in
humans (Chang et al., 2013; Tagliazucchi et al., 2012; Wu
et al., 2010). In this article, we review findings that link
changes in electrically recorded brain states to changes in
the networks obtained with rsMRI and discuss some of the
challenges inherent in the interpretation of these studies.
The literature suggests that multiple brain processes may
contribute to the dynamics observed, and we speculate that
it may be possible to separate particular aspects of the
rsMRI signal to enhance sensitivity to certain types of neural
activity, providing new tools for basic neuroscience and clin-
ical research.
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Neural Correlates of Traditional Steady-State
(Stationary) Functional Connectivity

The existence of a neural basis for traditional functional
connectivity measurements is a necessary prerequisite if dy-
namic rsMRI network analysis is to reflect changes in coor-
dinated neural activity. The evidence for neural correlates of
blood-oxygenation-level-dependent (BOLD)-based func-
tional connectivity comes from three sources: noninvasive
electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) studies in healthy subjects, intracranial record-
ings in patient populations, and animal experiments.

Pioneering studies that combined EEG and MRI pro-
vided the first insight into the neural basis of BOLD-based
functional connectivity (Laufs et al., 2003; Mantini et al.,
2007). The broadband EEG signal is traditionally separated
into five bands: d (1–4 Hz), h (4–8 Hz), a (8–12 Hz), b (12–
30 Hz), and c (30–100 Hz), with the divisions between fre-
quency bands varying slightly across studies. A large body
of research has linked different frequencies to different ac-
tivities of the subject. For example, the alpha band is strong
in a subject at rest with eyes closed, while gamma activity
has been implicated in high-level processing of information.
Not unexpectedly, combined EEG and MRI studies found
that individual resting-state networks were linked to multiple
frequency bands of the EEG, although different networks
had distinctive spectral ‘‘fingerprints’’ (Mantini et al., 2007).
The link between EEG and BOLD varied across subjects,
suggesting that the relationship between EEG and BOLD
was state dependent (Gonçalves et al., 2006). While all of
these studies found a link between electrical recordings and
rsMRI, the findings were difficult to interpret in the context
of a direct link between BOLD and neural activity due to the
limited spatial localization and depth penetration available
with noninvasive recording methods.

To obtain more localized electrical measurements, re-
searchers turned to invasive studies in neurosurgery patients.
Using intracranial electrocorticography in epilepsy patients
undergoing monitoring before surgical resection, Nir and
associates (2008) found significant interhemispheric correla-
tions in the sensory cortex in low-frequency ( < 0.1 Hz) mod-
ulations of neuronal firing rates and gamma local field
potential (LFP) power. In a similar study, He and associates
observed a correlation in the < 0.5 and 1–4 Hz bands in the
sensorimotor cortex whether subjects were awake or sleeping,
which closely corresponded to BOLD correlation maps
obtained from the same subjects. Gamma band-limited power
(BLP) was also correlated during wakefulness or rapid eye
movement (REM) sleep but not during slow wave sleep (He
et al., 2008). Keller and associates (2013) examined the rela-
tionship between functional connectivity based on BOLD and
electrocorticography and showed that both positive and nega-
tive BOLD correlation appear to be tied to positive and nega-
tive correlation, respectively, in high gamma power.

The studies in patient populations are uniquely valuable
but have their limitations. Only sites of clinical interest can
be examined; neural activity may be somewhat altered by pa-
thology; and simultaneous imaging and recording is usually
not feasible. Animal studies provide complementary infor-
mation that fills some of these gaps. An early study by Lu
and associates (2007) using epidural electrocorticography
over sensory cortex and rsMRI in separate groups of animals

