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Abstract

There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state func-
tional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of
the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the
authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the
blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular
volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous
arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-
flight MR angiography. Functional connectivity within well-known functional networks—including the default
mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based
correlation approach. They found the functional connectivity strength to be significantly correlated with the re-
gional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction.
These relationships were consistently observed within all functional networks considered. Their findings suggest
that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular
drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter
neurovascular connections, attributable to neuronal pathways.

Key words: blood volume fraction; CBF-BOLD coupling; cerebral blood flow; MR angiography; resting-state
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Introduction

Functional magnetic resonance imaging (fMRI) has
consistently revealed resting-state functional connectiv-

ity (rs-fcMRI) in the brain, predominantly through correlated
spontaneous fluctuations in the blood oxygenation level-
dependent (BOLD) signal across brain regions (Biswal
et al., 1995; Fox et al., 2005; Greicius et al., 2003). Resting-
state fcMRI has enabled the mapping of major functional net-
works of the brain, starting with the motor network (Biswal
et al., 1995) and expanding to include other highly reproduc-
ible networks such as the default mode network (Greicius
et al., 2003) and the frontoparietal network (Fox et al., 2005;
Markett et al., 2014; Toro et al., 2008). Today, the impact of
rs-fcMRI in basic neuroscience and clinical research is im-
mense (Buckner et al., 2013; Fox and Greicius, 2010).

Importantly, the rapid growth of rs-fcMRI has high-
lighted the general lack of understanding of the physiological
mechanisms behind rs-fcMRI measurements. Specifically,
as rs-fcMRI is estimated using the BOLD signal, which is
an indirect measure of neuronal activity, functional connec-
tivity is unfortunately sensitive to non-neural confounds.
These include, among others, head motion (Van Dijk et al.,
2012) and physiological noise arising from respiration and
cardiac activity (Birn et al., 2006; Chang and Glover,
2009). This is particularly detrimental to the usefulness of
rs-fcMRI, as physiological noise, such as respiration and car-
diac pulsation, has been shown to be more dominant near
large vessels, where neuronal specificity is minimal (Tong
et al., 2011). Thus, it has been suggested that spurious corre-
lations in rs-fcMRI can originate from macrovascular drain-
ing routes across distal brain regions rather than from

1Rotman Research Institute at Baycrest Centre, University of Toronto, Toronto, Canada.
2Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical

Imaging, Charlestown, Massachusetts.
3Laboratory of Functional MRI Technology (LOFT), Department of Neurology, University of California, Los Angeles, Los Angeles,

California.

BRAIN CONNECTIVITY
Volume 5, Number 3, 2015
ª Mary Ann Liebert, Inc.
DOI: 10.1089/brain.2014.0299

137



neuronal activity itself ( Jo et al., 2010). This possibility se-
verely limits their ability to interpret the rs-fcMRI findings
and reinforces the importance of understanding the link be-
tween functional connectivity and neurovascular factors
(Buckner et al., 2013).

The manner in which resting-state neuronal activity man-
ifests as the BOLD fluctuations depends on the contribution
of neurovascular factors (Liu, 2013). In support of this, sev-
eral studies have addressed the influence of static content
of neurovascular factors, including cerebral blood flow
(CBF) and cerebral metabolic rate of oxygen (CMRO2) on
the rs-fcMRI (Chuang et al., 2008; Fukunaga et al., 2008;
Viviani et al., 2011; Wu et al., 2009). Specifically, Wu and
colleagues (2009) observed a spatial correspondence between
resting-state BOLD- and CMRO2-based functional connec-
tivity maps, and Fukunaga and colleagues (2008) found sim-
ilar metabolic involvement during resting-state and visual
tasks using the ratio of BOLD and CBF fluctuations as an in-
dicator of metabolic demand.

