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Abstract

Nontask functional magnetic resonance imaging (fMRI) has become one of the most popular noninvasive areas of
brain mapping research for neuroscientists. In nontask fMRI, various sources of ‘‘noise’’ corrupt the measured blood
oxygenation level-dependent signal. Many studies have aimed to attenuate the noise in reconstructed voxel measure-
ments through spatial and temporal processing operations. While these solutions make the data more ‘‘appealing,’’
many commonly used processing operations induce artificial correlations in the acquired data. As such, it becomes
increasingly more difficult to derive the true underlying covariance structure once the data have been processed. As
the goal of nontask fMRI studies is to determine, utilize, and analyze the true covariance structure of acquired data,
such processing can lead to inaccurate and misleading conclusions drawn from the data if they are unaccounted for in
the final connectivity analysis. In this article, we develop a framework that represents the spatiotemporal processing
and reconstruction operations as linear operators, providing a means of precisely quantifying the correlations induced
or modified by such processing rather than by performing lengthy Monte Carlo simulations. A framework of this
kind allows one to appropriately model the statistical properties of the processed data, optimize the data processing
pipeline, characterize excessive processing, and draw more accurate functional connectivity conclusions.

Key words: brain connectivity; correlation matrix; image reconstruction; nontask fMRI; spatiotemporal process-
ing; statistics

Introduction

Spatiotemporal processing is a common practice in
both task and nontask functional magnetic resonance im-

aging (fMRI) studies as a way to ‘‘improve’’ the resulting
images. Although such processing makes the image data
more ‘‘appealing’’ by alleviating it of ‘‘noise,’’ it could un-
knowingly lead to misguided conclusions as it alters the sig-
nal (mean) and noise (variance and correlation) properties of
data. In recent studies, it has been shown that spatial process-
ing operations, such as spatial filtering in both the spatial fre-
quency space (k-space) and image space domains (Nencka
et al., 2009), induce artificial correlations. Moreover, paral-
lel MRI (pMRI) models, such as SENSitivity Encoding
(SENSE) (Pruessmann et al., 1999) and Generalized Autoca-
librating Partially Parallel Acquisition (GRAPPA) (Griswold
et al., 2005), have been shown to induce artificial correla-
tions between previously aliased voxels in the reconstructed
images (Bruce et al., 2011, 2012; Bruce and Rowe 2013,
2014; Karaman et al., 2013). Task and nontask fMRI studies
typically employ both spatial and temporal filtering, together

with additional signal regression operations (Glover et al.,
2000; Hahn and Rowe, 2012). While these spatial and tem-
poral processing operations could induce artificial correla-
tions in the acquired data, traditional task and nontask
fMRI models assume independence between voxels, and
therefore they do not account for the spatial correlation be-
tween voxels or temporal correlation within each voxel’s
time series. As these correlations are of no biological origin,
they can result in increased Type I/Type II errors in both task
and nontask fMRI. Even though the structure of the induced
correlations can be estimated through time-consuming simu-
lations, there is an apparent need for the development of tools
that can precisely quantify the implications of spatial and
temporal processing operations and means of accounting
for these implications in the final analysis. If the effects
that such operations have on the statistical properties of the
acquired data are unaccounted for, neuroscientists could
draw inferences from the processed data that are inconsistent
with those of the original data.

Many studies have considered means of evaluating pre-
processing by either using time-consuming Monte Carlo
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(MC) simulations (Barry et al., 2011; Della-Maggiore et al.,
2002; Strother, 2006) or empirically optimizing the process-
ing procedures (LaConte et al., 2003; Shaw et al., 2003).
Such work aims to determine the best results through the
evaluation of the effect of preprocessing on the computed
time series statistics, while the true statistical properties of
the data are not typically included into given task and non-
task fMRI models. Bowman (2005) presented a spatiotempo-
ral model that partitions voxels into functionally related
networks and captures correlations between voxels through
a simultaneous a spatial autoregression. Other promising
work has shown that accounting for background spatial cor-
relation inherent in neuroimaging data, which is caused by
non-neurophysiologic associations and image processing,
can improve functional connectivity measurements. (Patel
et al., 2006). A study by Deshpande and colleagues (2009)
introduced the measure of integrated local correlation for
assessing local coherence and corrected the inherent corre-
lation in fMRI data due to the image acquisition and recon-
struction processes. Derado and colleagues (2010) proposed
a two-stage model that accounts for both spatial and temporal
correlations in fMRI data. However, these approaches either
do not account for temporal correlations or do not provide a
theoretical estimation of spatiotemporal correlations of the
voxel measurements to be accounted for in the task and non-
task fMRI models.

Many studies have aimed to rid the data of ‘‘noise’
through both spatial and temporal processing. However, little
attention is ever paid to the degree to which processing oper-
ations change the true statistical properties of the acquired
data. Previous studies conducted by our group have incre-
mentally developed the necessary tools to evaluate and in-
corporate the statistical impact of spatial and temporal
processing operators into the final analysis of task and non-
task fMRI data. A real-valued isomorphism of the complex-
valued inverse Fourier transformation (IFT) matrix operator
was described by Rowe and colleagues (2007) to relate the
signal and noise characteristics of k-space measurements
and reconstructed voxel measurements. Representing Fourier
reconstruction as a single matrix operator formed the basis for
another study by Nencka and colleagues (2009) in which A
Mathematical Model for Understanding the STatistical ef-
fects of k-space preprocessing (AMMUST-k), was devel-
oped to represent various spatial processing operations
performed on the acquired spatial frequencies in terms of
real-valued linear isomorphisms. The AMMUST-k frame-
work was further expanded to incorporate parallel MR recon-
struction models, SENSE and GRAPPA, by representing
each model as a series of real-valued matrix operators
(Bruce et al., 2011, 2012; Bruce and Rowe, 2013). Repre-
senting the reconstruction and spatial processing in this
way makes it possible to precisely compute the covariance
(and ultimately correlation) induced by such operations into
the image space data.

