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Abstract

This systematic review aimed to assess the reproducibility of graph-theoretic brain network metrics. Primary
research studies of test-retest reliability conducted on healthy human subjects were included that quantified
test-retest reliability using either the intraclass correlation coefficient (ICC) or the coefficient of variance. The
MEDLINE, Web of Knowledge, Google Scholar, and OpenGrey databases were searched up to February
2014. Risk of bias was assessed with 10 criteria weighted toward methodological quality. Twenty-three studies
were included in the review (n = 499 subjects) and evaluated for various characteristics, including sample size
(5–45), retest interval ( < 1 h to > 1 year), acquisition method, and test-retest reliability scores. For at least
one metric, ICCs reached the fair range (ICC 0.40–0.59) in one study, the good range (ICC 0.60–0.74) in five
studies, and the excellent range (ICC > 0.74) in 16 studies. Heterogeneity of methods prevented further quanti-
tative analysis. Reproducibility was good overall. For the metrics having three or more ICCs reported for both
functional and structural networks, six of seven were higher in structural networks, indicating that structural net-
works may be more reliable over time. The authors were also able to highlight and discuss a number of meth-
odological factors affecting reproducibility.
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Introduction

Graph theory has recently been applied to brain imag-
ing data and shows promise as an interpretable and gen-

eralizable way to model brain networks (Bullmore and
Sporns, 2009; Park and Friston, 2013). In graph theory, a
graph is a mathematical construct used to model the relation-
ships between objects, in which the objects are called verti-
ces and their interconnecting links are called edges. In terms
of brain networks, regions of interest (ROIs) can be repre-
sented by the vertices in a graph, and some measure of con-
nectivity between those ROIs can be represented by the
edges. One of the main advantages to this model is that sim-
ple, numerical summary descriptors of graph organization
can be derived, which describe the graph structure or topol-
ogy in terms of the whole network (Rubinov and Sporns,
2010). The most common descriptors are characteristic
path length (a measure of how easy it is to traverse the
whole graph), clustering coefficient (a measure of local con-
nectivity), and small-worldness (the state of being highly
clustered, yet having a short average path (Watts and Stro-
gatz, 1998)) considered to be a highly efficient structure

(Latora and Marchiori, 2001). These metrics provide a way
to characterize the underlying functional and structural
brain networks and allow comparisons across time, subjects,
or groups of subjects.

There has been a trend toward applying these techniques in
studies of patient populations to investigate how, on the level
of whole-brain networks, symptoms may emerge from the un-
derlying neurological injury or psychopathology. Studies
have demonstrated significant differences in metrics derived
from graphs of brain networks between diseased and healthy
groups as well as in normal development (Supekar et al.,
2009), for example, in multiple sclerosis (He et al., 2009),
Alzheimer’s (Buckner et al., 2009; Stam et al., 2009), Parkin-
son’s (Göttlich et al., 2013), epilepsy (Quraan et al., 2013),
and body dysmorphic disorder (Arienzo et al., 2013) [for re-
views see Bassett and Bullmore (2009); Menon (2011); Wang
et al. (2010)], and have offered various interpretations of
these findings. With this wave of positive results, some au-
thors have suggested the use of graph metrics as surrogate
markers in clinical trials (Petrella, 2011) and even suggested
that they have potential as diagnostic tools (Quraan et al.,
2013; Schoonheim et al., 2013). However, such applications
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are dependent, alongside validity, on evidence of reliability
and responsiveness to intervention.

Several recent studies have aimed to meet this need by
measuring the test-retest reliability of graph metrics
(Andreotti et al., 2014; Bassett et al., 2011; Braun et al.,
2012; Buchanan et al., 2014; Cao et al., 2014; Cheng et al.,
2012; Dennis et al., 2012; Deuker et al., 2009; Duda et al.,
2014; Fan et al., 2012; Faria et al., 2012; Guo et al., 2012;
Jin et al., 2011; Liang et al., 2012; Liao et al., 2013;
Niu et al., 2013; Owen et al., 2013; Park et al., 2012; Parker
et al., 2012; Schwarz and McGonigle, 2011; Telesford et al.,
2010; Vaessen et al., 2010; Wang et al., 2011; Weber et al.,
2013). To achieve this, graphs of brain networks derived
from healthy volunteers at two or more time points were ana-
lyzed to determine their organizational properties, and the
level of agreement between the measurements quantified
using an intraclass correlation coefficient (ICC). Most studies
employed a variation on this design; for example, a common
secondary aim was to identify the data preprocessing and
graph construction strategies, which resulted in the most re-
producible graph metrics. While many of these studies con-
cluded that graph metrics were reliable enough for wider
application in future translational research, heterogeneity in
their methods and quality and the occurrence of some conflict-
ing results mean that no consensus view is apparent.