In their previous work, using simultaneous BOLD-CBF
measurements as well as MR angiography (MRA), they
probed the contribution of various neurovascular compo-
nents to the resting-state BOLD signal (Tak et al., 2014).
They observed significant coupling between resting-state
BOLD and CBF signal in the regions of major resting-state
networks, and found that the degree of this coupling dimin-
ishes as macrovascular fraction increases. However, there
has been limited work quantitatively assessing regional ef-
fects of these neurovascular factors on rs-fcMRI measure-
ments per se. Understanding such effects is critical for
expanding the application of rs-fcMRI, particularly neuro-
vascular abnormalities are often implicated in normal
aging (Gauthier et al., 2012) as well as numerous brain dis-
eases (Girouard and Iadecola, 2006). In this study, the au-
thors explore the associations of rs-fcMRI strength with
CBF-BOLD coupling and macrovascular volume fraction,
and determine whether these relationships apply in a specific
functional network or are generalizable.

Materials and Methods

Participants

The authors studied nine healthy participants (three men),
aged from 18 to 32 years (mean = 26.7 years, SD = 4.3 years).
Participants were recruited through the Baycrest Participants
Database. The study was approved by the Baycrest Research
Ethics Board (REB), and the experiments were performed
with the written consent of each participant according to
REB guidelines.

MRI acquisition

All images were acquired using a Siemens TIM Trio 3
Tesla System (Siemens, Erlangen, Germany). The scans
employed 32-channel phased-array head coil reception and
body-coil transmission.

To concurrently acquire resting-state CBF and BOLD
data, they used dual-echo pseudocontinuous arterial spin
labeling (pCASL) (Dai et al., 2008): repetition time (TR) =
3500 msec, echo times (TE)1/TE2 = 10/25 msec, field of
view = 220 · 220 mm, 18 slices (ascending interleaved
order), voxel size = 3.4 · 3.4 · 5.0 mm3, 100 frames, band-

width = 2520 Hz/pixel and GRAPPA = 2. The labeling dura-
tion was 1500 msec, and the postlabeling delay was 1000
msec with a mean Gz of 0.6 mT/m was selected to achieve
transit time insensitivity. During the resting-state scan, all
participants were instructed to keep their eyes closed and re-
main awake.

A 3D T1-weighted anatomical scan was acquired using
MPRAGE, with detailed scanning protocol parameter values
as follows: voxel resolution = 1 mm3 isotropic, TR = 2400
msec, inversion time (TI) = 1000 msec, TE = 2.43 msec, flip
angle = 8�, field of view = 256 · 256 mm2 (sagittal), 192 par-
titions, bandwidth = 180 Hz/pixel, and GRAPPA factor = 2.

To measure the resting macrovascular volume fraction, a
3D multi-slab whole brain time-of-flight (TOF) MRA was
used with TR = 20 msec, TE = 3.59 msec, field of view = 200 ·
181 mm, matrix size = 768 · 696 · 200, number of aver-
ages = 1, spanning six slabs with a distance factor of 20%,
TONE ramp = 70%, voxel size = 0.26 · 0.26 · 0.5 mm3, band-
width = 165 Hz/pixel, and GRAPPA acceleration factor = 2.
To image venous as well as arterial contributions, no superior
saturation band was used.

Data analysis

To investigate the regional association between rs-fcMRI,
dynamic CBF-BOLD coupling and macrovascular volume
fraction, they performed two sets of linear regression analy-
ses, each addressing one of these associations (Fig. 1).

Image preprocessing. The tag and control images in
the pCASL data were separately preprocessed using the
SPM8 (www.fil.ion.ucl.ac.uk/spm/software/spm8/) (Friston
et al., 2011). The first four time frames were discarded to
ensure MR steady state. Preprocessing of functional data
included retrospective motion correction, slice-timing cor-
rection, spatial transformation into the Montreal Neuro-
logical Institute (MNI) space, and spatial smoothing with a 6-
mm full-width at half-maximum Gaussian kernel. Anatom-
ical images were coregistered with the realigned functional
data and then segmented into gray matter, white matter, and
cerebrospinal fluid (CSF) probability maps. Physiological
noise removal within the tag and control images was per-
formed separately by regressing out four significant principal
components derived from the white matter and CSF signals
(Behzadi et al., 2007).