In this article, we develop ‘‘A Mathematical Model for
Understanding the STatistical effects of time series preprocess-
ing’’ (AMMUST-t), by further advancing the AMMUST-k
framework to include temporal processing of the data together
with spatial processing and pMRI reconstruction opera-
tions.With a framework of this kind, one can precisely quantify
the degree to which the mean and covariance between both
voxels and time points are modified by each processing oper-

ation individually or by all processes collectively, without the
need for lengthy simulations that can only approximate these
changes. Such a framework can be used by neuroscientists
to assess their processing pipelines by characterizing excessive
processing, and ultimately aid in producing more accurate
functional connectivity statistics. In this article, we first de-
velop time series operators for common processing operations
such as image registration (Jenkinson et al., 2002), dynamic
magnetic field correction (Hahn et al., 2009), slice timing cor-
rection (Huettel et al., 2004), and temporal filtering (Huettel
et al., 2004), and illustrate the effects of these operators with
a low dimensional example. We then demonstrate the effects
of commonly used operations such as spatial smoothing, tem-
poral filtering, and a SENSE image reconstruction with higher
dimension theoretical data and on experimental phantom and
nontask human subject data.

Materials and Methods

AMMUST-t framework

The real-valued IFT matrix operator

O= OR �Ol

Ol OR

� �
, (1)

was developed by Rowe and colleagues (2007) to quantify the
precise linear combination of k-space measurements that form
each voxel value in the reconstructed image. The operators,
OR and OI, are formed using the Kronecker product, 5, by

OR = [(OyR � OxR)� (Oyl � Oxl)]

Ol = [(OyR � Oxl)þ (Oyl � OxR)],
(2)

where the Fourier matrices, Ox and Oy Fourier reconstruct
the columns and rows of the acquired k-space, respectively.
The jkth element of the n · n Fourier matrix Ox can be written
as (Ox)jk = w((� n=2)þ (j� 1))((� n=2)þ (k� 1)), where j and k are the
indices from 1 to n and w = (1/n)exp(i2p/n). The matrix Oy

similarly follows with n replaced by m. To apply the IFT op-
erator, O, in Eq. (1), the complex-valued spatial frequency
matrix is reformatted into a real-valued vector that is formed
by stacking the rows of the real components of on top of the
rows of the imaginary components. For an m · n image of
p = mn voxels, the frequency space measurements can there-
fore be represented by a 2p · 1 column vector, s = (sR¢,sI¢)¢,
where sR = (sR1,.,sRp)¢ and sI = (sI1,.,sIp)¢ are p · 1 real-
valued column vectors that consist of the real and imagi-
nary observations of p voxels, respectively. Applying the O
operator to the real-valued frequency vector,

y =Os, (3)

produces a vector, y, with all real reconstructed voxel values
stacked by row on top of all imaginary reconstructed voxel
values. The formalism in Eq. (3) can be generalized to

y = Os, (4)

where the operator O signifies an arbitrary series of linear
processing operations (Nencka et al., 2009) and/or parallel
reconstruction operators (Bruce et al., 2011, 2012) expressed
in matrix form.

In the AMMUST-t framework, we extend the framework
in Eq. (4) to combine temporal processing operations with
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the previously developed spatial processing and reconstruction
operations. In such a framework, the vector of the observed k-
space observation can be represented as a concatenation of N
k-space signal vectors, with each of these vectors representing
one 2p · 1 time point image vector. The time series frequency
measurements can therefore be represented by a 2pN · 1 col-
umn vector, sT = (s1R¢,s1I¢,.,sNR¢,sNI¢)¢ where stR and stI are
the real and imaginary frequency space column vectors at
time point t. The reconstructed and processed time series,
yT, can then be obtained from the acquired signal vector, sT, by

yT = OT sT : (5)

The operator matrix, OT, is formed through the multiplica-
tion of a k-space processing operator, K, a reconstruction op-
erator, R, an image space processing operator, I, and finally a
temporal processing operator, T, as

OT = TIRK: (6)

Time series operators

As most of the existing spatial and temporal processes are
linear in nature, or their application to the data can often be
represented in a linear way, many commonly used process-
ing operations can be integrated into the OT operator of the
AMMUST-t framework. In this section, we demonstrate
the construction of matrix operators for a collection of com-
mon processing operations that might be considered in this
framework. These operators include the generalization of in-
dividual time point k-space, image space, and reconstruction
operators, the performance of temporally dynamic B-field
corrections, the shifting and rotating of images for registra-
tion, temporal filtering, and slice timing correction.

Generalized k-space, Image space, and SENSE re-
construction operators. In the AMMUST-k framework, k-
space and image space processing operations, OK and OI,
are temporally unvarying, and equivalently applied to each
image in a time series. These operations include the incorpo-
ration of intra-acquisition decay and static magnetic field
(B-field), the performance of zero filling, apodization, smooth-
ing, and partial Fourier reconstruction. In AMMUST-t, apply-
ing such operators to the newly parametrized time series data
requires an operator of higher dimensionality. If the same
image processing steps are performed on all time points of
an acquired k-space time series, the time series k-space and
image space processing operators, K and I, can be formed
with a Kronecker product between the previously described
image processing operator and an identity matrix with dimen-
sion matching the number of time series points as K = IN5OK

and I = IN5OI, respectively. The resulting operators are there-
fore block diagonal where each block corresponds to an in-
stance of the processing operators. As previously described,
a generalization of the SENSE reconstruction operator, OSE,
can be performed in a similar fashion to the k-space and
image space processing operations by R = IN5OSE.