In this study, the authors aimed to systematically review
and summarize the published literature describing the test-
retest reliability of graph-theoretic brain network metrics.
Specifically, the authors ask the following: (1) What is the
test-retest reliability of graph metrics in brain networks?
(2) Based on reliability data, which graph metrics show the
greatest promise for translation into clinical neuroscience re-
search? And (3) how do methodological factors in data anal-
ysis impact the test-retest reliability of graph metrics?

Materials and Methods

Search strategy

A systematic literature search was performed indepen-
dently by two researchers (T.W. and D.A.K.) on the 9th of
February, 2014, in the MEDLINE (www.ncbi.nlm.nih.gov/
pubmed/), Web of Knowledge (http://wok.mimas.ac.uk/),
Google Scholar (http://scholar.google.co.uk/), and Open-
Grey (www.opengrey.eu/) databases. Based on keywords
identified from the known literature, the authors used the
following search string: (‘‘graph theory’’ OR ‘‘graph theo-
retical’’) AND (‘‘TRT’’ OR ‘‘test-retest’’ OR ‘‘reproduc-
ibility’’). The authors included all languages and dates in the
search. For Google Scholar, results were sorted by relevance
and only the top 100 were checked. The authors searched the
reference lists of the included articles to identify any addi-
tional relevant articles.

In the first phase of screening, articles were identified that
attempted to measure the test-retest reliability of summary
graph metrics in human brain networks based on the title
and abstract. In the second phase of screening, the authors
excluded any articles that did not meet all of the following
criteria: (1) to avoid the confounding effect of any disease
process, the study must use data only from healthy human
subjects; (2) to make simple comparisons between studies,
the study must measure reproducibility using either the
ICC (Shrout and Fleiss, 1979) or coefficient of variance

(CV); (3) the article must not be a review or meta-analysis;
and (4) the full text of the article must be available.

Qualification of researchers

The literature search was performed by T.W. (who has ex-
pertise in computer science and radiological science) and
D.A.K. (who has expertise in medicine and radiological sci-
ence). Both were supervised and trained in the conduct of
systematic reviews by the authors D.P.A. and R.A.D., each
holding PhDs and experienced in neuroimaging research
and systematic review.

Data extraction and synthesis

From each article, the authors recorded and tabulated the
number of subjects, the type of scan, the interscan interval,
and the conclusions drawn about the reliability of graph met-
rics. From each article reporting reliability measurements de-
rived from structural networks, the authors also recorded the
software tools used for parcellation, registration, diffusion
modeling, fiber tracking, and the edge weight definition
used. Data were extracted independently by two researchers
(T.W. and D.A.K.) and then merged to reduce the chance
of data being missed or reported incorrectly. In the case of
a conflict, the article in question was reviewed and discussed
by both researchers together until an agreement was reached.
Because the acquisition protocol used may be a factor trans-
lating into graph retest performance, results for structural and
functional data were tabulated separately. A qualitative syn-
thesis based on the included articles’ findings and about how
they relate to reliability was written for each of the following
recurrent or important themes identified in the literature:
choice of density threshold, type of ICC used, ROI size, retest
interval, preprocessing strategy, type of graph metric, and
fiber tracking algorithm. The software used for graph thresh-
olding and calculating metrics was assumed to be equivalent;
most studies used custom software with the Brain Connectiv-
ity Toolbox (Rubinov and Sporns, 2010) and the algorithms
for the different graph metrics are well defined.

Risk of bias assessment

To assess the quality of each included study, the authors
rated each article using a set of 10 criteria based on previous
quality checklists (Downs and Black, 1998; West et al., 2002;
Von Elm et al., 2007). Each criterion was assigned a weight
of 1, 2, or 3 such that the emphasis was placed on quality of
methodology rather than reporting. The highest possible
score was 20 and the lowest, 0. The quality of each article
was assessed independently by two researchers (T.W. and
D.A.K.) and then finally determined by consensus. Low-
scoring articles were not omitted, but their conclusions car-
ried less influence within the review.

