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Abstract

This study employed functional magnetic resonance imaging (fMRI)-based dynamic causal modeling (DCM) to
study the effective (directional) neuronal connectivity underlying inhibitory behavioral control. fMRI data were
acquired from 15 healthy subjects while they performed a Go/NoGo task with two levels of NoGo difficulty
(Easy and Hard NoGo conditions) in distinguishing spatial patterns of lines. Based on the previous inhibitory
control literature and the present fMRI activation results, 10 brain regions were postulated as nodes in the effec-
tive connectivity model. Due to the large number of potential interconnections among these nodes, the number of
models for final analysis was reduced to a manageable level for the whole group by conducting DCM Network
Discovery, which is a recently developed option within the Statistical Parametric Mapping software package.
Given the optimum network model, the DCM Network Discovery analysis found that the locations of the driving
input into the model from all the experimental stimuli in the Go/NoGo task were the amygdala and the hippo-
campus. The strengths of several cortico-subcortical connections were modulated (influenced) by the two NoGo
conditions. Specifically, connectivity from the middle frontal gyrus (MFG) to hippocampus was enhanced by the
Easy condition and further enhanced by the Hard NoGo condition, possibly suggesting that compared with the
Easy NoGo condition, stronger control from MFG was needed for the hippocampus to discriminate/learn the spa-
tial pattern in order to respond correctly (inhibit), during the Hard NoGo condition.
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Introduction

One of the main behavioral deficits associated with the
clinical construct of impulsivity (Moeller et al., 2001) is

impaired inhibitory behavioral control (Enticott et al., 2006;
Logan et al., 1997). Meta-analyses (e.g., Buchsbaum et al.,
2005; Simmonds et al., 2008; Swick et al., 2011) of neuro-
imaging studies to investigate inhibitory control revealed
that frontal, subcortical, insula (INS), and parietal regions
are active during Go/NoGo tasks. Within the prefrontal cortex,
it has been hypothesized that the dorsolateral prefrontal cor-
tex, pre-supplementary motor area, and ventrolateral prefron-
tal cortex are key structures subserving NoGo or the inhibitory
control component during Go/NoGo tasks (Chikazoe, 2010).

One theory of inhibitory behavioral control hypothesizes
that successful inhibition is dependent on top-down control
by a prefrontal, reflective system over a subcortical, impul-
sive system (a largely amygdala [AMG]-striatum dependent
system) (Bechara, 2005; Heatherton and Wagner, 2011; Noël
et al., 2013). In humans, traditional regional activation stud-
ies have been unable to answer questions about whether a
particular neuronal region (‘‘R1’’) directionally influences
another region (‘‘R2’’). Although a correlation between ac-
tivity in R1 and R2 could be demonstrated, until recently it
has been difficult to clarify the direction of the association:
whether R1 influences R2, or R2 influences R1, or both. In
this study, we addressed this limitation by employing dy-
namic causal modeling (DCM) (Friston et al., 2003; Li
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et al., 2011) to study the effective (directional) neuronal con-
nectivity underlying inhibitory behavioral control. DCM
is particularly appropriate for analyzing whether the con-
nectivity between regions is modulated (i.e., enhanced or
reduced transmission between nodes) by experimental con-
ditions (Friston, 2011). The DCM analysis in this study
was conducted based on functional magnetic resonance im-
aging (fMRI) data acquired from 15 normal healthy subjects
while they performed a Go/NoGo task with two levels of dif-
ficulty (Easy NoGo and Hard NoGo respectively) in the
NoGo conditions (Lane et al., 2007). We hypothesized that
the NoGo conditions modulate the effective connectivity
from prefrontal regions to sub-cortical regions, consistent
with the hypothesis of top-down inhibitory control. We
used cortical and sub-cortical regions co-activated by the
Go/NoGo task as the nodes of DCM. Specifically, we hy-
pothesized that the prefrontal-subcortical effective connec-
tivity was gradually enhanced from Go trials, to Easy
NoGo, and Hard NoGo trials. To test this, we inverted a
model with full parameters and pruned any surplus parame-
ters using post-hoc optimization (Friston and Penny, 2011).
We then performed post-hoc statistical tests on the parame-
ters of the reduced model to confirm or reject the hypothesis
that it was the top-down rather than the bottom-up connec-
tions which were more fundamentally modulated by NoGo
conditions during the Go/NoGo task.

Methods

Subjects

The study was approved by the local Committee for the
Protection of Human Subjects and was performed in accor-
dance with the Code of Ethics of the World Medical Associ-
ation (Declaration of Helsinki). Normal healthy subjects
were recruited through advertisements. Informed consent
was obtained from all subjects. As a part of another study
to investigate pharmacological influences of medication ver-
sus placebo on brain connectivity to be published at a later
date, all fMRI scans in this study were acquired at 90 min
after each subject was orally administered a placebo capsule
containing cornstarch.

Subject inclusion criteria were as follows: (1) between
18 and 55 years old; (2) right handed; (3) no history of
any Diagnostic and Statistical Manual-IV (American Psy-
chiatric Association, 2000) substance use or psychiatric
disorder; and (4) no metal fragments or other bodily
metal or significant claustrophobia. Exclusion criteria
were (1) any neurological, psychiatric, or medical disor-
ders or medication therapy that may affect the brain; (2)
claustrophobia during MRI simulator sessions; (3) posi-
tive urine drug screen or positive breath alcohol screen;
(4) positive pregnancy test; and (5) any definite or sus-
pected clinically significant abnormalities of the brain on
MRI scans as read by a board-certified radiologist (Co-
Investigator L.A.K.).

Among the 17 subjects who complete the experiment, 15
satisfied the inclusion criteria and were included for final
analysis. Among them (all right handed), there were eight
women and seven men. The ages were 31.8 – 8.6 years
(mean – standard deviation), ranging from 19.8 to 43.6
years, and the education durations were 13.9 – 2.2 years,
ranging from 11.0 to 17.0 years.