TOF MRA data were coregistered with the functional
data, following which the vessel structures were isolated
using histogram thresholding (Otsu, 1975), given that signal
intensities of blood vessels are higher than those of the sur-
rounding tissues. Before thresholding, they removed non-
brain tissue using the brain-extraction tool (BET2) of FSL
software (fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET) (Jenkinson and
Pechaud, 2005), and corrected intensity nonuniformity in
MRA using the nonparametric nonuniform intensity normali-
zation (Sled et al., 1998).

Estimation of dynamic CBF-BOLD coupling. To estimate
the CBF signal minimizing BOLD contamination, the ASL
time course, taken as a series of tag and control signals ac-
quired at the first echo of the dual-echo acquisition, was
high-pass filtered then demodulated (Chuang et al., 2008).
This method is a generalized version of direct subtraction
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of time-matched upsampled followed by sinc interpolation of
tag and control frames—sinc subtraction is equivalent to fil-
tering the demodulated ASL data with an ideal low-pass filter
(Liu and Wong, 2005). To estimate the BOLD signal while
minimizing perfusion weighting, they applied a low-pass fil-
ter with a cutoff frequency of half of the Nyquist frequency
(i.e., 1/4TR) to the tag and control time series acquired at the
second echo (Liu and Wong, 2005). For details please refer
to their earlier work (Tak et al., 2014).

Potential time shifts between BOLD and CBF signals were
determined by maximizing their cross correlation within the
physiological range of �3.5 to + 3.5 sec (Fukunaga et al.,
2008). The CBF signal for each voxel was then shifted in
time to better match the BOLD signal, allowing dynamic
CBF-BOLD coupling to be assessed, in this case by Pearson
correlation between time series of CBF and BOLD signal
(Tak et al., 2014). The correlation estimates were converted
to z-scores using the Fisher transformation (Fisher, 1915).

Estimation of macrovascular volume fraction. The BOLD
signal (in this case gradient-echo) results from an intravascu-
lar and an extravascular contribution, both of which can arise
from either the microvasculature or macrovasculature. The
macrovasculature, particularly the pial vessels that drain
blood from large cortical domains, substantially bias the
BOLD signal toward lower neuronal specificity (Boxerman

et al., 1995). This bias has important implications for
rs-fcMRI. In this work, they measured the resting macrovas-
cular fraction, V0, as the ratio of blood vessels to tissue vol-
ume in the fMRI measurements (Buxton et al., 1998), and
V0 can be calculated as a combination of small-vessel fraction
VS and MRA-derived macrovascular fractions VM (Hu et al.,
2012):

V0(ri) = VM(ri)þVS(1�VM(ri))

VM(ri) = NV (ri)=NA,
(1)

where ri is the ith voxel position in the fMRI image volume,
i = 1,., N, VS is assumed as 0.02 (Hu et al., 2012), NV(ri) is
the number of voxels occupied by the segmented vasculature
at the ith fMRI voxel, and NA is the number of MRA voxels
at each voxel of fMRI volume. Note that as the MRA images
were transformed into MNI space and resampled to a 0.5-mm
isotropic grid, the resulting voxel size of the MRA data
(0.5 · 0.5 · 0.5 mm3) is much smaller than the voxel size of
their fMRI dataset (2 · 2 · 2 mm3 after resampling). There-
fore, in their dataset, NA was 64 for all voxels, and NV(ri)
was between 0 and 64.