Dynamic B-field correction. In Echo Planar Imaging (EPI),
magnetic field inhomogeneities can result in severe artifacts
such as image warping and signal loss. Since the characteristics
of B-field inhomogeneity are affected by respiration and mo-
tion, in a time-dependent manner, dynamic B-field correction

may need to be performed before the analysis of task and non-
task fMRI data. Such correction can be included into
AMMUST-t framework by altering the IFT operator in Eq.
(1). The magnetic field inhomogeneity to be corrected can
be estimated through relative field measurements (Hahn
et al., 2009) or intra-acquisition measurements (Roopchan-
singh et al., 2003). With the estimated offset, DB, for each
k-space vector, the IFT operator can then be multiplied by
exp(�igDB(x, y)t(kx,ky)), where t(kx,ky) represents the time
at which the k-space point corresponding to the row of the
Fourier encoding matrix was acquired. As such, the individ-
ual blocks along the diagonal of the time series reconstruc-
tion operator, R, can be adjusted to correct the B-field
inhomogeneity effects at the corresponding time point.

Image registration. Head motion can be a severe problem
for the statistical analysis of the fMRI data since the time
course of one single voxel would represent a signal derived
from different parts of the brain when the subject moves.
Image registration is used for motion correction in fMRI
and performed by shifting each image according to indepen-
dently determined motion parameters. In-plane motion cor-
rection can be performed by integrating the registration
into the time-series reconstruction operator, R, as in the
case of dynamic B-field correction. As both image space
translation and in-plane rotation can be considered as shifts
on x and y axes, multiplying the k-space data with an appro-
priate phase before the Fourier reconstruction yields a cor-
rectional shift in image space after reconstruction as a
result of the Fourier shift theorem.

For an image space translation of (dx, dy) and in-plane rota-
tion of w, the required image space shift for a voxel at (x, y) in
image space is Dx = dx + x(cosw�1)�ysinw, and Dy = dy +
y = dy + y(cosw�1)�xsinw. Therefore, for a single image
with the aforementioned motion parameters, the row of the
IFT operator that represents the image space point (x, y)
must have each element multiplied by the exponential term,
exp(�i2p(Dxkx/px +Dyyx/py)), where kx and ky are integers rep-
resenting the k-space indices of the column of the IFT operator,
and px and py are the number of k-space points in the x and y
directions, respectively. The complex-valued IFT operators
for each time point can be formed by modifying the real valued
isomorphism in Eq. (1) and then appropriately positioned along
the diagonal of the time series reconstruction operator, R. The
motion parameters of image space translation, (dx, dy), and
in-plane rotation, w, can be determined through available
software (Cox, 1996; Jenkinson et al., 2002), or through ex-
ternal means, such as a tracking device that measures head
motion (Tremblay et al., 2005). A three-dimensional regis-
tration operator can be also constructed by utilizing three-
dimensional Fourier transforms.

Temporal filtering. The process of temporal filtering can
be performed through an application of Fourier shift theo-
rem. The temporal filtering process is mathematically identi-
cal to the line shifting process used to correct Nyquist ghosts
in EPI. First, the vector of reconstructed images can be reor-
dered to a vector of reconstructed voxel time series through a
permutation matrix, PT. Then, each time series can be Four-
ier transformed into the temporal frequency domain by a
block diagonal matrix, OT, where each block is a real-valued
isomorphism of a one-dimensional time series Fourier
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transform matrix. Each transformed time series can then
be multiplied by a diagonal matrix, F, with diagonal ele-
ments comprised of frequency space weighting for temporal.
The temporally filtered image time series vector then can
be obtained through the IFT and inverse permutation, T =
PT
�1OT

�1F OTPT.

Slice timing correction. In fMRI, the MR scanner ac-
quires different slices of the brain sequentially throughout
the repetition time (TR) period, resulting in a temporal offset
between slices. As knowledge of the exact acquisition timing
is essential for fMRI, differential slice acquisition times
should be accounted for, especially for acquisitions with
long TRs. Slice timing correction is performed in image
space after k-space processing, reconstruction, and registra-
tion to align all slices with the same reference time point.
The slice timing process can be performed similar to the pro-
cess of temporal filtering. After transforming the vector of
reconstructed images into a temporal frequency vector, mul-
tiplication with a matrix that consists of sines and cosines to
create the additional phase shift for the time series is per-
formed. The vectors of temporal frequencies can then be in-
verse Fourier transformed to obtain temporally shifted time
series, and then the inverse of the original permutation ma-
trix is performed to obtain temporally shifted images. It
has been shown that the shifting of k-space lines does not in-
duce correlations in the acquired data if the acquired k-space
data is assumed to be uncorrelated (Nencka et al., 2009).

Nontask fMRI

In nontask fMRI, the null hypothesis assumes no correla-
tion between voxels, and thus any statistically significant
correlation observed in the data denotes a functional connec-
tion between voxels. With the amount of processing per-
formed in nontask fMRI studies through operations such as
spatial filtering, temporal filtering, nuisance signal regres-
sion, and global signal regression, the statistical properties
of the processed voxels are far removed from those of the ac-
quired data. When time series processing operations, OT, are
applied to a data vector in Eq. (5), sT = s0 + g, which is com-
prised of a mean vector of complex-valued spatial frequen-
cies, in a real-valued form, s0, added to a noise vector, g,
with a mean of zero and a covariance of G, then the time se-
ries image vector, yT = OTsT, has a mean and covariance of

E[ yT ] = OT s0, and + = cov(yT ) = OTGOT
T : (7)

As the vector of images, yT, is comprised of a stack of N
image space vectors, each length 2p · 1, the spatiotemporal
covariance matrix, S, in Eq. (7) is of dimension 2pN · 2pN.