Go/NoGo response inhibition task

A rapid-presentation event-related Go/NoGo task (Lane
et al., 2007) was used for fMRI of response inhibition. For
each subject, there were two Go/NoGo fMRI runs. During
each fMRI run, 208 visual stimuli (consisting of Go, Easy
NoGo, or Hard NoGo, please see below for details) were se-
quentially presented in random order. Each stimulus was dis-
played for 500 msec, and neighboring stimuli in time were
separated by a blank screen lasting 1900, 2100, or 2300
msec (jittered randomly). Each stimulus consisted of line
segments enclosed within two boxes that were presented si-
multaneously side by side on the same screen (Fig. 1). The
subjects were instructed to discriminate the direction of the
lines by pressing a button using their right index finger
when both boxes showed parallel diagonal lines in the
same direction in both boxes (Go trial). The subjects were
instructed not to press the button when both boxes showed
horizontal lines (‘‘Easy’’ NoGo trial), or when one box con-
tained diagonal lines that were in the opposite direction of
the diagonal lines in the other box (‘‘Hard’’ NoGo trial).
The ‘‘Easy’’ and ‘‘Hard’’ NoGo conditions were defined
based on a previous behavioral laboratory study with a dif-
ferent group of subjects, in which behavioral performance
was found to be significantly poorer during Hard NoGo trials
than during Easy NoGo trials (Lane et al., 2007). For Go tri-
als, a correct response was defined as a key-press completed
greater than 100 msec and less than 600 msec after the stim-
ulus. For NoGo trials, an incorrect response was defined as a
key-press completed within 600 msec after the stimulus.
Each fMRI run duration was 10 min 40 sec, and included
156 Go trials (75%), 26 Easy NoGo trials (12.5%), and 26
Hard NoGo trials (12.5%). There were no ‘‘null’’ (i.e., rest-
ing) trials in this event-related paradigm. Each subject earned
$0.04 for a correct Go response or $0.12 for a correct NoGo
response, lost $0.02 for an incorrect Go response or $0.06 for

FIG. 1. Examples of the stimuli used in the Go/NoGo re-
sponse inhibition task. (A) Go stimulus; (B) Easy NoGo
stimulus; and (C) Hard NoGo stimulus.
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an incorrect NoGo response. These monetary performance con-
tingencies were balanced using the b opt criterion (Gescheider,
1985), which maximizes earnings for overall performance
(high discriminability and low response bias), while discour-
aging highly variable performance resulting from unequal at-
tention toward a single trial type or response strategy. While
the fMRI protocol precluded presentation of trial-by-trial
feedback about performance, subjects were instructed in sim-
ple terms about the contingencies for performance and were
informed of their earnings after each test session. In addition,
all subjects completed a practice Go/NoGo test during a mock
fMRI session in order to stabilize performance and provide
familiarity with the task before actual MRI scanning.

fMRI data acquisition

MRI data were acquired on a Philips 3.0 T Intera system
with an eight-channel receive head coil (Philips Medical Sys-
tems, Best, Netherlands). Single-shot spin-echo echoplanar
imaging (EPI) was used for acquiring fMRI data. The spin-
echo EPI sequence eliminates signal losses caused by
through-slice dephasing in medial orbitofrontal cortex (Kruger
et al., 2001) and is sensitive (Moeller et al., 2010; Norris et al.,
2002) to blood oxygen level-dependent (BOLD) signal in
fMRI. The fMRI acquisition parameters were SENSE acceler-
ation factor 2.0, repetition time 2500 msec, echo time 75 msec,
flip angle 90�, field of view 240 · 240 mm, in-plane resolution
3.75 · 3.75 mm, 25 axial slices, slice thickness 3.75 mm, inter-
slice gap 1.25 mm, 256 repetitions per run after 10 dummy ac-
quisitions, and total duration per run 10 min 40 sec. Each
subject had two fMRI runs. A T1-weighted three-dimensional
Spoiled Gradient Recalled anatomical scan (in-plane resolu-
tion 0.94 · 0.94 mm, slice thickness 1 mm) was acquired for
co-registration with the fMRI images. A Fluid Attenuated
Inversion Recoveryscan and T2-weighted spin-echo scan
were acquired that were read by a board-certified radiologist
(co-investigator L.A.K.) to rule out incidental brain abnormal-
ities. Although we acquired two fMRI runs for each subject,
some subjects only had one usable fMRI run. Thus, we decided
to use only one fMRI run for all the subjects in order to avoid
potential bias effects.

fMRI preprocessing

During an fMRI run, individual scans in which the MRI sig-
nal exceeded plus or minus four standard deviations from the
mean for the run were considered outliers and were replaced
by the mean of the two nearest neighbors using the Analysis
of Functional NeuroImages (AFNI) (Cox, 1996) software
command ‘‘3dDespike’’ (http://afni.nimh.nih.gov/afni/). All
subsequent preprocessing used Statistical Parametric Mapping
8 (SPM8) software (http://fil.ion.ucl.ac.uk/spm/) implemented
in Matlab R2007b (Mathworks, Inc., Sherborn MA). After
slice-timing correction, the fMRI series was realigned to the
first image to correct for head motion. Runs with head motion
> 1 voxel (3.75 mm translation on any axis) or rotation > 3.75�
were removed from the analysis. For each subject, the first run
without artifacts and without excessive motion was included
in the analysis. The anatomical image was coregistered to the
fMRI images and spatially transformed to Montreal Neuro-
logical Institute (MNI) standard atlas coordinates using the
SPM8 Normalize module with the SPM8 T1 MNI template
image. The transformation parameters were applied to the

fMRI images, which were resliced to 2 mm isotropic resolu-
tion and spatially smoothed with a Gaussian filter of 8 mm
isotropic full width at half maximum.