Estimation of functional connectivity strength. The authors
estimated rs-fcMRI strength based on Pearson’s correlation.
Regionally the specific functional connectivity strength S(ri)

FIG. 1. Schematic of proposed methods. The main modules are linear regression analyses of rs-fcMRI estimate
strengths within specific functional networks against the CBF-BOLD coupling (case I) and macrovascular volume frac-
tion (case II). Regionally specific functional connectivity strengths are assessed by calculating the sum of connectivity
strengths in major nodes of predefined resting-state networks. For this purpose, they selected the default mode network,
frontoparietal network, and primary sensory-motor network. BOLD, blood oxygenation level-dependent; CBF, cerebral
blood flow.
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was assessed by averaging correlation coefficients between
each voxel and major nodes of established resting-state net-
works (Rubinov and Sporns, 2010; Van Dijk et al., 2012):

S(ri) =
1

J
+
J

j = 1

C(ri, rj)

C(ri, rj) = tanh� 1(qx(ri), y(rj)
) �

ffiffiffiffiffiffiffiffiffiffiffiffi

M� 3
p

,

(2)

where x(ri) is the resting-state BOLD time series at the ith
voxel, y(rj) is the average BOLD time series within the jth net-
work node, qx(ri), y(rj)

is the Pearson correlation coefficient be-
tween x(ri) and y(rj), C(ri, rj) is the connectivity between the
ith voxel and the jth major node; J is the total number of nodes
(ROIs) within a predefined network, and M is the total number
of time points. Note that the rs-fcMRI-strength map is simply
an average of functional connectivity maps generated using all
seeds of the selected resting-state network (Biswal et al., 1995;
Fox et al., 2005; Liu et al., 2010), and this measure has been
used in numerous studies that investigate the nature of resting-
state functional connectivity (Liang et al., 2013; Liu et al.,
2010; Markett et al., 2014; Van Dijk et al., 2012). Thus,
correlations-based rs-fcMRI estimation is also their metric
of choice, as they would like to maximize the applicability
of their findings to the field.

Functional networks and seed locations. The resting-
state networks considered in their analysis include (a) the
default mode network (Greicius et al., 2003), (b) the fronto-
parietal network (Fox et al., 2005; Markett et al., 2014; Toro
et al., 2008; Vincent et al., 2008), and (c) the primary sensory-
motor (including motor, auditory, and visual) network (Biswal
et al., 1995). These are among the most consistent and exten-
sively studied in the literature. Their definitions of the net-
works are: (a) default mode network: posterior cingulate
cortex, medial prefrontal cortex, lateral parietal cortex,
and the parahippocampal region; (b) frontoparietal network:
dorsolateral/anterior prefrontal cortex, inferior/superior
parietal lobule, and anterior insula; (c) the primary sensory-
motor network: bilateral regions similar in function, such
as the motor, visual, and auditory cortices. The primary sen-
sor and motor regions exhibit high levels of local connec-
tivity consistent with a modular organization that is likely
to reflect interactions between nearby areas (see Fig. 3 in
Sepulcre et al., 2010).

The authors used the anatomical locations of seed voxels
reported by Toro and colleagues (2008), Fox and colleagues
(2005), Vincent and colleagues (2008), Van Dijk and col-
leagues (2010), and Biswal and colleagues (1995) to generate
the rs-fcMRI maps of the above networks, and calculate the
corresponding rs-fcMRI strength maps. The MNI coordinates
of the seeds for each network are summarized in Table 1, and
are shown overlaid on the anatomical brain template and seed-
based rs-fcMRI maps in Figure 2. A sphere with a radius of
8 mm centered at each of the seed voxels was used to construct
each network node ROI.

Associating rs-fcMRI strength with CBF-BOLD coupling
and macrovascular content. A linear regression analysis
was performed to identify the relationship between neuro-
vascular factors and rs-fcMRI strength. Specifically, they
modeled the dependent variable, namely the estimated rs-

fcMRI strength, with an explanatory variable, namely either
the dynamic CBF-BOLD coupling or the MRA-derived rest-
ing macrovascular fraction. All parameters were calculated
for each voxel within the predefined ROIs of each network
(Table 1), and then averaged across each network node, for
the left and right hemispheres separately. In the regression
analysis, they only considered regions associated with signif-
icant CBF-BOLD coupling ( p < 0.01, uncorrected). For the
regression between rs-fcMRI strength and CBF-BOLD cou-
pling, the number of data points (n) was 36, 62, and 27 for the
default mode network, the frontoparietal network, and the
primary sensory-motor network, respectively. For the regres-
sion between rs-fcMRI strength and macrovascular volume
fraction, n = 36, 39, and 18 for the default mode network,
the frontoparietal network, and the primary sensory-motor
network, respectively. Note that since not every ROI
contains a large vessel, the number of samples used in the re-
gression analysis between connectivity strength and macro-
vascular volume fraction was slightly decreased from these