Results

Literature search

The database search returned 202 results, of which 73
were excluded for being duplicates. In the first phase of
screening, 105 of the remaining 129 articles were excluded
for not measuring the reliability of graph metrics in brain net-
works. In the second phase of screening, 1 of the remaining

194 WELTON ET AL.



24 articles (Faria et al., 2012) was excluded for analyzing the
test-retest reliability of individual edge weights instead of
summary graph metrics, leaving 23 articles to be included
in the review. Figure 1 shows the results of the literature
search process at each stage.

Risk of bias

The criteria used for quality assessment and the quality
scores for each study are shown in Supplementary Table S1
(Supplementary Data are available online at www.liebertpub
.com/brain). The reviewers agreed on quality criteria in 196
(89.1%) of the 230 total checks (10 criteria for each of 23
studies). In the cases where scores conflicted, a consensus was
reached by discussion. Quality scores ranged from 16 to 20
with a median score of 20.

Frequent limiting factors in the methodological quality of
the reviewed studies were not using a scanner with field
strength of greater than 1.5 T (lower signal-to-noise ratio
than higher strength magnets) and using small sample sizes.
Some of the penalties incurred were due to inadequate report-
ing, such as failure to describe the type of ICC used or inad-
equate characterization of the sample. Particular strengths of
the included studies were their appropriate choosing of acqui-
sition, processing and graph construction methods, and clarity
when reporting them.

Study characteristics

Table 1 gives a summary of each study’s design and con-
clusions. The number of subjects in the studies ranged from 5
to 45 and numbered 499 in total. The most frequent image
acquisition methods were functional magnetic resonance im-
aging (fMRI; 11 instances; 48% of 23) and diffusion tensor
imaging (DTI; 10 instances; 43% of 23), but there were
also two studies using magnetoencephalography data (10%
of 23), one using functional near-infrared spectroscopy
(fNIRS) and one using arterial spin labeling (each 5% of

23). The test-retest interval ranged from being shorter than
1 h to being longer than 1 year.

Within each study using functional data, at least one met-
ric reached the excellent range in nine studies (Braun et al.,
2012; Deuker et al., 2009; Guo et al., 2012; Liao et al., 2013;
Niu et al., 2013; Park and Friston, 2013; Telesford et al.,
2010; Wang et al., 2011; Weber et al., 2013) (ICC > 0.74;
64% of 14), the good range in three studies (Cao et al.,
2014; Jin et al., 2011; Schwarz and McGonigle, 2011)
(ICC 0.60–0.74; 21% of 14), the fair range in one study
(Liang et al., 2012) (ICC 0.40–0.59; 7% of 14), the poor
range in none of the studies (ICC < 0.40; 0% of 14), and
one study did not fully report ICC data (Fan et al., 2012).

Within each study using structural data, at least one met-
ric reached the excellent range in seven studies (Andreotti
et al., 2014; Buchanan et al., 2014; Cheng et al., 2012;
Duda et al., 2014; Owen et al., 2013; Parker et al., 2012;
Vaessen et al., 2010) (78% of 9), the good range in two studies
(Bassett et al., 2011; Dennis et al., 2012) (22% of 9), the fair
range in none of the studies (0% of 9), and the poor range in 0
studies (0% of 9).

Tables 2 and 3 list the highest ICC measurements from the
studies that reported the exact ICC values for those metrics.
Table 4 draws a comparison between the methods employed
in studies of the test-retest reliability of graph metrics in
structural brain networks.

Synthesis of results

Acquisition method. The method used to acquire the test-
retest data is one factor influencing reproducibility due to the
differences in sensitivity to different physical properties of
the brain between methods. Of the metrics for which three
or more ICCs were reported for both functional and struc-
tural groups, six of seven were higher in the metrics based
on structural data (Tables 2 and 3). This difference may
have been expected, given the brain’s dynamic and rapidly
fluctuating hemodynamic state, even at rest, compared with
its relatively static structure (Biswal et al., 1995). None of
the included studies made a comparison between reliabilities
of graph metrics derived from different acquisition methods.