SPM univariate analysis

The univariate statistical analyses of the fMRI data was
conducted using SPM8. After specifying the design matrix,
the parameters for the effects of different conditions were es-
timated at the first level for each subject as an event related
design according to the general linear model at each voxel,
using stick functions modeling the onsets of correct NoGo
trials convolved with the SPM8 canonical hemodynamic re-
sponse function as a basis function. Standard SPM8 basis
functions for temporal and dispersion derivatives were also
included in the model. Incorrect trials were entered as a sep-
arate covariate of no interest so that the remaining implicit
baseline consisted only of the correct Go trials. A 128 sec
high-pass temporal filter was applied. One contrast image
was constructed for each subject for each of the following
contrasts of parameter estimates: (1) correct Easy NoGo rel-
ative to correct Go (‘‘E’’ activation); (2) correct Hard NoGo
relative to correct Go (‘‘H’’ activation); and (3) correct Hard
NoGo relative to correct Easy NoGo (‘‘H–E’’ activation). In
the remaining part of this article, for brevity the word ‘‘cor-
rect’’ will be omitted, but the NoGo and Go conditions will
be understood to consist only of correct responses.

A separate SPM8 second-level (Random Effects) statisti-
cal analysis was conducted voxel-wise throughout the
whole brain for each of the contrast images listed in the ear-
lier paragraph. For each contrast, the SPM8 second-level
one-sample t-test with the default settings was used to deter-
mine BOLD activations significantly different from zero. For
all SPM second-level analyses, statistical significance was
defined as false discovery rate (FDR)-corrected cluster prob-
ability ( p) < 0.05, after being further corrected to account for
two tails; and trend toward significance was defined as FDR-
corrected cluster p less than 0.1 but greater or equal to 0.05,
after being further corrected to account for two tails. We cor-
rected the SPM t-test results from one tail FDR to two-tails
FDR (used a corrected FDR criterion p value of 0.025 instead
of 0.050), because SPM only provides one-tail FDR cor-
rected results, but we examined contrasts in both directions,
and, thus, we individually examined both of these one-
tail FDR-corrected contrasts. The cluster-defining threshold
was t = 2.4. Approximate anatomical labels for regions of ac-
tivation were determined using the Anatomical Automatic
Labeling toolbox (Tzourio-Mazoyer et al., 2002).

In addition to the main SPM univariate analysis, we conducted
an alternate SPM first-level general linear model (GLM) analysis
(see Supplementary Materials; Supplementary Data are avail-
able online at www.liebertpub.com/brain) for each subject in
which one regressor in the GLM was the combined Easy NoGo
and Hard NoGo conditions (‘‘NoGo’’ condition), and the other
regressor in the GLM was NoGo task difficulty (‘‘Difficulty’’).
For each subject, a contrast image of the parameter estimate
resulting from this analysis for combined Easy and Hard NoGo
relative to Go was constructed, which was then entered into a
second-level SPM one-sample t-test for group analysis. Sim-
ilarly, a contrast image was constructed consisting of the pa-
rameter estimate for Difficulty, which was also then entered
into a second-level SPM8 one-sample t-test for group analysis.
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Stochastic DCM

DCM (Friston et al., 2003), as implemented in DCM12
(SPM12b revision 5763), was used for effective connectivity
analysis. DCM has been described elsewhere (Friston et al.,
2003; Ma et al., 2012, 2014). DCM is a biophysical model of
the underlying neuronal connectivity and of how the neuro-
nal connectivity generates the observed BOLD signal (Fris-
ton et al., 2003). In brief, the mathematical model of the
underlying neuronal connectivity among an a priori selected
set of brain regions (nodes) is a system of bilinear differential
state equations with coefficients specified by three matrices
(A matrix, B matrix, and C matrix) (Friston et al., 2003).
In this model, experimental conditions (e.g., Go, Easy
NoGo, or Hard NoGo) can serve as inputs to the model as ei-
ther driving inputs or modulatory inputs. The DCM analysis
determines which particular nodes in the model exhibit di-
rectional (‘‘effective’’) connectivity with other specific
nodes in the model, which nodes receive driving inputs
from experimental conditions in the model, and which spe-
cific connections between nodes in the model are modulated
by experimental conditions. A node in the model that re-
ceives driving inputs, as quantified by the C matrix parame-
ters, is the brain region among the nodes in the model which
first experiences a change in neuronal activity from experi-
mental conditions. The node that receives the driving input
then influences (‘‘drives’’) the connectivity to other nodes
in the model. The endogenous (or fixed) connectivity in
DCM is quantified by the A matrix parameters, which mea-
sure the effective connectivity strengths (in units of Hz) be-
tween nodes, regardless of the moment-to-moment switching
on and off of inputs. Experimental conditions can modulate
the endogenous connectivity between nodes, and these mod-
ulation effects are quantified by the B matrix parameters as
increased or decreased connectivity strength relative to the
endogenous connectivity at different times in the experiment
that are related to the timing of changes in the particular ex-
perimental conditions. Nonlinear connectivity effects that
are gated by other regions in the system can be modeled
by an optional additional matrix (D matrix) (Stephan et al.,
2008). In this study, the nonlinear option was not applied,
and, thus, the term ‘‘modulation effects’’ in this article de-
notes bilinear modulation effects, where ‘‘bilinear’’ refers
to the mathematical form of the equations determining the
B matrix parameters. In addition, ‘‘center input’’ (mean cen-
ter of the inputs) option was not chosen. Furthermore, the
stochastic option for DCM was used, in which random fluc-
tuations were modeled as inputs to the system in addition to
the driving inputs due to experimental conditions (Daunizeau
et al., 2009, 2012, 2013; Li et al., 2011). The stochastic fluc-
tuations in physiological noise may contribute to the system
connectivity input (Li et al., 2011) due to stochastic fluctua-
tions in neuronal and vascular responses (Kruger et al., 2001;
Li et al., 2011). Li and colleagues (2011) have demonstrated
that stochastic DCM can improve parameter estimation over
deterministic DCM. In addition, Daunizeau and colleagues
(2012) have validated stochastic DCM and shown that sto-
chastic DCM is superior to deterministic DCM in both
model structure inference and model parameter inference.