In prior studies to analyze the effects of processing, the co-
variance induced by a processing step was estimated using
lengthy Markov Chain MC simulations (Barry et al., 2011;
Della-Maggiore et al., 2002; Strother, 2006). As in many sta-
tistical technique applied in practice, the choice of sample
size plays an important role in the accuracy of the covariance
structure analysis. It has been cautiously suggested that the
sample size should always be more than 10 times the number
of free model parameters (Hu et al., 1992; Jaccard and Wan,
1996). The estimation of the spatiotemporal covariance
structure with the use of MC simulations therefore would
simulate a time series with at least 10pN data vectors from

which the covariance in Eq. (7) would be estimated. The
MC simulation approach, which determines only an approx-
imation of the true induced covariance structure, would re-
quire increasingly large numbers of simulated data arrays
when the dimensions of the frequency space measurements
increase. However, the linear framework in Eq. (7), which
involves the generation of sparse and/or block diagonal ma-
trices, provides a precise quantification of the exact induced
covariance structure directly without the need to generate a
single data vector.

The 2p · 2p blocks along the diagonal of S in Eq. (7) con-
tain the spatial covariance matrices for the individual images,
and are partitioned into quadrants that contain the real by
real, real by imaginary, and imaginary by imaginary covari-
ances. The spatiotemporal correlation matrix is obtained
from the covariance matrix by

+
R

= corr( yT ) = D
� 1=2
0 OTGOT

T D
� 1=2
0 , (8)

where D0 is a diagonal matrix of the variances drawn from
the diagonal of the covariance matrix. To deduce the covari-
ance induced solely by the operation OT, one merely assumes
an inherent identity covariance in the data, G= I.

It is a common practice in nontask fMRI to use the 2p · 2p
spatial covariance matrix, Sq, which is estimated from time
series observations. It is shown in the Appendix that the av-
erage of the diagonal blocks of the large spatiotemporal co-
variance matrix, S, is the expected value of the spatial
covariance matrix, Sq. For functional connectivity analysis,
the spatial covariance matrix, Sq, is converted into a spatial
correlation matrix, SRq.

Another practice in nontask fMRI is to analyze the tempo-
ral covariance matrix, Sv, which represents a single voxel’s
time series covariance matrix. Although the large covariance
matrix S contains the components necessary to compute Sv,
S must be permuted by a matrix, P, which reorders the recon-
structed data from a vector of N vectors of p observations
stacked above each other to the reconstructed time series
vector of p vectors of N observations stacked above each
other. The reordered covariance matrix is thus

ST = PSPT =
S11 . . . S1p

..

. ..
.

Sp1 . . . Spp

2
64

3
75, (9)

where each block Sij is a 2N · 2N temporal covariance ma-
trix between spatial elements i and j. The diagonal blocks of
ST are the temporal covariance matrices for the p individual
voxels, Sv. The vth voxel covariance matrix is of the form

Sv = SvRR SvRI

ST
vRI SvII

� �
: (10)

Results

Theoretical illustration

To illustrate the linearization of the aforementioned time
series processing operations, and to quantify the correlations
induced by such operations, a time series of 490 images was
generated with a single 96 · 96 slice of true noiseless brain
phantom with a maximum magnitude of 10. Although the
methodology to represent slice timing correction and image
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registration as real-valued matrix operators is introduced in
the previous section, the correlations induced by these pro-
cessing would vary in each acquisition since their operators
are dependent on the shift parameters. As such, within this il-
lustration, the operations that we choose to illustrate the
methodology are spatial smoothing, SENSE reconstruction,
and temporal filtering, which have data-independent parame-
ter settings and are commonly used in many nontask fMRI
studies. For an effective illustration of the statistical impacts
of the SENSE reconstruction in time series images, the k-
space data was subsampled by an acceleration factor of
A = 3 with NC = 4 coils in the light of the findings of the pre-
vious studies, which examine the artificial correlations in-
duced by the pMRI techniques at an individual time point
(Bruce et al., 2011, 2012; Bruce and Rowe 2013, 2014).
After reconstruction, spatial filtering was performed with a
Gaussian smoothing kernel with an image space full width
at half maximum (fwhm) of three pixels. A temporal filtering
operator was generated to band-pass filter the voxel time se-
ries to observe frequencies below 0.08 Hz and above 0.009 Hz
as it is a common practice in nontask fMRI studies to elimi-
nate blood oxygenation level-dependent (BOLD) signal
changes correlated with physiological effects such as respira-
tion (Biswal et al., 1995).

To closely illustrate the time series processing operators, a
6 · 6 region of interest (ROI) was selected within the brain
phantom in the first 8 time points of the generated data. As
the data was subsampled by A = 3 with NC = 4 coils, the
SENSE reconstruction operator is of dimension 576 · 768,
and the spatial smoothing and temporal operators are of di-
mension 576 · 576. Figure 1a–c show the time series opera-
tors for SENSE reconstruction, spatial smoothing, and
temporal filtering that were used to compute the operator-
induced spatiotemporal correlation matrices, assuming an
underlying k-space identity covariance structure, G= I.

Illustrated in Figure 2a–c are the theoretical correlation
matrices that are induced by the SENSE reconstruction, spa-
tial smoothing, and temporal filtering, respectively. The first,
second, and third columns of Figure 2 illustrate the correla-
tion matrices calculated from the large covariance matrix,
S, spatial covariance matrix, Sq, and temporal covariance
matrix, Sv, about the center voxel, respectively. Figure 2d
shows the overall correlation matrices when SENSE re-

construction, spatial smoothing, and temporal filtering are
considered together. Figure 2a2 and b2 show that the SENSE
reconstruction induces spatial correlations between voxels
that are previously aliased with each other, while smoothing
induces correlations in the neighborhood of the voxels, as
expected. Temporal filtering does not alter spatial correla-
tions, as shown in Figure 2c2, as the process is purely tempo-
ral. Temporal correlations are only altered by temporal
filtering, as seen in Figure 2a3, b3, and c3. The correlation
maps in the case that the processes are considered together
may appear to be dominated by individual processes, as
seen in Figure 2d1–d3. However, the correlation map is not
a simple superimposition of the individual processes, which
highlights the advantage of the proposed AMMUST-t frame-
work that provides an exact quantification of the final corre-
lation structure.