showed that power correlation in the delta band (1–4 Hz) was
modulated by increasing levels of anesthetic in the same way
as BOLD correlation. Shmuel and Leopold (2008) used si-
multaneous MRI and intracortical recording in the anesthe-
tized monkey to show that neural features such as gamma
band power, multiunit spiking activity (MUA), and spiking
were correlated with the BOLD signal from the same site
in the visual cortex. Pan and associates (2011) found a corre-
lation between broadband LFP power and the BOLD signal
in isoflurane-anesthetized rats, with correlation between
BLPs in the lower frequencies (d, h) that is most predictive
of correlation in the BOLD signal, though correlation at a
single site was higher in the gamma band. Similarly, in the
monkey, Wang and associates (2012) found that oscillations
below 20 Hz best corresponded to BOLD functional connec-
tivity, and that these lower frequencies modulated local
gamma activity. Studies that combined imaging of hemody-
namics and electrophysiology showed that the hemodynamic
response to spontaneous neural ‘‘events’’ was similar to the
response to a stimulus and strongly correlated across hemi-
spheres (Bruyns-Haylett et al., 2013; Liu et al., 2012).
Using laser Doppler flowmetry and microelectrode arrays,
Huang and associates (2014) showed that low-frequency os-
cillations ( < 0.26 Hz) in spiking rate and LFP power were
causally related to low-frequency hemodynamic oscillations.

Most of the studies in animals have focused on the tradi-
tional EEG frequency bands of activity above 1 Hz, but the
BOLD fluctuations used to map functional connectivity are
much slower. Pan and associates (2013) recorded electrical ac-
tivity in the same frequency range as the BOLD response and
showed that the infraslow activity ( < 1 Hz) from a single elec-
trode in primary somatosensory cortex (SI) was directly corre-
lated with the BOLD signal from SI in both hemispheres.

Taken together, these studies strongly indicate that the
BOLD signal reflects contributions from multiple frequency
bands and possibly from multiple brain processes. Gamma
band activity and infraslow activity, in particular, have been
linked to the BOLD signal in multiple species under multi-
ple anesthetic conditions (Table 1). At least two studies
have shown that delta band power correlation is predictive
of BOLD correlation (Lu et al., 2007; Pan et al., 2011), but
since both used varying levels of anesthetic to manipulate cor-
relation, the relationship may be due to common effects of an-
esthesia on both electrical activity and functional connectivity
without proving a causal relationship. The state dependence of
both animal and human studies suggests a complex relation-
ship between neural activity and the functional connectivity
measured with rsMRI, while simultaneously hinting at the in-
triguing possibility of teasing out more information about neu-
ral activity from the BOLD signal.

Detecting Significant Variability in Correlation
Over Time

Along with the excitement of obtaining new information
about network dynamics with rsMRI comes a host of questions
about how to best measure and interpret those dynamics. One
of the problems with dynamic analysis is determining which
changes in connectivity are significant. The paper by Chang
and Glover (2010) found that only some areas exhibited dy-
namics significantly different from random. Handwerker and
associates (2012) similarly showed that connectivity exhibited
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Table 1. Summary of Selected Studies Linking Functional Connectivity to Electrical Activity

Study Species Condition/state
Recording

method
BOLD analysis

method Finding

Laufs et al. (2003) Human Awake, eyes closed EEG Seed-based
correlation

Negative correlation
between alpha power
and BOLD in lateral
frontal and parietal
areas; positive
correlation with beta
power in restrosplenial,
temporoparietal, and
dorsomedial prefrontal
areas

Mantini et al. (2007) Human Awake, eyes closed EEG ICA Each BOLD network
associated with a specific
fingerprint of multiple
EEG frequency bands

Goncalves et al.
(2006)

Human Awake, eyes closed EEG Voxel by voxel
correlation with
EEG

Pattern of BOLD
correlation with alpha
power varies across and
within subjects

He et al. (2008) Human Awake, slow wave
sleep, REM sleep

ECoG Seed-based
correlation

Slow cortical potentials
exhibit a correlation
structure similar to BOLD
across all states; gamma
band power correlation
similar to BOLD in
wakefulness or REM

Keller et al. (2013) Human Awake ECoG Seed-based
correlation

Positive and negative
correlations were
present in both BOLD
and high gamma band
power

Lu et al. (2007) Rat Alpha-chloralose
anesthesia

ECoG Seed-based
correlation

Delta band power
coherence was the most
predictive of BOLD
correlation as the level
of anesthesia deepened

Shmuel and Leopold
(2008)

Nonhuman
primate

Isoflurane and
fentanyl
anesthesia, eyes
open or closed

LFP, MUA Voxel-by-voxel
correlation with
LFP

Slow fluctuations in BLP
(particularly gamma
band) and MUA
correlate with
spontaneous BOLD
fluctuations