Regions of interest. Following the procedures in Ma and
associates (2012, 2014), the anatomical regions (nodes) for

the DCM analysis in this study were chosen based on meet-
ing all three of the following criteria: (1) the region should
show significant (or trend significant, i.e., FDR-corrected
cluster p less than 0.1 but greater or equal to 0.05) activation
in the present univariate SPM second-level analysis (see
Supplementary Materials); (2) the region should also show
activation in previous fMRI studies using Go/NoGo tasks
(e.g., Buchsbaum et al., 2005; Simmonds et al., 2008;
Swick et al., 2011); and (3) the region should also be
regarded in the previous literature to be involved in inhibi-
tory control (e.g., Bechara, 2005; Chikazoe, 2010; Heather-
ton and Wagner, 2011; Volkow et al., 2011). Based on
simultaneously meeting all three of the earlier criteria, the
following 10 nodes were used for the DCM analyses in
this study: (1) left (L) middle frontal gyrus (MFG); (2)
right (R) MFG; (3) L pre-supplemental motor area (pre-
SMA); (4) R pre-SMA; (5) L posterior parietal cortex
(PPC); (6) R PPC; (7) R putamen (PUT); (8) R AMG; (9)
L hippocampus (HIP); and (10) R INS. In addition, following
Aron and colleagues (2007), pre-SMA was segmented from
SMA using y > 0 mm (MNI space) as the threshold, and the
plane at x = 0 mm (MNI space) was used as the border be-
tween L SMA and R SMA.

Volumes of interest and time series extraction. We fol-
lowed the method that was described in Ma and associates
(2012, 2014) of constructing the volumes of interest
(VOIs). The atlas-derived binary masks corresponding to
the 10 nodes mentioned earlier were obtained from the
AAL atlas (Tzourio-Mazoyer et al., 2002) as implemented
in the Wake Forest University PickAtlas SPM toolbox
(Maldjian et al., 2003, 2004). Each VOI was obtained by
the set-theoretic intersection of the atlas-based binary
masks and the significant (or trend significant) activation
clusters that were determined by the second-level random ef-
fects of univariate SPM analysis. The standard SPM proce-
dure in which NoGo and Go conditions were explicitly
modeled was conducted by using the principal eigenvariate
of each VOI as a summary of the functional activity time se-
ries in that VOI (Ma et al. 2014) and each principal eigen-
variate time series was adjusted for the F-contrast of
effects of interest (Stephan et al., 2010). The same VOIs
were used for all subjects. The number of voxels, volume,
and center of mass of the 10 VOIs used as nodes for the
DCM analysis are listed in Table 1. Due to the intersection
of the atlas region with the activation cluster from the
SPM analysis, the MFG VOI was not the whole gyrus, but
a part of it. Approximately 40% of the volume of the MFG
VOI in this study was within the broad range of dorsolat-
eral prefrontal cortex, as defined in the human postmor-
tem histological study by Rajkowska and Goldman-Rakic
(1995). The Neurosynth automated meta-analysis at http://
neurosynth.org/features/dlpfc/ (Yarkoni et al., 2011) showed
that the posterior part of the MFG VOI in this study extended
to the pre-motor cortex (Brodmann Area 6), but that most of
the VOI was located in the dorsolateral prefrontal cortex as
defined by the forward inference map, corresponding to the
regions most consistently activated in studies that use the
term ‘‘dorsolateral prefrontal cortex’’ (Yarkoni et al., 2011).
The online Brodmann areas (Lacadie et al., 2008) in the MNI
to Talairach atlas (http://noodle.med.yale.edu/*papad/
mni2tal/) of the Yale BioImage Suite (Papademetris et al.)
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showed that the MFG VOI in this study was located mostly
in Brodmann Area 8 and a small part in rostral Brodmann
Area 6. According to Petrides and Pandya (1999), Brodmann
Area 8 and rostral Brodmann Area 6 are dorsolateral frontal
areas underlying the maintenance of specifically spatial in-
formation.

DCM network discovery. DCM structure inference, as
applied to fMRI activation experiments such as this study,
searches for a model of the underlying neuronal connectivity
among an a priori selected set of brain regions, in which the
combined presence of some effective-connectivity intercon-
nections (and/or modulation/driving input effects) and the
absence of some other interconnections (and/or modula-
tion/driving input effects) best explain the observed fMRI
data. In this study, DCM structure inference was conducted
using DCM Network Discovery (DND) (Friston et al.,
2011). DND works in a data-driven fashion by identifying
the sparse structure (i.e., absence of endogenous interconnec-
tions, driving input, or modulation effects) that best explains
the observed fMRI data (Friston et al., 2011). The DND tech-
nique is useful for DCM studies with large numbers of nodes,
such as this study, because with the increase in the number of
nodes, the total number of free parameters and the number of
models in the model space to be estimated for each subject
increases quadratically (Seghier and Friston, 2013). When
the number of models in the model space increases, it be-
comes increasingly impractical to conduct Bayesian model
selection analysis, which selects the best model among a
group of inverted (estimated) models (model space), because
inverting all the models in the model space becomes an un-
sustainable computational load and storage load. DND over-
comes this limitation (Friston et al., 2011), and in this study,
DND efficiently selected for the whole group the model with
optimal structure.