To observe the effects of the processing operations on the
spatiotemporal correlation structure of the data, we com-
puted both theoretical and MC-simulated spatial and tempo-
ral correlations between the real components (real/real),
between the imaginary components (imaginary/imaginary),
and between the real and imaginary (real/imaginary) compo-
nents of the reconstructed voxel values. For MC simulation,
a single 96 · 96 slice was generated for a time series of 490
images by yt = rt + et, where rt is a 2NC · mn matrix whose
first NC rows are the real noiseless images and the second
NC rows are the imaginary noiseless images. The noise ma-
trix et = zt is a 2NC · mn random matrix drawn from the stan-
dard normal distribution when the initial identity voxel
covariance is assumed. If the initial voxel covariance is as-
sumed to be nonidentity, et was generated by et = ztQC

where QC is the second unitary matrix in the singular value
decomposition of the nonidentity voxel covariance structure
C = PCSCQC

T. The theoretical operator-induced correlations
were computed by Eq. (8), whereas MC-simulated correla-
tions were estimated from 100 simulations.

Correlations in the theoretical and MC-simulated illus-
trations are analyzed for the spatially smoothed SENSE re-
constructed images with and without the application of
band-pass filtering under the assumption of identity or non-
identity intrinsic k-space covariance structure. In the case
of the nonidentity spatial covariance, the intrinsic k-space
covariance structure was designed in such a way that three

FIG. 1. Time series operators for an acquisition of N = 8 repetitions of a 6 · 6 region of interest. (a) SENSitivity Encoding
(SENSE) reconstruction operator, R = IN5OSE from NC = 4 coils with an acceleration factor of A = 3. (b) Smoothing operator,
I, with fwhm = 3. (c) Temporal filtering operator, T = PT

�1OT
�1FOTPT.
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ROIs are assumed to be inherently correlated with each other
with a magnitude of 0.9. These regions are selected in the areas
that are similar to the motor cortices and supplementary motor
area, as presented in Figure 3b5 and d5. Our MC simulation re-
sults have shown that the spatial and temporal correlation
maps, with and without an inherent correlation, are visually
the same as the theoretical operator-induced correlations
after applying a threshold of – 0.15, and thus only operator in-
duced correlations are shown in Figure 3. The center voxel
has been picked as the seed voxel to present the theoretical
operator-induced spatial and temporal correlations although a
similar correlation structure can be observed around any voxel.

The first three vertical panels of Figure 3 denote the theo-
retical operator induced real/real, imaginary/imaginary, and
real/imaginary spatial correlations for the various cases.
Figure 3a and c show the correlation results for the smoothed

SENSE reconstructed data with and without band-pass filter-
ing under the assumption of an identity inherent spatial cor-
relation, respectively. It is apparent, in Figure 3a and c that
the induced spatial correlations appear in cluster of the vox-
els instead of individual voxels, as a result of the smoothing
operation. It is of note that the center voxel shows negative
real/real and imaginary/imaginary correlations with a cluster
of voxels in the center of the upper and lower folds due to the
choice of A = 3. The increased spatial correlation between the
center voxel with its neighbors can also be observed in real/
real and imaginary/imaginary correlations. It can be seen
in Figure 3a3 and c3 that there is no correlation induced be-
tween the center voxel’s real and imaginary measurements.
As expected, temporal filtering does not alter the spatial cor-
relation structure since Figure 3a1–a3 are identical to Figure
3c1–3c3.

FIG. 2. Theoretical spatiotemporal
correlation matrices that are induced
by the consideration of (a1–a3) SENSE
reconstruction from NC = 4 coils with
an acceleration factor of A = 3, (b1–b3)
spatial smoothing, (c1–c3) temporal
filtering, (d1–d3) SENSE reconstruc-
tion, spatial smoothing, and temporal
filtering. First column: large correla-
tion matrix, SR. Second column: spa-
tial correlation matrix, SRq. Third
column: center voxel’s temporal cor-
relation matrix, SRv.

654 KARAMAN ET AL.



Figure 3b and d show the correlation results for the smoothed
SENSE reconstructed data with and without band-pass filtering
under the assumption of a nonidentity inherent spatial correla-
tion, respectively. As in Figure 3a3 and c3, there is no correla-
tion induced between the center voxel’s real and imaginary
measurements either with or without band-pass filtering. One
can see in Figure 3b1, 3b2, 3d1 and 3d2 that the real/real and
imaginary/imaginary spatial correlations between the voxels
that are in the originally correlated ROIs are spread to adjacent
voxels by the smoothing operator. Additionally, there is a neg-
ative real/real and a negative imaginary/imaginary correlation
between the three clusters of correlated voxels and the respec-

tive regions from the top and bottom folds. This structure un-
derlines that the inherent true correlation can be observed
both in its original location and in the regions that were previ-
ously aliased with this original region. This artificially ampli-
fied and induced correlation structure could be misinterpreted
as a network of functional connectivity in the brain if no
steps were taken to identify processing-induced correlations.