Pan et al. (2011) Rat Isoflurane anesthesia LFP Voxel-by-voxel
correlation with
LFP, seed-based
correlation

Broadband LFP power
correlation with local
BOLD (particularly
gamma power); BOLD
correlation closest to
delta, theta power
correlation as function
of anesthesia depth

Pan et al. (2013) Rat Isoflurane and
dexmedetomidine
anesthesia

LFP Voxel-by-voxel
correlation with
LFP

Infraslow LFP activity is
correlated with BOLD
near electrode and in
opposite hemisphere;
time-lagged correlation
gives pattern of
alternating positive and
negative correlation
along cortex

(continued)
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Table 1. (Continued)

Study Species Condition/state
Recording

method
BOLD analysis

method Finding

Wang et al. (2012) Nonhuman
primate

Tiletamine/
zolazepam
anesthesia, eyes
closed; awake,
eyes open

LFP Seed-based
correlation

Frequencies below 20 Hz
contribute most to
BOLD correlation and
modulate localized
gamma activity

Thompson et al.
(2013a)

Rat Isoflurane anesthesia LFP Sliding window
correlation

Sliding window power
correlation in theta, beta,
and gamma frequencies
was linked to sliding
window BOLD
correlation

Chang et al. (2013) Human Awake, eyes closed EEG Sliding window
correlation

Alpha power inversely
related to correlation
between DMN and TPN

Tagliazucchi et al.
(2012)

Human Awake, asleep EEG Sliding window
correlation

Increased alpha and beta
power linked to
decreased BOLD
connectivity; increased
gamma linked to
increased BOLD
connectivity; patterns
altered in subjects
changing from
wakefulness to sleep

Britz et al. (2010) Human Awake, eyes closed EEG ICA; voxel-by-voxel
correlation with
microstate time
course

EEG microstate time
courses were correlated
with BOLD network
time courses

Musso et al. (2010) Human Awake, eyes closed EEG ICA; voxel-by-voxel
correlation with
microstate time
course

EEG microstates
correlated with BOLD in
patterns that resemble
BOLD resting-state
networks

Thompson et al.
(2013b)

Rat Isoflurane or
dexmedetomidine
anesthesia

LFP Spatiotemporal
pattern finding;
voxel-by-voxel
correlation

Time-lagged patterns of
infraslow LFP-BOLD
correlation match
quasi-periodic patterns
observed in BOLD alone

Magri et al. (2012) Nonhuman
primate

Remifentanil
anesthesia

LFP, MUA Mutual information Gamma band power was
the most informative
about local BOLD
signal; alpha and beta
bands carry
complementary
information

Thompson et al.
(2014)

Rat Isoflurane or
dexmedetomidine
anesthesia

LFP Phase-amplitude
coupling; partial
correlation

No phase-amplitude
coupling was observed
between BOLD and LFP
or between infraslow
LFP and higher
frequencies except under
isoflurane; partial
correlation suggests
infraslow and high
frequencies carry
complementary
information

BLP, band-limited power; BOLD, blood-oxygenation-level-dependent; DMN, default mode network; ECoG, electrocorticography; EEG,
electroencephalography; ICA, independent component analysis; LFP, local field potential; MUA, multiunit spiking activity; REM, rapid eye
movement; TPN, task positive network.
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periodicity but so did phase-scrambled data. Using data that
were mismatched across scans and/or rats, Keilholz and asso-
ciates (2013) demonstrated that periods of high and low corre-
lation could be observed in time courses which shared no
temporal information, and that the variation in correlation
from real data was mostly indistinguishable from the randomly
matched data. Simply because the amount of variability can-
not be distinguished from that of randomized data does not
mean that the variability does not carry useful information,
but it certainly highlights the difficulties involved in the inter-
pretation of dynamic analysis. What portion of the variation in
connectivity is meaningful, and how can we identify it?