Table 1. Montreal Neurological Institute

Coordinates of Regions of Interest Within

the Three Predefined Networks

Region x y z

Default mode network
PCC �6 �58 28

6 �46 8
MPFC �2 46 �4

6 50 28
lLPC �46 �66 24
rLPC 53 �67 36
lparaHipp �22 �22 �20
rparaHipp 18 �22 �20

Frontoparietal network
lMT + �45 �69 �2
rMT + 50 �69 �3
laPFC �36 57 9
raPFC 34 52 10
lFEF �25 �8 50
rFEF 27 �8 50
lSPL �27 �52 57
rSPL 24 �56 55
ldlPFC �50 20 34
rdlPFC 46 14 43
laINS �31 21 �1
raINS 31 22 �2
laIPL �52 �49 47
raIPL 52 �46 46

Motor network
lMot �42 �25 63
rMot 42 �25 63

Auditory network
lVis �43 �26 12
rVis 43 �26 12

Visual network
lAud �30 �88 0
rAud 30 �88 0

aIPL, anterior inferior parietal lobule; aINS, anterior insula; aPFC,
anterior prefrontal cortex; Aud, auditory cortex; dlPFC, dorsolateral
prefrontal cortex; FEF, frontal eye fields; LPC, lateral parietal cortex;
Mot, motor cortex; MPFC, medial prefrontal cortex; MT + , middle-
temporal area; paraHipp, parahippocampal region; PCC, posterior cin-
gulate cortex; SPL, superior parietal lobule; Vis, visual cortex.
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numbers. They performed the same linear regression analy-
ses on regions of noninterest to verify that the relationship
between neurovascular factors and rs-fcMRI strength is in-
deed specific to regions covered by the resting-state networks.
Again, all parameters were calculated for each voxel and
then averaged across the left and right hemispheres of each
subject, separately. Again, the authors limited the analysis
to regions of significant CBF-BOLD coupling for a fair com-
parison, whereas CBF and BOLD fluctuations were much
less coupled outside the main regions of resting-state net-
works (Tak et al., 2014). Linear regression was then per-
formed by minimizing the sum of squared residuals.

Results

Sample maps of rs-fcMRI strength in the default mode
network as well as whole-brain CBF-BOLD coupling maps

and macrovascular volume fractions are shown in Figure 3
for three representative participants. Their rs-fcMRI maps
(z-scores) are similar to those reported previously (Biswal
et al., 1995; Fox et al., 2005; Greicius et al., 2003; Van
Dijk et al., 2010; Vincent et al., 2008). Volumetric z-maps
for rs-fcMRI strength and CBF-BOLD coupling are overlaid
on a cortical surface atlas constructed using the Freesurfer
(surfer.nmr.mgh.harvard.edu) (Dale et al., 1999), thresh-
olded at a significance level of uncorrected p < 0.01. While
the CBF-BOLD coupling (Fig. 3b) is highly variable across
the brain, the most significant coupling is found in the ma-
jor nodes of the default mode network and frontoparietal
network. More details on this spatial distribution can be
found in their previous work (Tak et al., 2014). In addition,
the macrovasculature map (Fig. 3c) demonstrates that the
MRA data was able to capture both pial vessels and intracra-
nial vessels.