The fourth panel of Figure 3 denotes the operator-induced
temporal correlations for the various cases. Figure 3a4 and b4

show the temporal correlation matrix of the center voxel
when only SENSE reconstruction and smoothing are consid-
ered under the assumption of identity and nonidentity initial

FIG. 3. Presented on a magnitude brain phantom underlay are theoretical operator induced real/real, imaginary/imaginary,
real/imaginary spatial correlations, and temporal correlations of the center voxel under the assumption of SENSE recon-
struction and smoothing with (a1–a4) identity intrinsic k-space covariance, (b1–b4) nonidentity intrinsic k-space covariance,
(c1–c4) band-pass filtering with identity intrinsic k-space covariance, (d1–d4) band-pass filtering with nonidentity intrinsic
k-space covariance. The intrinsic spatial correlation masks for the considered cases are illustrated in (a5–d5).
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spatial correlation, respectively. As expected, the temporal
correlation structure is not altered by SENSE reconstruction
or smoothing as it is shown to be identity for the center voxel.
It can be observed in Figure 3c4 and d4 that the temporal cor-
relation structure within the real and imaginary components
of the data is altered by temporal filtering with and without
presence of initial spatial correlation. Such altered correla-
tions arise from the convolution of the temporal filtering ker-
nel with the voxel time series.

While the AMMUST-t linear framework could provide a
tool for neuroscientists to precisely quantify the correlations
induced by spatial and temporal processing, it requires the
multiplication of a series of linear matrix operators of very
large dimensionality. As such, we have developed computa-
tionally efficient algorithms by employing parallel comput-
ing, matrix partitioning, and sparse matrix multiplication
techniques. The linear operators introduced in this frame-
work have been implemented in Matlab (The Mathworks,
Natick, MA).

Experimental illustration

To analyze the statistical implications of time series pro-
cessing, two sets of data were acquired for a series of 510

TRs from an array of eight receiver coils in a 3.0T General
Electric Signa LX MR imager. Due to the computational
load, the data set was reduced to only NC = 4 evenly spaced
coils by using every other coil, starting with the coil in the
anterior. The first set of data imaged a spherical agar phan-
tom, while the second set was of a nontask human subject.
Both data sets were comprised of seven 2.5 mm thick axial
slices that are 96 · 96 in dimension for a 24.0 cm FOV,
with the phase encoding direction oriented as anterior to pos-
terior. The data set had a TR of 1 s, an echo time (TE) of
45.4 ms, an effective echo spacing of 0.816 ms, a flip angle
of 45�, and an acquisition bandwidth of 125 kHz. As the
data were acquired with time varying TE in the first 20
TRs, the remaining 490 images from NC = 4 equally spaced
coils were used in the SENSE reconstruction. Data were ac-
quired with an EPI pulse sequence and reconstructed using
locally developed software. Subsampling was simulated for
A = 3 by deleting lines of k-space in each of the acquired
data sets. To estimate the error in the center frequency and
group delay offsets between odd and even k-space lines,
three navigator echoes of the center line of k-space were ac-
quired (Nencka et al., 2008).

We present experimentally computed spatial and temporal
correlations about the seed voxel for three different cases.

FIG. 4. Presented on a magnitude spherical agar phantom underlay are estimated real/real, imaginary/imaginary, real/
imaginary, magnitude-squared spatial correlations, and temporal correlations of the center voxel throughout the time series
of 490 images with (a1–a5) SENSE reconstruction; (b1–b5) SENSE reconstruction and smoothing; (c1–c5) SENSE recon-
struction, smoothing, and band-pass filtering. Correlations are presented with a threshold of – 0.35.
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The correlation maps that are presented in Figures 4a and 5a
are computed from SENSE reconstructed images without
spatial smoothing or temporal filtering. The SENSE recon-
structed images that were used to compute the correlations
presented in Figures 4b and 5b have been spatially filtered
by a Gaussian smoothing kernel operator, whereas the ones
that were used to compute the correlations given in Figures
4c and 5c have been both spatially filtered and band-pass fil-
tered with cutoff frequencies at 0.009 and 0.08 Hz (Biswal
et al., 1995). Presented spatial correlations between the
real/real, imaginary/imaginary, and real/imaginary and the
spatial correlations for magnitude-squared data were esti-
mated over the time series. The magnitude-squared correla-
tion structure is observed here because it is asymptotically
equivalent to the correlations of magnitude data and linear
in nature when magnitude correlations are not. To estimate
the temporal correlation maps, both the spherical agar phan-
tom and nontask human subject time series data were divided
into 10 sequential 49 time point experiments after removing
the first 20 time points. The resulting data was then used to
calculate the sample temporal correlation matrix of the cen-
ter voxel for the various cases.

Phantom data. The spherical phantom data was consid-
ered for an experimental analysis to bridge the gap between
the theoretical illustration and the application to human sub-
ject data, as the phantom is not prone to physiological effects
and subject movement. The center voxel was selected as the
seed voxel to experimentally analyze the induced correlation
structure by spatiotemporal processing to be consistent with
the presented theoretical induced correlation analysis.

Presented in Figure 4a1–a4, b1–b4, and c1–c4 are the real/
real, imaginary/imaginary, real/imaginary, and magnitude-
squared spatial correlations between the center voxel and all
the other voxels that were computed from SENSE recon-
structed data with and without the application of spatial
smoothing and low-pass temporal filtering. The correlations
presented in Figure 4 were threshold at – 0.35 ( p*0.05) (Grei-
cius et al., 2003). As the center voxel was selected as the seed
voxel, two fold regions are expected to exhibit correlations
with the center voxel due to the choice of A = 3. Two pink cir-
cles are placed around the corresponding previously aliased
voxels, upper and lower folds, in Figure 4 where the seed
voxel is indicated by a small green circle. It can be observed
in Figure 4a1, a2, and a4 that there is a negative real/real, a neg-
ative imaginary/imaginary, and a positive magnitude-squared
correlation between the voxels in the lower and upper folds
and the seed voxel. The correlations in the circles appear to
be at individual voxels although additional imaginary and mag-
nitude-squared spatial correlations can be observed around
the center voxel as well. This may be due to B-field inhomoge-
neities that have not been completely corrected.