Two key routines are available in DCM12b for DND anal-
ysis: spm_dcm_post_hoc and spm_dcm_search (Friston and
Penny, 2011). The former routine searches over all possible
reduced models of a full model (in the sense of having the

maximum number of free parameters) and uses post hoc
model selection to select the optimal one (Friston and
Penny, 2011). When a group of models are optimized to-
gether (e.g., group studies), these models are checked to en-
sure the same free parameters have been specified and the
log evidences are pooled in a fixed-effects fashion (Friston
and Penny, 2011). The latter routine operates on different
a priori specified models to identify the best model (Friston
and Penny, 2011). It estimates the ‘‘union’’ model (in the
sense of having free parameters that are the union of all
free parameters in each model specified) (Friston and
Penny, 2011). The routine then uses post hoc selection to
evaluate the model evidence of each model specified (Fris-
ton and Penny, 2011).

In this study, DND was conducted using the spm_
dcm_post_hoc routine in the SPM12b software. Before
the DND analysis was conducted, an initial single ‘‘full’’
model (Friston et al., 2011) was specified for each subject.
The term ‘‘full’’ is used here in the sense that (1) each of
the three experimental conditions (Go, Easy NoGo, and
Hard NoGo) can be a driving input and a modulatory
input; (2) each of the putative driving inputs entered all of
the 10 nodes; (3) each node was putatively interconnected
to all other nodes, and (4) each of the modulatory inputs pu-
tatively modulated all of the 90 interconnections between
nodes. Since the incorrect responses were very few and spo-
radic, only stimuli corresponding to correct responses were
included in the DCM analysis. The full models were inverted
for all subjects. Group level post-hoc optimization was con-
ducted by selecting all inverted ‘‘full’’ models (one per sub-
ject). The optimal sparse model was found at the group level,
using Bayesian parameter averaging, which is integrated in
the spm_dcm_post_hoc routine.

Results

Statistics on behavoral measures

The discrimination accuracy measure d¢ (Forman et al.,
2004; Gescheider, 1985; Lane et al., 2007) was used to mea-
sure behavioral performance on the Go/NoGo task in the
scanner. For the 15 included subjects, the mean discrimi-
nation accuracy d¢ during the Easy NoGo condition was
3.5999 – 0.4990 (corresponding to 98.72% – 2.37% correct
response), and the mean d¢ during the Hard NoGo condition
was 2.4647 – 0.5940 (corresponding to 81.54% – 14.98%
correct response). A two-sample Student’s t-test analysis
revealed that the d¢ during the Easy NoGo condition was sig-
nificantly greater than the d¢ during the Hard NoGo condition
(t = 5.4751; df = 28; p = 0.00005). The means of the number
of correct/incorrect responses are: 141.2 – 11.7 (correct
Go), 14.8 – 11.7 (incorrect Go), 25.7 – 0.6 (correct Easy
NoGo), 0.3 – 0.6 (incorrect Easy NoGo), 21.2 – 3.9 (correct
Hard NoGo), and 4.8 – 3.9 (incorrect Hard NoGo).

SPM univariate analysis

SPM8 second-level random-effects one-sample t-test
analysis revealed several statistically significant clusters for
Easy, Hard, and Hard-Easy activations, which spanned to
frontal, subcortical, and other brain regions. These regions in-
cluded L MFG, R MFG, L pre-SMA, R pre-SMA, L PPC, R
PPC, R PUT, R AMG, L HIP, and R INS, which were used as

Table 1. Number of Voxels, Volume, and Center

of Mass of Each of the 10 Volumes of Interest

Used as Nodes in the Dynamic Causal

Modeling Analysis

VOI
Number
of voxels

Volume
(mL)

Center of mass
MNI coordinates

[x y z] (mm)

L MFG 48 0.384 �35, 8, 53
R MFG 190 1.520 38, 2, 58
L pre-SMA 59 0.472 �12, 10, 64
R pre-SMA 176 1.408 4, 7, 64
L PPC 74 0.592 �42, �34, 48
R PPC 242 1.936 37, �56, 52
R putamen 29 0.232 30, �1, �9
R amygdala 52 0.416 29, �2, �15
L hippocampus 31 0.248 �15, �7, �20
R insula 31 0.248 34, 16, �13

VOI, volumes of interest; MNI, Montreal Neurological Institute;
MFG, middle frontal gyrus; SMA, supplemental motor area; PPC,
posterior parietal cortex.
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the regions of interest or nodes of the DCM. Please see the
Supplementary Materials for the details of the SPM univari-
ate analysis results.

DCM network discovery analysis

Starting from an initial full model, post-hoc optimization
revealed an optimum sparse model structure at the group
level. The DCM parameters of this optimum sparse model
can be divided into two categories: parameter value = 0 (corre-
sponding to posterior probability = 0) and parameter value =
nonzero (corresponding to posterior probability > 0.999). In
this study, posterior probability > 0.999 was used as the thresh-
old to determine whether a DCM parameter is significantly dif-
ferent from zero.

The optimum sparse structure regarding driving inputs into
the model is demonstrated in Supplementary Table S6, which
shows the posterior mean strength for each driving input and
each location. As evidenced by Supplementary Table S6, R
AMG and L HIP were the driving input locations for all the
three driving inputs into the model (Go, Easy NoGo, and
Hard NoGo). In addition, R pre-SMA was the driving input lo-
cation for Easy NoGo and Hard NoGo. Furthermore, L pre-
SMA was the driving input location for Easy NoGo.

The group-level sparse structure regarding the endogenous
connections is demonstrated in Supplementary Table S7. As
shown in Supplementary Table S7, 12 connections (L MFG
to R PUT, R MFG to L PPC, R MFG to R PUT, L pre-
SMA to R AMG, R pre-SMA to R PUT, R pre-SMA to R
INS, R PPC to R INS, R PUT to R MFG, R AMG to L pre-
SMA, R AMG to R PPC, L HIP to L PPC, and R INS to L
MFG) were switched off (connection strength = 0, and poste-
rior probability = 0) by the post-hoc optimization among the
90 connections.