Ideally, of course, we would like to link network dynamics
from rsMRI studies to a more direct indicator of neural activ-
ity to ensure that we are detecting meaningful changes. In
healthy humans, this usually means EEG. In some ways,
though, it is not clear what sort of relationship should be
expected between a poorly localized, cortically dominated
EEG signal and the functional connectivity matrices that
map changes in BOLD correlation throughout the brain.
Changes in EEG power reflect large-scale alterations in the
state of the brain due to varying levels of wakefulness, for ex-
ample, and one would certainly expect corresponding changes
in the functional connectivity matrices. However, it is conceiv-
able that more subtle cognitive changes during free thought in
the scanner (e.g., remembering a past vacation as compared
with planning to write a manuscript) might be reflected in
changing connectivity but have no effect on the EEG signal.
Source localization methods may provide a closer examination
of the relationship between the electrical signal and BOLD
correlation, with coherence or synchrony in the EEG signal
from certain areas linked to varying BOLD correlation be-
tween the same areas. EEG microstates are also promising can-
didates to link to changes in functional connectivity. However,
the limited spatial localization of EEG makes a direct compar-
ison far from simple for most areas of the brain.

Even for more invasive recording techniques that allow lo-
calized measurements, the key parameters are unclear. What
do we measure? The relationship between the BOLD signal
and the neural activity at a single site is not necessarily the
same as the relationship between BOLD correlation and co-
ordinated neural activity across sites (Pan et al., 2011). For
example, gamma band power could be most correlated
with fluctuations in the local BOLD signal, while delta band
power was the strongest mediator between sites. It may then
be possible to separate the two contributions to the BOLD sig-
nal if some of their properties are known, enabling a separate
examination of the two bands. This is particularly interesting
in the context of a widespread theory in neuroscience that
high-frequency activity organizes relatively small areas of the
brain, while low-frequency activity has a larger spatial footprint.

Most studies to date have looked at band-limited power as a
potential source for the BOLD fluctuations, and correlation be-
tween BLPs as a comparison to correlated BOLD signals from
different areas. This choice originally arose as a way to manage
the large discrepancy between the high temporal resolution of
the electrophysiological recordings and the slow nature of the
BOLD fluctuations. It is unlikely that correlations in the
BOLD signal reflect millisecond-level coordination of neural
activity due to the low-pass filter inherent in the vasculature,
and converting the electrical signals to band-limited power
can provide a meaningful measure of activity on the same

temporal scale as the BOLD signal. Most groups do not record
electrical activity in the infraslow frequencies ( < 1 Hz) that are
directly comparable to the slow changes in the BOLD signal,
but recent work shows that these signals themselves are directly
linked to hemodynamic and BOLD oscillations (Li et al.,
2014a; Pan et al., 2013), and in this case, correlation between
the raw electrical signals is quite appropriate for a comparison
to BOLD correlation. Future studies should also examine the
relationship between measures of synchrony and coherence
in electrical signals and BOLD correlation. A recent study by
Musall and associates (2014) showed that neural synchrony
can modulate EEG signals independently of the amplitude of
activity, suggesting that synchrony may prove an important pa-
rameter in linking neural activity to the measured rsMRI signal.

Time Scales of Stationarity

During undirected cognition, multiple processes occur.
For example, a single thought may last a few seconds; a sin-
gle topic may last tens of seconds; and a slow increase in
drowsiness may occur over hundreds of seconds. The spatial
scale of these processes should also vary. While no one
knows precisely the extent of activity involved in a single
‘‘thought,’’ it could conceivably affect a minimum of only
a few small areas, while large-scale changes throughout the
brain can be caused by a reduction in wakefulness.

One of the first questions that arose during studies of net-
work dynamics is that of the time scale at which activity con-
verges to a steady state. rsMRI scans typically last 5–10 min.
A study using MR encephalography to acquire images with a
repetition time (TR) of 100 msec found that for frequencies of
0.5–0.8 Hz, correlation appeared stable even with short 30 sec
windows;, while for more typical frequencies of 0.01–0.1 Hz,
variability was apparent even in the 120 sec windows (Lee
et al., 2013). A study using typical rsMRI parameters in hu-
mans found that correlation began to plateau at around
4 min (Van Dijk et al., 2010). In comparison, an intracranial
electrophysiology study found that stable, frequency-depen-
dent patterns of correlation emerge after *100 sec (Kramer
et al., 2011). These findings do not include the effect of ongo-
ing tasks, which can affect the spontaneous oscillations even
after the task is completed. Barnes and associates (2009)
found that the fractal characteristics of the spontaneous fluctu-
ations did not return to pre-task value for minutes after the task
was completed, and that the time required for this return
depended on the difficulty of the task.