The correlations between the previously aliased voxels
and the seed voxel are spread to clusters of voxels with the
application of smoothing, as presented in Figure 4b1, b2,
b4, c1, c2, and c4. While the correlation structure in the
folds and in the center exhibits an oval shape due to the over-
lap in the reduced FOV image and Nyquist ghosting that has
not been completely removed, it can be seen that the neigh-
borhoods of the seed voxel and the upper and lower folds still
exhibit the strongest correlation. It is important to note that
while there is no real/imaginary correlation between the cen-

ter voxel and the other voxels as seen in Figure 4a3, real/
imaginary correlations can be observed in the center,
upper, and lower folds with the application of smoothing.
By comparing Figure 4b1–b4 with Figure 4c1–c4, it can be
seen that temporal filtering slightly alters the spatial correla-
tion structure.

The temporal correlation matrix of the center voxel after
SENSE reconstruction without smoothing is given in Figure
4a5. Presented in 4b5 and c5 are the temporal correlation ma-
trices for the center voxel computed from SENSE recon-
structed and spatially smoothed time series data with and
without band-pass filtering. It is apparent when comparing
Figure 4b5 and c5 that band-pass filtering induces local tem-
poral correlations as the main diagonal is widened and the
correlations before filtering are smoothed. As expected, spa-
tial smoothing does not alter the temporal correlation struc-
ture. It is of note that, while such a correlation structure in
the processed time series data can be expected, a precise the-
oretical quantification, as proposed in this article, would
allow one to account for processing-induced correlations in
the final analysis of their data.

Human subject data. As with the theoretically generated
brain phantom data and experimental spherical phantom
data, the center voxel was selected as the seed voxel for the
correlation analysis in the human subject data. Figure 5a1–a4

show the real/real, imaginary/imaginary, real/imaginary, and
magnitude-squared spatial correlations for the seed voxel
that were computed from SENSE reconstructed time series.
Presented in Figure 5b1–b4, and c1–c4 are the spatial correla-
tions about the seed voxel computed from SENSE recon-
structed and spatially smoothed data with and without the
application of temporal band-pass filtering. Similarly, with
the spherical phantom data results, two small pink circles
are placed around the previously aliased voxels in Figure 5
while the seed voxel is indicated by a small green circle.

The experimental spatial correlations, which exceed a
threshold of – 0.25, show a negative real/real and imagi-
nary/imaginary correlation and a positive magnitude-squared
correlation between the seed voxel and the upper and lower
folds, as shown in Figure 5a1, a2 and a4. While there are no
correlated voxels in real/imaginary theoretical correlation
structure in Figure 3a3, and the experimental spatial correla-
tions computed from spherical phantom in Figure 4a3, there
appears to be a nonzero real/imaginary correlation structure
in Figure 5a3. It can be seen in Figure 5b1–b4 and 5c1–c4 that
spatial smoothing further spreads the SENSE-induced corre-
lations in the folds and induces positive correlation in the
neighborhood of the seed voxel. While it is primarily the am-
plified SENSE-induced spatial correlations, real/real spatial
correlation maps given in Figure 5b1 and c1 exhibit an oval
shape of clusters in the fold regions and seed voxel region.
This may be due to the noise amplification in the un-aliased
images. Similarly, with the experimental real/imaginary cor-
relation results of the spherical phantom data, both positive
and negative real/imaginary correlations can be observed
throughout the images in Figure 5b3 and c3. This may be a
result of Nyquist ghosting that has not been completely re-
moved and that the brain occupies a small portion of the
full FOV, which results in aliasing between the center voxel
and the voxels in space. By comparing Figure 5b1–b4 with
Figure 5c1–c4, it is interesting to note that the spatial
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correlation structure is significantly scattered throughout the
image after band-pass filtering.

Illustrated in Figure 5a5, b5, and c5 are the temporal corre-
lation maps about the center voxel computed from the
SENSE reconstructed data without spatial smoothing or tem-
poral filtering, with only spatial smoothing, and with both
spatial smoothing and temporal filtering, respectively. Simi-
larly, with the theoretical-induced correlation results and
experimental agar phantom results, the temporal filtering
process alters the time series correlation structure by widen-
ing the main diagonal, which implies local temporal correla-
tions. It is of note here that the theoretical operator-induced
correlations in Figure 3 were calculated under the assump-
tion of independence between time points. As such, it is ev-
ident that the temporal correlation structure in Figure 5c5 is
the smoothed version of the existing temporal correlations
in the data in Figure 5b5 rather than exhibiting only a wid-
ened main diagonal as in Figure 3d4.

The experimental spatial and temporal correlation results of
both the agar phantom and human subject align with the theo-
retical illustration in Figure 3, and illustrate that SENSE recon-
struction and smoothing induce spatial correlations that could
result in false positive and negatives in a functional connectiv-
ity analysis and misinterpreted if they are not precisely quanti-
fied or accounted for. Furthermore, the temporal correlations

induced by temporal operators, such as low-pass and high-
pass filtering, and artificially induced spatial correlations
could result in false positive and negatives in fMRI activation
statistics as they would make the assumption of independency
between voxels invalid. As it becomes increasingly more diffi-
cult to derive the true correlation structure with the use of
lengthy MC simulations or the parametric covariance functions
once the data has been processed, the accuracy of the final
analysis of the processed data can be significantly improved
with the use of the proposed theoretical linear framework.