Graph thresholds. In graphs of functional networks,
edges are weighted by the correlation coefficient between
the time series of two ROIs. In graphs of structural networks,
edges are weighted by the number of streamlines connecting
two ROIs. Typically, before calculating graph metrics, an ar-
bitrary threshold is chosen below which edge weights are set
to zero. Several different approaches were taken when thresh-
olding weighted graphs. The most common was to threshold
the graph at a range of densities (the density of a graph is
given by the ratio of existing edges in the graph to the number
of possible edges). Other approaches were fixed thresholding
(Fan et al., 2012), mean degree thresholding (Owen et al.,
2013), average path length thresholding (Telesford et al.,
2010), and calculating weighted variants of graph metrics
( Jin et al., 2011). While no study attempted to isolate the
range of density threshold used to determine its effect on re-
producibility, one study (Guo et al., 2012) compared the use
of a fixed threshold (based on the edge weight alone) with soft
and proportional thresholding techniques, but found neither to
be significantly more reliable.

FIG. 1. Flowchart describing the number of results at each
stage of the literature search.
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ROI size. Three studies looked at the effect of the ROI
size on reproducibility. One tested the relationship between
the ROI size (from within a single structural parcellation)
and test-retest reliability of local DTI-based graph metrics
over time (Andreotti et al., 2014). Another used three differ-
ent structural atlases (based on anatomical, as opposed to
functional regions) and upsampled them by dividing each re-
gion into two, thereby doubling the resolution, and tested the
reproducibility of the resulting global DTI-based graph met-
rics over time (Bassett et al., 2011). These two studies found
that graphs based on larger structural ROIs and derived from
DTI data produced metrics that were more reliable than those
based on upsampled or more finely grained parcellation
schemes. By contrast, the third study, which used fMRI
data, found metrics derived from graphs based on a high-
resolution functional atlas to be more reproducible than
those of a lower resolution structural atlas (Cao et al., 2014);
however, these results were based on ICCs averaged over
three types of tasks, within which there were significant dif-
ferences in reproducibility. It is unclear whether the reported
difference in reliabilities associated with atlas resolution
would have retained significance when compared within
each task condition or at rest.

Preprocessing strategy. All included studies used differ-
ent strategies and tools for data preprocessing. One study
(Parker et al., 2012) tested two entirely different DTI pipelines,
finding differences in CV and ICC values between them; how-
ever, interpretation of the results is limited by not being able to
identify which of the steps were responsible for the greatest dif-
ferences in reliability. Another study (Braun et al., 2012) tested
seven fMRI pipelines, varying one step of a standard pipeline
at a time, and found that including a broader frequency band

from the fMRI time series and using global signal regression
yielded the most reliable graph metrics. A third study (Cao
et al., 2014) tested five different task regression methods and
two atlases on fMRI data, identifying two approaches to re-
gression as being the most effective and finding that neither
the functional nor the structural atlas produced significantly
more reproducible metrics than the other.

Type of graph metric. Of the many summary measures of
graph organization, several classifications can be made; for
example, global and local metrics or weighted and binary
metrics. All of the included articles gathered reliability mea-
surements for different metrics, and many of them drew a di-
rect comparison between the test-retest reliability of different
metrics or types of metrics. Two studies (Andreotti et al.,
2014; Cao et al., 2014) distinguished between local and
global metrics, each finding global metrics to be more repro-
ducible, with local metrics being more variable. One (Braun
et al., 2012) noted that first-order metrics (those derived di-
rectly from the graph) were less reproducible than second-
order metrics (those derived from the first-order metrics).
Four studies, each with different acquisition types, focused
on the relative reproducibility of individual metrics. The
first (Dennis et al., 2012), which acquired DTI data, found
that modularity was the most reproducible metric. The sec-
ond (Niu et al., 2013), which acquired resting-state fNIRS
(RS-fNIRS), and the third (Telesford et al., 2010), which ac-
quired fMRI during performance of an executive task, found
that the clustering coefficient and global efficiency were both
the most reproducible metrics, with the third noting that de-
gree was the least reproducible. In contrast, the fourth study
(Wang et al., 2011), which acquired RS-fMRI data, found
that degree was the most reproducible metric.