In contrast to MRI studies, MEG studies performed under
the assumption of stationarity over a 5 min scan resulted in
mostly unilateral networks, while functional connectivity
maps created from shorter time periods corresponding to
maximal network correlation were more bilaterally symmet-
ric and similar to the resting-state networks seen in MRI (de
Pasquale et al., 2010).

In anesthetized rats, Thompson and associates (2013a)
found that the correlation between BOLD correlation and
BLP correlation in multiple bands reached a plateau at window
lengths of 30–70 sec. However, the error also increased to a
plateau on a similar time frame, suggesting that despite the rel-
atively low signal-to-noise ratio (SNR) of short window mea-
surements, they may be sensitive to transient changes in neural
activity. It should be noted that this study utilized a shorter TR
(500 msec) and a higher field strength (9.4 T) than typical
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human studies. Window lengths for most dynamic studies that
use sliding windows or temporal segmentation currently range
from *30 sec to 2 min, limiting the scale of the changes which
can be detected. The advent of fast imaging sequences that en-
able whole brain coverage in less than a second will increase
the number of samples in a given time window and may im-
prove sensitivity to short-lived changes (Moeller et al., 2010;
Posse et al., 2012).

EEG or MEG and MRI Studies of Network Dynamics

EEG signals reflect fairly widespread cortical activity in
the brain and are particularly well suited for examining
large-scale changes in brain state, such as those that distin-
guish sleep from waking. EEG signals, particularly those ac-
quired without a specific task, are less suited to identifying
small changes in activity that may reflect spontaneous cogni-
tive processes. Despite this limitation, the relative ease of
obtaining simultaneous EEG and rsMRI in healthy volun-
teers has made it a valuable tool in elucidating the neural
basis of functional networks and has begun providing in-
sights to the origin of their dynamics as well. Chang and as-
sociates (2013) found an inverse relationship between
connectivity between the default mode network (DMN)
and dorsal attention network (DAN) and alpha power,
using 40 s segments. Higher alpha power was also linked
to a larger extent of anticorrelation. A similar study by
Tagliazucchi and associates (2012) found that increased
alpha and beta power generally corresponded to decreased
functional connectivity, while gamma power increases
were linked to increased connectivity. This pattern was al-
tered in subjects who were undergoing changes in their
level of vigilance (i.e., falling asleep), where slower oscilla-
tions were linked to increased connectivity. Similar to the an-
imal studies that used anesthesia level as a perturbation to
link changes in neural activity to changes in connectivity
(Lu et al., 2007; Pan et al., 2011), changing levels of vigi-
lance may alter both EEG and network activity without nec-
essarily identifying a causal relationship.

The subject’s relative level of drowsiness or alertness over
the course of a scan may explain many of the large-scale
changes observed in functional networks. Allen and associ-
ates clustered correlation matrices made using sliding win-
dow analysis from a large group of subjects (405) and
found that particular states were common across participants.
Intriguingly, the frequency of the occurrence of one particu-
lar state (state 3) increased over time, suggesting that it might
be linked to drowsiness (Allen et al., 2014). The state exhibited
thalamocortical disconnection and weakened connectivity in
the DMN, consistent with the transition between wakeful-
ness and sleep. Changes in vigilance may also account for
some of the links observed between alpha power and connec-
tivity in the DMN/DAN (Chang et al., 2013).

In addition to vigilance levels, other changes can also affect
large areas of the brain. Wu and associates (2010) found that
posterior alpha power produced wide-spread hemodynamic re-
sponses with high functional connectivity between the areas
involved while subjects were resting with eyes closed, but
many of the hemodynamic responses disappeared and func-
tional connectivity was decreased when eyes were opened.
Presumably even without an accompanying change in mental
state, the state of the brain can be significantly altered.

One of the side effects of the use of anesthesia in animal
studies is that no change in vigilance levels would be expected
during stable conditions. Thompson and associates (2013a)
compared sliding window correlations in band-limited power
from left and right somatosensory cortex to sliding window cor-
relation in the simultaneously acquired BOLD signal in the rat
and found that theta, beta, and gamma bands contributed to the
BOLD variability. The link between BOLD and BLP is an
encouraging indication that the dynamic analysis of rsMRI
may be sensitive to more subtle changes in correlation in
addition to those caused by changes in wakefulness.