The group-level optimum sparse structure regarding modu-
lation effects is shown in Supplementary Table S8. Due to the
large number of connections, only those that had a posterior
probability of modulation effect > 0 are shown in Supplemen-

tary Table S8. As shown in Supplementary Table S8, seven
connections were modulated by the NoGo conditions but
not by the Go condition. Connections that were modulated
by NoGo conditions (but not Go conditions) are shown in Fig-
ure 2. Note that Figure 2 only includes brain regions related to
these connections. The strengths of the endogenous connec-
tions and modulation effects are also shown in Figure 2. It
should be noted that connectivity from the R MFG to L HIP
was relatively strongly positively modulated during both
Easy and Hard NoGo conditions, and connectivity from L
pre-SMA to L HIP was relatively strongly negatively modu-
lated during both Easy and Hard NoGo conditions. Two con-
nections (R MFG to R PUT, and R pre-SMA to R AMG) were
only modulated by the Easy NoGo condition, and one connec-
tion (R PUT to R AMG) was only modulated by the Hard
NoGo condition. Connectivity from the R MFG to R PUT
was negatively modulated during the Easy NoGo condition,
and connectivity from R PUT to R AMG was negatively mod-
ulated during the Hard NoGo condition (and not modulated by
the other experimental conditions). Connectivity from R pre-
SMA to R AMG was negatively modulated during Easy NoGo
(and not modulated by the other experimental conditions). On
the other hand, connectivity from L pre-SMA to R AMG was
positively modulated during Easy NoGo (but negatively mod-
ulated during Hard Nogo and Go conditions).

Four connections (L pre-SMA to R AMG, L PPC to L HIP,
R PPC to L pre-SMA, and L pre-SMA to R PUT) were mod-
ulated by Go and at least one of the NoGo conditions. Four-
teen connections (L MFG to R AMG, R MFG to R PPC, L
pre-SMA to R pre-SMA, L pre-SMA to L PPC, L pre-
SMA to R INS, R pre-SMA to L PPC, R pre-SMA to R
PUT, R pre-SMA to L HIP, R pre-SMA to R INS, R PPC
to R pre-SMA, R PPC to R PUT, R PPC to R INS, R PUT
to L hippocamups, and R INS to R AMG) were only modu-
lated by the Go condition.

We conducted a post-hoc analysis using Bayesian contrasts
of connections to test whether one condition had a signifi-
cantly greater modulation effect than the other. The results

FIG. 2. Schematic diagram repre-
senting effective connectivity only
modulated by the NoGo conditions.
The endogenous connections are
denoted by lines with arrows. The
modulation effects are depicted by
lines ending with a black dot. The
legend in the bottom-left corner pro-
vides rough information about the re-
lationship between line thickness (or
line type) and effective connectivity
strength. The mean strengths (in units
of Hz) of the modulation effects
exerted by the Easy (E) or Hard (H)
NoGo condition are shown separately.
For clarity, not all nodes and endoge-
nous connections are shown in this
figure. Only the connections that were
modulated by NoGo conditions (but
not Go conditions) and only the brain
regions related to these connections
are included. L, left. R, right.
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of this post-hoc analysis are shown in Table 2. Only the mod-
ulation effects on the connection from R MFG to L HIP dem-
onstrated the pattern of Hard NoGo > Easy NoGo > Go.

Since the connection from R MFG to L HIP is the only
connection that showed a pattern of modulation effects of
Hard NoGo > Easy NoGo > Go, we conducted a post-hoc ex-
ploratory correlation analysis to test whether this MFG-HIP
effective connectivity was associated with behavioral perfor-
mance. Spearman nonparametric correlation analysis
showed that the modulation effect on this connection was
not significantly correlated with the d¢ performance measure
for the Hard NoGo condition (Rho =� 0.3821, uncorrected
p = 0.1607). Another correlation analysis showed that the
correlation between the MFG-HIP effective connectivity
(endogenous connectivity + modulation effect) and d¢ was a
trend toward significance for the Hard NoGo condition
(Rho =�0.5393, corrected p = 0.0814). Correlation analysis
was not conducted for the Easy NoGo condition because of
the lack of individual differences in behavioral performance
during Easy NoGo condition (d¢ = 3.5999 – 0.4990, corre-
sponding to 98.72% – 2.37% correct responses).

We also conducted several alternative DCM analyses
using different procedures; the results of these alternative an-
alyses are reported in the Supplementary Materials.

Discussion

In order to investigate the neural network underpinning in-
hibitory control, we examined the effective connectivity in 15
normal healthy subjects during performance in a Go/NoGo
task with two levels of difficulty. Stochastic DCM was used
to investigate which of the neural interconnections underlying
inhibitory control were modulated by the NoGo conditions.
We conducted network discovery analysis based on reducing
an initial full model in which each of the three contextual con-
ditions (Easy NoGo, Hard NoGo, and Go) separately served as
driving inputs to all nodes, and also modulated all the connec-
tions. To the best of our knowledge, this is the first study that
used the DCM Network Discovery technique to mechanisti-
cally depict the inhibitory control system.

The DCM Network Discovery analysis revealed that at the
group level, both Go and NoGo conditions were driving inputs
into the model at the R AMG and L HIP, consistent with a pre-
vious DCM study showing that different driving inputs can
enter DCM network model through multiple nodes (Stephan
et al., 2007). The network discovery analysis revealed that
the Easy NoGo condition also was a driving input to the

model at LR pre-SMA, and that the Hard NoGo condition
also was a driving input to the model at R pre-SMA. These
results reflect dynamic changes of the information propaga-
tion within the underlying neuronal network during the Go/
NoGo task.