FIG. 2. Anatomical locations of seed regions within the predefined networks. The predefined functional network regions,
shown in blue, include the (a) default mode network, (b) frontoparietal network, and (c) primary sensory-motor (visual,
auditory, and motor) network. Seed positions for each network are overlaid on the anatomical brain template and the corre-
sponding fcMRI maps. The anatomical template is taken from the MRIcro software (publicly available at: www.mccauslandcenter
.sc.edu/mricro/mricron/). aINS, anterior insula; aIPL, anterior inferior parietal lobule; aPFC, anterior prefrontal cortex; FEF,
frontal eye fields; dlPFC, dorsolateral prefrontal cortex; LPC, lateral parietal cortex; MPFC, medial prefrontal cortex; MT + ,
middle temporal area; paraHipp, parahippocampal region; PCC, posterior cingulate cortex; SPL, superior parietal lobule.

FIG. 3. Sample individual maps of the functional connectivity strength of the default mode network, dynamic CBF-BOLD
coupling, and macrovascular volume fraction. Maps of (a) functional connectivity strength (in terms of z-statistics) and (b)
CBF-BOLD coupling are both overlaid on a cortical surface model. (a) Connectivity is shown at this point for the default
mode network. (b) Significantly positive CBF-BOLD coupling is detected in the main regions of networks such as default
mode and frontoparietal networks. (c) Macrovascular volume fraction includes the resting blood volume fractions of both
pial vessels and intracranial vessels. The regional association between the dynamic CBF-BOLD coupling and macrovascular
volume fraction with functional connectivity strength was quantitatively explored using an ROI analysis.
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Regional associations between functional connectivity
strength (seed-based) and CBF-BOLD coupling as well as
macrovascular volume fraction are shown in Figure 4. The
scatter plots depict the associations between two variables
(regional rs-fcMRI strengths along with either regional CBF-
BOLD coupling strength or macrovascular volume fraction).
Increased rs-fcMRI strength is associated with increased

CBF-BOLD coupling in all regions of the default mode net-
work (r = 0.47, p = 0.004), the frontoparietal network (r =
0.24, p = 0.06), and the primary sensory-motor network
(r = 0.35, p = 0.07). Conversely, increased macrovascular vol-
ume fraction was significantly associated with decreased
rs-fcMRI strength in all networks: default mode network (r =
�0.65, p = 1.71 · 10�5), frontoparietal network (r =�0.31,

FIG. 4. Associations be-
tween functional connectivity
strength, CBF-BOLD cou-
pling, and macrovascular
volume fraction in multiple
functional networks. Func-
tional connectivity was esti-
mated using the conventional
seed-based correlation ap-
proach. The scatter plots de-
pict the spatial correlation
between samples of two var-
iables (connectivity strengths
and either CBF-BOLD cou-
pling or resting blood volume
fraction) averaged across
ROIs involved in (a) the de-
fault mode network, (b) the
frontoparietal network, and
(c) the primary sensory-motor
(motor, auditory and visual)
network. (d) As control ROIs,
we selected additional ROIs
outside main regions of
resting-state networks. Each
data point represents one ROI
from one participant. The
degree of functional connec-
tivity among all network re-
gions significantly increased
as the BOLD-CBF coupling
increased. In contrast, func-
tional connectivity strength
was significantly reduced as
the macrovascular volume
fraction increased. These
associations between con-
nectivity strength and neuro-
vascular factors were
consistently observed within
the regions of resting-state
networks, but not statistically
significant outside of these
networks.
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p = 0.05), and primary sensory-motor network (r =�0.76,
p = 0.0002). These associations between connectivity strength
and neurovascular factors were consistently observed within
the regions of resting-state networks, but not statistically sig-
nificant outside of these networks.