Much interest has been expressed in EEG microstates as
building blocks of cognitive processes and potential underpin-
nings for the BOLD fluctuations used to map connectivity.
These microstates manifest as EEG scalp topography that
exhibits a stable configuration for a time on the order of
100 msec. Typically, a small number of these stable topogra-
phies are revisited over time. The time course of the micro-
states, when correlated with the BOLD response, produces
networks similar to the resting-state networks typically ob-
tained from independent component analysis (ICA) (Britz
et al., 2010; Musso et al., 2010), which suggests that the mi-
crostates themselves may at least partly underlie the network
dynamics observed with BOLD.

Betzel and associates examined the dynamic properties of
the EEG, but using synchronization likelihood to measure
the time-varying connectivity across electrodes. As with mi-
crostates, patterns were found to be stable for tens to hun-
dreds of milliseconds, and a small number of ‘‘families’’
of patterns were continually revisited (Betzel et al., 2012).
However, the patterns were not similar to previously ob-
served microstates, which are based on power at a given elec-
trode rather than measures of coordination across electrodes.
Their reliance on synchronization rather than power makes
these patterns particularly appealing as potential contributors
to time-varying BOLD correlations.

MEG studies are not readily combined with MRI, but sim-
ilar functional connectivity analysis provides intriguing re-
sults. In the paper by de Pasquale and associates (2010), it
was shown that theta, alpha, and beta bands produced maps
most similar to those obtained from MRI when nonstationary
analysis was used. Gamma power tended to be more localized,
whether because it is locally generated or because of loss of
sensitivity due to low SNR is unknown. These results echo
the original EEG/rsMRI studies which found that multiple fre-
quencies contributed to each network.

The Influence of Network Events

One way to think of spontaneous cognition is as a string of
discrete thoughts or events, whether these are linked to EEG
microstates or not. Researchers in rsMRI have begun exami-
ninge these factors as potential drivers for the network dynam-
ics observed in the BOLD signal. A work by Petridou and
associates (2013) using a deconvolution approach to identify
single events has shown that spontaneous events detected in
rsMRI account for much of the correlation within networks.
A similar study by Liu and Duyn (2013) found coactiva-
tion patterns based on high signals in a seed region. The pat-
terns of co-activated areas identified are somewhat similar to
those obtained using temporal ICA (Smith et al., 2012). These
studies suggest that at least some of the variation in functional
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connectivity in awake human subjects is driven by transient
events rather than slow modulations of vigilance.

The detection of spontaneous events also suggests the pos-
sibility of ‘‘brain states,’’ or common configurations of con-
nectivity that recur over time. Keilholz and associates
utilized simple thresholding to separate the time courses
from somatosensory areas, motor cortex, and the caudate
putamen in the anesthetized rat into three states: correlated,
uncorrelated, and anticorrelated. They found that a few states
accounted for most of the variation throughout the scan
(Keilholz et al., 2013). A more complex version of brain
state analysis in human subjects was reported by Allen and
associates (2014), who first identified network components
within a large group of subjects using ICA, then applied slid-
ing window analysis to examine the correlation between each
pair of regions as a function of time. The resulting time-
varying functional connectivity matrices were then clustered
to identify common brain states and transitions. Seven com-
mon states were identified across subjects, with the most
common state similar to the steady-state connectivity matrix
and the others representing substantial deviations from the
steady-state values.

Quasi-Periodic Patterns of Brain Activity

‘‘Brain states’’ are typically considered patterns of instan-
taneous activity, which may repeat over time but in a spo-
radic fashion. Recent studies suggest that there are also
quasiperiodic spatiotemporal modulations of brain activity
which occur on a slower time scale. The first evidence of re-
peated spatiotemporal patterns of spontaneous BOLD fluctu-
ations came from anesthetized rats. Majeed and associates
(2009) reported patterns of high activity that propagated
from lateral cortical areas to medial cortical areas, followed
by a similar propagating wave of relatively low activity. This
first study relied on visual inspection and observed the pat-
terns at discrete intervals. The subsequent development of
a correlation-based pattern-finding algorithm not only identi-
fied occurrences of the pattern, but also showed that the pro-
cess was nearly periodic, occurring even when visual
detection was difficult due to the presence of other signals
(Majeed et al., 2011). Similar patterns were observed in
CBV-weighted data (Magnuson et al., 2010).