Consistent with our hypothesis, the DCM analysis found a
cortical-subcortical connection (from right MFG to left HIP)
in which both Easy and Hard NoGo conditions showed signif-
icantly greater modulation compared with Go, and in which
the modulation effect for Hard (1.002 Hz) was significantly
greater than the modulation effect for Easy (0.740 Hz). In ad-
dition, the main DCM analysis showed that both Easy and
Hard NoGo conditions showed significantly stronger negative
modulation compared with Go in the cortical-subcortical con-
nection from left pre-SMA to left HIP, and that there was sig-
nificantly greater negative modulation for Hard (�0.659 Hz)
compared with Easy (�0.421 Hz) for this connection. The
DCM analysis showed a similar finding (i.e., greater negative
modulation effect for Hard vs. Easy) for the cortical-subcorti-
cal connection from right posterior parietal cortex to left HIP.
Focusing on the connection on which the modulation effects
showed the pattern of Hard NoGo > Easy NoGo > Go, we
found that the correlation between the strength of the MFG-
HIP effective connectivity and the behavioral performance
d¢ was a trend toward significance during the Hard NoGo con-
dition in this small sample size. Future studies with larger
sample size would be needed to clarify whether the MFG-
HIP effective connectivity is significantly correlated with
the behavioral performance.

An important component of inhibitory control is discrim-
ination of signal, for example, initial signal processing or
encoding (Forman et al., 2004; Green and Swets, 1966). In
this study, since the Go trials are prepotent and the response
should be made rapidly, difficulty in discriminating the sig-
nal increases the difficulty in inhibiting the (prepotent) re-
sponse. In other words, greater signal processing demands
produce more inhibitory errors when there is time pressure
on the response (Forman et al., 2004; Green and Swets,
1966). Consistently, the behavioral performance was signif-
icantly worse during the Hard NoGo condition compared
with Easy NoGo condition; and the modulation effect on
the connection from R MFG to L HIP exerted by the Hard
NoGo condition was significantly higher than that exerted
by the Easy NoGo condition. Previous studies have shown
that the HIP is critical for visual discrimination performance,
especially when spatial processing is needed (Graham et al.,
2006; Lee et al., 2005a, b). A recent study has shown that the

Table 2. The Results of Bayesian Contrasts of Connections on the Modulation Effects

Exerted by Hard NoGo (H), Easy NoGo (E), and Go Condition

Connection H > E E > GO H < E E < GO H > GO H < GO

R MFG/L HIP 0.999 0.999 0 0 0.999 0
L pre-SMA/L HIP 0 0 0.999 0.999 0 0.999
R PPC/L HIP 0.007 0 0.993 0.999 0 0.999
R pre-SMA/R AMG 0.999 0 0 0.999 0 0
R MFG/R PUT 0.999 0 0 0.999 0 0
R PUT/R AMG 0 0 0.999 0 0 0.999
R PPC/R AMG 0 0.999 0.999 0 0 0.999

Only the connections shown in Figure 2 were considered (i.e., connections that were modulated only by the NoGo conditions). All the
numbers are probabilities.

HIP, hippocampus; PUT, putamen; AMG, amygdala.
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HIP supports visual discrimination through learning spatial
pattern (Kim et al., 2011). In addition, it has been theorized
that one of the functions of MFG is stimulus-response asso-
ciative learning (Goldstein and Volkow, 2011). Taken to-
gether, our results may reflect that compared with the Easy
NoGo condition, stronger control from MFG was needed
for the HIP to discriminate/learn the spatial pattern in order
to respond correctly (inhibit), during the Hard NoGo condi-
tion. We can speculate that the difficulty of the Hard NoGo tri-
als may have been frustrating and may have activated
emotional circuits related to anxiety. Previous studies have
shown that greater HIP volume was associated with high
scores on the sensitivity to punishment scale (Levita et al.,
2014) and that hippocampal activation was related to monitor-
ing of threat level during a human approach-avoidance task
that emulated rodent anxiety paradigms (Bach et al., 2014).
Thus, an alternative interpretation of our results would be
that stronger control from MFG to HIP may have been related
to anxiety during Hard NoGo than during Easy NoGo.

The main DCM post-hoc statistical tests on the DCM pa-
rameters (see ‘‘Results’’ section in the main text) revealed
that for each connection in the model, the modulation effects
for the Hard NoGo condition were significantly different than
the modulation effects for the Easy NoGo condition. In addi-
tion, the pattern of the modulation effects exerted by the Easy
or Hard NoGo conditions was complicated, and showed dif-
ferent effects for different neural connections, and most of
these modulation effects were not generally monotonically as-
sociated with NoGo task difficulty. In other words, in some
connections, Hard NoGo showed greater modulation effect
compared with Easy NoGo, but vice versa in other connec-
tions. Thus, these findings may explain why the alternate
DCM analysis (see Supplementary Materials) that used the
combined NoGo condition and/or the interaction of NoGo ·
Difficulty as modulatory inputs did not find reliable group-
level modulation effects. Another potential reason may be
that the regions of interest (ROIs) for DCM analysis did not
include the significantly active brain regions for the combined
NoGo condition (See the Supplementary Materials). These
brain regions did not satisfy the following ROI selection crite-
ria in the ‘‘Methods’’ section: (1) that the region should also
show activation in previous fMRI studies using Go/NoGo
tasks, and (2) that the region should also be regarded in the
previous literature to be involved in inhibitory control.