Discussion

The role of neurovascular contributions
to resting-state BOLD

While the role of CBF in generating the stimulus-evoked
BOLD effect has been widely studied (Buxton et al., 1998;
Davis et al., 1998), the biophysics of resting-state BOLD
is far from being fully understood. The importance of un-
derstanding neurovascular contributions to resting-state
BOLD is increasingly recognized, as outlined in a recent
review (Liu, 2013). There is sparse but strong evidence
that spontaneous CBF fluctuations in resting-state func-
tional networks reflect neuronal activity, and CBF changes
are one of the primary contributors to the intrinsic BOLD
fluctuations (Chuang et al., 2008; Fukunaga et al., 2008;
Liang et al., 2013; Viviani et al., 2011; Zou et al., 2009).
In their previous work (Tak et al., 2014), they further
showed this dynamic BOLD-CBF coupling as spatially var-
iable (Fig. 3b), but most significant within major nodes of
resting-state networks. Interestingly, this CBF-BOLD cou-
pling also decreased as the macrovascular volume fraction
increased (Tak et al., 2014). As a high macrovascular vol-
ume fraction corresponds to low neuronal specificity (Dagli
et al., 1999), their observation suggests that high degrees of
BOLD-CBF coupling are likely to suggest higher neuronal
specificity. However, the influence of this intrinsic neuro-
vascular involvement on the resting-state functional con-
nectivity estimates was unclear, setting the stage for the
current study.

The role of CBF-BOLD coupling in resting-state
functional connectivity estimates

Along with the explosive growth in rs-fcMRI is the con-
sensus that a better understanding of the resting-state fMRI
phenomenon is essential for the interpretation of the results,
as rs-fcMRI results alone can be inconsistent or ambiguous
(Bright and Murphy, 2013; Murphy et al., 2009; Van Dijk
et al., 2012). Specifically, as functional connectivity is a sec-
ondary measure derived from the resting-state fMRI signal
itself, its interpretation from neurovascular physiology is
not straightforward. In fact, non-neural factors such as respi-
ration and head motion (Van Dijk et al., 2012) have been
found to modulate rs-fcMRI estimates, calling into question
the neuronal specificity of rs-fcMRI estimates.

In this work, the authors establish the role of dynamic
CBF-BOLD coupling as an intrinsic factor that influences
rs-fcMRI strength. The primary finding of this study is that
regionally specific functional connectivity strength is signif-
icantly and positively associated with the degree of dynamic
coupling between the BOLD and the CBF signal in all func-
tional networks considered. As CBF is often viewed as a
more direct measure of neuronal activity (Kim, 2012), this
work attests to the neurovascular and, by extension, neuronal
relevance of rs-fcMRI measures despite the many potential
confounds.

The influence of large blood vessels on resting-state
functional connectivity estimates

Complementing their first finding is the discovery that re-
gions of high macrovascular content, previously found to ex-
hibit weaker CBF-BOLD coupling, are also associated with
weaker rs-fcMRI strength. As described in the earlier sec-
tion, while large vessels contribute significantly to BOLD
contrast, they are less specific to neuronal activity due to
their location and the enhanced weighting toward physiolog-
ical noise (Dalgi et al., 1999; Polimeni et al., 2010), and,
therefore, may reduce the interpretability of rs-fcMRI esti-
mates. Taken with the previous findings (Liang et al., 2013;
Tak et al., 2014), their work shows that not only are regions
with higher rs-fcMRI strengths associated with higher
resting-state CBF and by extension, higher metabolism
(Bullmore and Sporns, 2012), these regions also exhibit
tighter CBF-BOLD coupling. Furthermore, rs-fcMRI estima-
tes in such regions are least likely to be affected by non-neu-
ronal sources such as respiration and cardiac pulsation (Birn
et al., 2006; Chang and Glover, 2009; Tak et al., 2014).
Therefore, it is likely that the rs-fcMRI measures observed
at the heart of most known functional networks are mediated
by true neuronal connections or pathways rather than by the
macrovasculature (i.e., the plumbing).