A natural question was whether these patterns were only
present due to the use of anesthesia in the rodent. A group-
based analysis of human data using the same pattern-finding
algorithm, however, identified a spatiotemporal pattern that
was consistent in spatial location and timing across all subjects
(Majeed et al., 2011). Interestingly, it involved signal pro-
pagation and alternation in several areas of the DMN and
task-positive network (TPN). In a different experiment using
different methodology, Grigg and Grady (2010) observed a
variable pattern of DMN and TPN connectivity that was con-
sistent with the patterns obtained by Majeed and associates.
Similar patterns of alternating activation in the DMN and
TPN were also observed by Chow and associates (2013) but
only during REM sleep. The pattern-finding algorithm used
by Majeed and associates makes use of extensive averaging
to increase SNR, which may account for their detection of
the pattern in data from awake humans. It may be that addi-
tional activity overlays the pattern during wakefulness, de-
creasing its prominence in comparison to REM sleep.

Some of the quasi-periodic patterns (QPPs) appear to fol-
low the vascular structure of the brain, and a study by Tong
and Frederick (2010) using near-infrared to map hemody-
namics found a pattern similar to QPPs, although the time
scales seem to be different. Nevertheless, electrophysiologi-
cal analogues of these patterns have also been observed. Ko
and associates (2011) used intracortical electrical recording
to show that infraslow ( < 1 Hz) changes in BLP coordinate
activity in the DMN, with high gamma coherence in a narrow
band of low frequencies centered around 0.015 Hz, suggest-
ing a neural basis for the quasiperiodic processes seen in the
BOLD signal. Using MEG, de Pasquale and associates
(2010) found that the total interdependence measure of inter-
nodal coherence had a local maximum at 0.1 Hz, though the
infraslow frequencies were not directly measured. These
findings fit well with previous work showing that infraslow
fluctuations occur in both electrical recordings and psycho-
physical performance as well as the BOLD signal, with the
phase rather than the amplitude of the infraslow activity typ-
ically coupled to performance (Khader et al., 2008; Palva and
Palva, 2012). Interestingly, both infraslow electrical activity
and DMN/TPN correlation have been linked to attention and
performance (Fox et al., 2007; Helps et al., 2010; Kelly et al.,
2008; Monto et al., 2008; Thompson et al., 2012).

Further evidence of a neural basis for the QPPs comes from
localized, invasive measurements of infraslow activity and si-
multaneous rsMRI in the rat. Infraslow activity was tightly
correlated to the BOLD signal from the area near the electrode
tip and the homologous region in the contralateral cortex (Pan
et al., 2013). Time-lagged correlation between the two signals
gave rise to a pattern of propagation that was similar to the
QPPs under two different anesthetics, even though the timing
of the QPPs depends on the anesthetic used (Thompson et al.,
2013b). Other studies in animals also support a direct neural
analogue for low-frequency BOLD oscillations. For example,
Li and associates (2014a) used voltage-sensitive dye of slow
cortical potentials (1–4 Hz) in mice to map functional net-
works similar to those obtained with hemodynamic measures.

Nested Scales of Electrical Activity
and BOLD Correlates

It is hypothesized that high frequencies organize local ac-
tivity, while lower frequencies are involved in long-range co-
ordination (Buzsaki, 2006). Relationships between different
bands of activity create a multiscale, nested structure. Stud-
ies in animals have often found relationships between the
phase of lower frequencies and the amplitude of higher fre-
quencies, a phenomenon known as phase-amplitude coupling
(Tort et al., 2010). It is likely that this sort of hierarchical re-
lationship carries over to the BOLD signal. An excellent study
by Magri and associates (2012) found that while gamma
power is typically related to the amplitude of the BOLD sig-
nal, alpha and beta power carry additional information that
modulates the amplitude and latency of the BOLD response
to changes in gamma power. In monkeys, Wang and associ-
ates (2012) found that oscillations below 20 Hz modulated
local gamma activity. Similar results were seen in humans per-
forming a visual attention task (Scheeringa et al., 2011).