Consistent with the opinion that stochastic DCM is appro-
priate for assessing the relative contributions of experimental
stimulations (modulation effects) (Kahan and Foltynie, 2013),
we have used stochastic DCM in this study. Unlike determin-
istic DCM in which random fluctuations were not modeled,
stochastic DCM takes into account stochastic (random) fluctu-
ations in the evolution of regional activity (Li et al., 2011).
The stochastic fluctuations in physiological noise may contrib-
ute to the system connectivity input (Li et al., 2011) due to sto-
chastic fluctuations in neuronal and vascular responses
(Kruger et al., 2001; Li et al., 2011). Li and colleagues
(2011) have demonstrated that stochastic DCM can improve
parameter estimation over deterministic DCM. In addition,
Daunizeau and colleagues (2012) have validated stochastic
DCM and shown that stochastic DCM is superior to determin-
istic DCM in both model structure inference and model pa-
rameter inference. Furthermore, Daunizeau and colleagues
(2013) studied conjoint empirical electroencephalography

(EEG) and fMRI data and found that neural fluctuations
which were inferred using stochastic DCM from fMRI data
have an electrophysiological underpinning, providing empirical
evidence supporting the predictive validity of stochastic DCM
for fMRI data. For comparison with stochastic DCM, we used
an alternate deterministic DCM analysis to conduct network dis-
covery on the same data set (see the Supplementary Materials).
Stochastic DCM analysis found significant results on driving in-
puts, whereas the alternate deterministic DCM analysis did not
find any significant results on driving inputs, consistent with pre-
vious studies showing that stochastic DCM is superior over de-
terministic DCM in both model structure inference and model
parameter inference (Duanizeau et al., 2012; Li et al., 2011).

How to optimize DCM experimental design is still an open
question. In order to avoid susceptibility artifacts in the medial
orbitofrontal area, we used spin-echo EPI in this study. Spin-
echo EPI has better signal homogeneity; on the other hand, it
has relatively lower signal amplitude compared with gradient
echo EPI for the BOLD response. Only a few studies have in-
vestigated how to optimize a DCM experimental design (e.g.,
Daunizeau et al., 2011a, b; Goulden et al., 2012), and they
have not ruled out spin-echo EPI as an approach for DCM
analysis. We also used a rapid event-related design. Although
it has been shown that compared with block design, event-
related design is suboptimal for DCM analysis (Daunizeau
et al., 2011b), event-related design is more appropriate for
Go/NoGo studies (Simmonds et al., 2008). Our own data in
this study showed that an fMRI experimental design combin-
ing spin-echo EPI and rapid event-related design can result in
reliable DCM parameters, including modulation effects.

This study has several limitations. (1) It is possible that
other neural interconnections may exist which are important
for inhibitory control but not included in this study, because
the regions to which they connect were not included as nodes
for the present DCM analysis. One reason for the exclusion
of potential nodes for this study was the lack of sufficient ac-
tivation on fMRI, possibly related to the relatively small
sample size (n = 15). Future studies with more subjects will
be helpful in providing greater insights into the neuronal ef-
fective connectivity underlying inhibitory control. (2) In ad-
dition, due to small sample size, it is difficult to evaluate the
sex effect (eight women and nine men) in this study. (3) This
study only included carefully screened healthy subjects, and
it is quite possible that subjects with neurological, psychiat-
ric, or substance use disorders may have different effective
connectivity during response inhibition. (4) As a part of a
larger study, all the subjects in this study received a placebo
capsule, which may have contributed to unknown sources of
variability in both the behavioral and brain activation data.
(5) We have shown that effective connectivity was modu-
lated by the NoGo conditions; however, it is unknown
which brain regions mechanistically caused these modula-
tion effects. This question could be addressed in future stud-
ies using non-linear DCM (Stephan et al., 2008). (6) The
Go/NoGo paradigm has been used as a popular tool for
investigating response inhibition mechanisms. However,
fMRI activations elicited by Go/NoGo tasks are not neces-
sarily directly related to response inhibition (Criaud and
Boulinguez, 2013). In order to avoid the emergence of trivial
strategies (e.g., always responding to all stimuli would auto-
matically lead to 75% correct performance), we motivated
subjects by setting higher reward values for NoGo trials
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than for Go trials (thrice, either in terms of gain or loss). Thus,
the activations found in this study probably reflect the engage-
ment of different cognitive processes, for example, attention,
reward, and/or motivation, in addition to response inhibition.
Thus, our results are difficult to disentangle from simple re-
sponse inhibition. In this study, subjects had no explicit knowl-
edge about the reward contingencies on the task, nor were they
provided feedback about individual-trial earnings, block-level
earnings, or performance accuracy. They were only told that
the contingencies are such that maximal earnings will be
obtained by responding on all Go trials and not responding
on NoGo trials. The lack of detail in the instructions and ab-
sence of real-time feedback negate the possibility that subjects
could discriminate reward density (i.e., which was ‘‘more rein-
forced’’) during the rapid stream of stimuli and responses dur-
ing the fMRI run. (7) The HIP has been used as a VOI based on
group-level activation. The anterior HIP is vulnerable to inter-
subject variation and is near the AMG. In order to clarify
whether the group-derived HIP VOI in MNI space extended
into each individual subject’s AMG in the subject’s native
space, we reverse transformed the group-level hippocampal
mask, which was in standard MNI space, back to each subject’s
native space. The hippocampal mask in native space was then
overlaid on the subject’s structural image in his/her native
space. Among the 15 subjects, 12 of them showed no overlap
between the hippocampal mask and the subject’s AMG in na-
tive space. There was slight overlap between the hippocampal
mask and the subject’s AMG for the remaining three subjects.

In conclusion, the DCM Network Discovery analysis
revealed that given the nodes in our network model, the loca-
tions of the driving input into the model by all the experimental
stimuli were the AMG and the HIP, which then influenced other
nodes in the model. The strengths of several cortico-subcortical
connections were modulated by the two NoGo conditions. Spe-
cifically, connectivity from the MFG to HIP was enhanced by
the Easy condition and further enhanced by the Hard NoGo
condition, possibly suggesting that compared with the Easy
NoGo condition, stronger control from MFG is needed for
HIP to discriminate/learn the spatial pattern in order to respond
correctly (inhibit), during the Hard NoGo condition.
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