Neuronal interpretation of resting-state fcMRI

This work was motivated by the important need to clarify
the metabolic involvement of resting-state BOLD. To that
end, Fukunaga and colleagues (2008) approximated the meta-
bolic involvement in resting-state BOLD by the ratio of the
BOLD signal to the CBF signal, and found this relationship
to be similar to that observed during visual stimulation, sup-
porting the neuronal relevance of resting-state fMRI. Using
a similar approach, and adopting the Davis BOLD model
(Davis et al., 1998), Wu and colleagues (2009) generated
functional connectivity maps from the CMRO2 signal that re-
semble those based on CBF and on BOLD. Nonetheless, it is
likely that these CMRO2 estimates were dominated by CBF
variability, as it remains unclear whether the steady-state
Davis model is appropriate for resting-state BOLD. Multimo-
dal methods, involving simultaneous fMRI and electroenceph-
alography for instance, may provide invaluable evidence with
regard to metabolism. However, the interpretation of meta-
bolic demand from such data is often not straightforward,
and the limited spatial resolution likely precludes detailed as-
sessment of neurovascular involvement (Laufs, 2010).

A welcome interpretation of their finding is that given that
conventional preprocessing is performed, the regions with
the strongest BOLD fcMRI estimates are likely not to be
dominated by non-neuronal sources such as motion. Coinci-
dentally, Liang and colleagues (2013) recently reported that
higher rs-fcMRI estimates were associated with higher base-
line resting CBF, further supporting a higher neuronal rele-
vance in higher rs-fcMRI measurements. This finding can
potentially translate into improved ways of thresholding
rs-fcMRI maps for interpretation.

Potential caveats

Due to limitations in the spatial resolution and sensitivity
of the 3D TOF MRA technique, certain vessels may not
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have been clearly delineated, affecting their detectability.
This may be exacerbated by suboptimal thresholding in
the segmentation process. Despite potential incompleteness
in their vascular segmentation, the strong correlations ob-
served between vascular volume fraction and rs-fcMRI
strength preclude the possibility of dominance by random
biases. Moreover, the differences between networks could
also arise from the fact that the distribution of large vessels
in the brain is nonuniform (Duvernoy et al., 1981). None-
theless, to test whether their conclusion is valid regardless
of potentially miss-classified vasculatures in their MRA
data, they repeated their analyses using an alternative vas-
cular atlas, derived from the MNI digital brain phantom
(Aubert-Broche et al., 2006). As shown in Figure 5, this
method also produced results showing an inverse correla-
tion between functional connectivity strength and macro-
vascular volume fraction within all functional networks
considered. These results are consistent with those obtained
from their own MRA data, and suggest that the main find-
ings of this study are not biased by the method of segment-
ing MRA data.

Another potential drawback of this study is the small group
size in this study (n = 9), limiting the statistical power
(Desmond and Glover, 2002). Nonetheless, their findings re-
garding the physiological relationship between connectivity
strength and neurovascular factors are statistically significant
and consistent across the functional networks, and consis-
tently insignificant outside the network regions, supporting
the validity of their conclusions. In future work, they may ex-
plore the use of meta-analyses to boost the statistical signif-
icance and generalizability of their findings.

Conclusion

In this study, using concurrently measured BOLD and
CBF time series and MRA-derived maps of macrovascula-
ture, they explored regional associations linking dynamic
CBF-BOLD coupling, resting macrovascular volume frac-
tion, and resting-state BOLD-based rs-fcMRI estimates. They
found that rs-fcMRI strength significantly increased with rising
CBF-BOLD coupling strength and decreasing macrovascular
volume fraction. This was true within well-known functional

FIG. 5. Macrovascular volume fraction derived from the MNI digital brain phantom, and its associations with functional
connectivity strength. (a) Vessels in the digital brain phantom (Aubert-Broche et al., 2006) were imaged by using Proton
Density-weighted MRI, and MR angiography, and then segmented by using a multiscale geometric flow-based method. Seg-
mented vessels include superficial vessels as well as penetrating vessels. The scatter plots depict the negative linear relation-
ship between samples of macrovascular volume fraction and connectivity strengths averaged across all voxels of ROIs
involved in (b) default mode networks, (c) frontoparietal network, and (d) primary sensory-motor cortex.
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networks, including the default mode, frontoparietal, and pri-
mary sensory-motor networks. Their results suggest that
higher rs-fcMRI strength is a sign of neuronal dominance
rather than that of physiological noise.
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