In the context of different levels of coordination mediated
by low frequencies as compared with high frequencies, it is
tempting to speculate that the demonstrated links between
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QPPs and infraslow activity and between sliding window
BOLD correlation and higher-frequency activity may allow
the contributions of the two types of activity to be teased
out of the BOLD signal (Fig. 1). The QPPs are large-scale pat-
terns, relatively periodic, and fairly slow, while the changes in
sliding window correlation can theoretically be shorter and lo-
calized to a few small areas. It has been hypothesized that the
infraslow oscillations are driven by changes in power in the
higher frequencies or themselves modulate higher-frequency
power. However, an analysis of simultaneous microelectrode
recording and rsMRI in the rat found that the two processes
contributed separately to the BOLD signal (Thompson et al.,
2014). Studies in humans are also consistent with the idea
that networks may exhibit meaningful variability overlaid
on a consistent pattern of coordinated activity. For example,
Grigg and Grady (2010) found that the DMN exhibits two
modes, one a stable network and the other a variable pattern
of connection which is more affected by task performance.

Summary

A substantial body of evidence indicates that at least some
portion of the network dynamics measured with rsMRI re-
flects time-varying coordination of neural activity. In partic-
ular, sliding window correlation methods appear to be
sensitive to large-scale changes in brain state due to fluctua-
tions in levels of alertness or drowsiness. The variations in
connectivity between areas are superimposed on coordinated
patterns of activation and deactivation that animal studies
have linked to infraslow electrical activity.

The precise mechanisms that underlie the changes in con-
nectivity remain unknown. The data are consistent with the
idea that multiple neural processes on different time scales
contribute to the network dynamics observed with rsMRI.
An exciting prospect is that these processes may be separa-
ble, enhancing the BOLD signal sensitivity to particular neu-
ral events. One possible approach would be to first obtain the
QPP template and use the time course showing template
power to regress out the QPPs. Sliding window correlation
could be performed on the signal after this regression. The
overall result would be a template that maps patterns predo-
minated by infraslow activity; a time course of the strength
of those patterns; and a correlation time course which should
reflect primarily changes in higher frequency activity. If the
QPPs truly reflect a pattern of infraslow modulation, they
may prove a fruitful ground for new studies on the diagnosis
of attention disorders or in the quest to monitor and improve
attentional performance in normal subjects. We speculate
that the more transient changes which are often observed
with sliding window techniques, on the other hand, may
prove more sensitive to changes related to cognitive alter-
ations. Substantial further work will be needed to explore
these possibilities.

Future dynamic rsMRI studies stand to benefit from prog-
ress on multiple fronts. On the hardware side, engineering
advances are providing increased SNR, better temporal res-
olution, and larger numbers of samples per unit time. New
analytical tools incorporating wavelet decomposition may
provide better sensitivity to state changes and improved seg-
mentation that reduces the temporal blurring which sliding

FIG. 1. The spectrum of electrical activity in the brain ranges from the very low frequencies of infraslow waves to multiunit
spiking activity (MUA) measured in hundreds of hertz. Simultaneous imaging and recording experiments in humans and an-
imals have shown that variations in blood-oxygenation-level-dependent (BOLD)-based functional connectivity over time are
related to underlying changes in neural activity in multiple frequency bands. As summarized in this review, at least two types
of dynamic activity in the brain contribute to the changes in network connectivity. Quasi-periodic patterns of BOLD fluctu-
ations are a large-scale phenomenon linked to infraslow electrical signals, while transient, irregular variations in correlation
between sites appear to be more closely tied to electrical activity in higher frequency bands. Studies suggest that subjects’
varying levels of wakefulness over the course of a scan also have widespread effects on network connectivity. These pro-
cesses may exist independently or interact with each other. Spontaneous fluctuations of the BOLD signal clearly contain
a wealth of information about dynamic processes in the brain, and the application of appropriate analysis techniques
holds the potential to enhance sensitivity to particular aspects of the brain’s ongoing activity.
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windows create. Approaches based on graph theory have po-
tential to summarize relevant parameters of the large amounts
of data resulting from dynamic analysis. Along with these
advances, future experiments that further elucidate the link be-
tween changes in connectivity and neural activity or relevant
behavioral outputs will place dynamic rsMRI on a firm footing
as a tool for basic and clinical science.
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