Discussion and Conclusion

In this work, we develop a mathematical framework that
allows one to analytically observe the effects of commonly
used spatial and temporal preprocessing on observed voxel
measurements in nontask fMRI. This framework represents
the processing pipeline as a linear isomorphic matrix opera-
tor by breaking up each process into a sequence of steps that
can be carried out through a collection of matrix operators.
With the entire processes represented in this way, the exact
correlation structure induced by each operation both spatially
between voxels and temporally within each voxel’s time se-
ries can be precisely quantified. We also present the tech-
niques for linearizing common processing operations such

FIG. 5. Estimated real/real, imaginary/imaginary, real/imaginary, magnitude-squared spatial correlations, and temporal
correlations about the center voxel throughout the time series of 490 nontask human subject images with (a1–a5) SENSE
reconstruction; (b1–b5) SENSE reconstruction and smoothing; (c1–c5) SENSE reconstruction, smoothing, and band-pass fil-
tering. Correlations are presented with a threshold of – 0.25.
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as dynamic B-field correction, image registration, temporal
filtering, slice timing correction, and generalizing individual
k-space and image space processing in addition to image re-
construction.

Although the statistical impacts of spatial smoothing,
SENSE pMRI reconstruction, and temporal filtering on the
processed data has been presented in detail, additional pro-
cessing operations can be represented as linear operators
and adopted into the AMMUST-t framework. For instance,
regressing out the average signal from different regions of
the brain such as white matter and cerebrospinal fluid (CSF)
or from whole-brain with the use of global signal regression
techniques have been commonly used in nontask fMRI studies.
White matter and CSF signal regression is used to remove the
non-neural fluctuations such as subject motion and physiolog-
ical effects while the global signal regression is used to remove
the spontaneous BOLD fluctuations common to the whole
brain. As the mean white matter, CSF or whole brain time se-
ries are used as temporal covariates and removed from the data
through linear regression in these processing steps; they can
also be represented by linear operators, and included into the
Ammust-t framework.

While most existing processes are linear in nature, there are
select image registration (Klein et al., 2009; Poldrack et al.,
2011), spatial normalization (Ashburner and Friston, 1999),
spatial smoothing (Smith and Brady, 1997), and high-pass
filtering (Marchini and Riley, 2000) operations that can be
nonlinear. Although such operations typically use nonlinear
calculations to determine various parameters, their application
to data is (in most instances) linear. As such, linear representa-
tions for nonlinear processes that are widely used in biomedical
image processing software can also be included into the
AMMUST-t framework.

Data acquired for nontask fMRI studies have a true inherent,
but unknown, spatiotemporal covariance structure. As the goal
of these studies is to determine, utilize, and analyze this struc-
ture, it becomes increasingly more difficult to derive the true
covariance once the data has been processed. This article pro-
vides the researchers a means of retaining knowledge of the
processing steps performed on the acquired data and guidance
to be aware of the presence of these correlations between spa-
tial regions and time points they may be investigating. As such,
the implementation of the AMMUST-t framework provides
neuroscientists with a means of determining whether or not
their selection of reconstruction and processing operations is
excessive by observing the artificial correlations that they
have induced into their data.

To provide a benchmark analysis of the operator-induced
correlation structure, we utilize the AMMUST-t framework
to compute spatial covariance matrix and an individual vox-
el’s temporal covariance matrix, both commonly used non-
task fMRI analysis studies, from an analytically derived
spatiotemporal covariance matrix. As the proposed method
can easily be applied to data sets in which the implications
of processing have been noted, it provides a novel informa-
tive tool for preventing possible false positive rates that
can result from processing and reconstruction operators.
The application of the framework could enable neuroscien-
tists to reap the benefits of spatial and temporal processing
while simultaneously determining an acceptable data pro-
cessing pipeline and identifying the true statistical interpreta-
tion of their data.
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Appendix

Consider the large, processed covariance matrix, S. The
(i, j)th element may be calculated as

+
xiyizitixjyjzjtj

= E(( yxiyiziti ��yxiyiziti )( yxjyjzjtj ��yxjyjzjtj )),

where (xi,yi,zi,ti) are the spatial and temporal indices for the
ith element of the reconstructed and processed vector y,
(xj,yj,zj,tj) are the spatial and temporal indices for the vector’s
jth element, and �yxiyiziti is the mean measurement of voxel
(xi,yi,zi) at time point t in repeated acquisitions. An expansion
of the product yields

+
xiyizitixjyjzjtj

= E(yxiyiziti yxjyjzjtj � yxiyiziti
�yxjyjzjtj � yxjyjzjtj�yxiyiziti

þ�yxiyiziti
�yxjyjzjtj ):

Similarly, the spatial covariance matrix, Sq, may be con-
sidered on an element by element basis

+qij
= E(( yxiyizi

��yxiyizi
)( yxjyjzj

��yxjyjzj
)),

where �yxiyizi
is the temporal mean of the voxel (xi,yi,zi) over

the course of a time series. In a time series with n points,
Sq may be calculated as

+qij
=

1

n� 1
+
n

t = 1

(( yxiyizit ��yxiyizi
)( yxjyjzjt��yxjyjzj

))

=
1

n� 1
+
n

t = 1

( yxiyizityxjyjzjt� yxiyizit�yxjyjzj

� yxjyjzjt�yxiyizi
þ�yxiyizi

�yxjyjzj
):
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With Sq in mind, consider the average of the diagonal blocks
of the large, processed covariance matrix, S. Specifically, let

+
Rij

=
1

n� 1
+
n

t = 1

+
xiyizitt , xjyjzjtt

=
1

n� 1
+
n

t = 1

E( yxiyizitt
yxjyjzjtt � yxiyizitt�yxjyjzjtt

� yxjyjzjtt�yxiyizitt þ�yxiyizitt�yxjyjzjtt ):

Assuming that the voxel mean does not change over time,
as should be the case in a resting state study of a stationary

subject, �yxyzt is equal to �yxyz. In light of this, it is apparent
that the average of the diagonal blocks of the large processed
covariance matrix, S, is the expected value of the spatial co-
variance matrix, Sq

+
Rij

= E +qij

� �
:

Thus, the spatial covariance matrix may be computed as
the average of the diagonal blocks of the large, processed co-
variance matrix.
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