Table 4. Comparison of the Approaches Taken in Studies of Graph

Metrics’ Reliability in Structural Networks

Study Acquisition

Number of
diffusion gradient

directions
Parcellation

scheme Registration
Diffusion
modeling

Fiber tracking
algorithm

Edge weight
definition

Andreotti DTI 42 FreeSurfer FSL FSL FSL f

Bassett DTI, DSI 30 AAL, HOA,
LPBA40,
upsampling

FSL TrackVis TrackVis b, a

Buchanan DTI 64 FreeSurfer FSL FSL FSL, FACT b, c, e

Cheng DTI 48 FreeSurfer FSL TrackVis TrackVis c, g

Dennis DTI 94 FreeSurfer FSL FSL FSL d

Duda DTI 34 DKT31 ANTs CAMINO FACT, Euler,
RK4, TEND

a

Owen DTI 30 FreeSurfer FSL FSL FSL d

Parker DTI 60 FreeSurfer,
NiftySeg

FSL,
NiftyReg

FSL, MRTrix FSL, MRTrix a

DTI
Vaessen DTI 32, 15, 6 WFUpick CATNAP CAMINO CAMINO a

aThe edge weight is given by the number of connecting streamlines between two ROIs.
bThe edge weight is given by the sum of the connecting streamlines divided by the mean of the two ROIs’ volumes.
cAs (a), but correcting for streamline length.
dThe number of fibers connecting the two ROIs normalized to the volume of the selected ROI.
eThe mean FA value along interconnecting streamlines.
fAs (c), divided by the sum number of streamlines started from the ROIs, multiplied by the sum size of the two ROIs.
gTwice the sum of the connecting streamlines between the two ROIs, divided by the sum volume of the 2 ROIs.
AAL, Automated Anatomical Labeling; ANTs, Advanced Normalization Tools; CATNAP, Coregistration Adjustment and Tensor Solv-

ing, A Nicely Automated Program; DKT31, Desikan–Killiany–Tourville; FACT, Fiber Assignment by Continuous Tracking; FSL, FMRIB
Software Library; HOA, Harvard–Oxford Atlas; LPBA40, LONI Probabilistic Brain Atlas; RK4, Fourth-order Runge-Kutta; TEND, Tensor
Deflection; WFUpick, Wake Forest University Pick.
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Fiber tracking algorithm. Eight different fiber tracking al-
gorithms were used by the included studies (Table 4). There
were two instances where different algorithms were com-
pared within-study to test the reproducibility of graph
metrics derived from each. In one (Buchanan et al., 2014),
the authors found that for gray matter seeds, neither the
FMRIB’s diffusion toolbox (FDT) nor fiber assignment
by continuous tracking (FACT) algorithms produced signif-
icantly more reproducible graph metrics than the other when
run with any weighting or waypoint length threshold. The
second study (Duda et al., 2014) compared four different al-
gorithms and found that none was consistently more repro-
ducible than the others for any graph metric.

Retest interval. The two studies looking at the effect of
the length of the interscan interval on graph metrics’ test-
retest reliability had divergent conclusions. The first found
that the reproducibility of graph metrics measured over a
short interval was greater compared with those measured
over a long interval (Schwarz and McGonigle, 2011).
Despite both using the same publicly available RS-fMRI
dataset, the second study found the opposite—that reproduc-
ibility was greatest when measured between the scans sepa-
rated by a long retest interval (Wang et al., 2011). The most
overt methodological difference between these studies was
that the first measured its long interval between scans > 5
months apart, whereas the second measured it between the
first scan ( > 5 months from the second) and the average of
the second and third scans ( < 1 h apart). The two studies
also used different atlases for parcellation and removed dif-
ferent sets of confound signals, which could have impacted
the result.

ICC type. There are six main types of ICCs, each one of
which has a subtly different interpretation (Müller and
Büttner, 1994); therefore, choosing the most appropriate
version of ICC is an important yet difficult task, which
must take into account the aim of the study. In this review,
nine studies (Dennis et al., 2012; Fan et al., 2012; Liang
et al., 2012; Liao et al., 2013; Niu et al., 2013; Schwarz
and McGonigle, 2011; Telesford et al., 2010; Wang
et al., 2011; Weber et al., 2013) used the ICC(1,1) version,
which is a measure of absolute agreement and is sensitive
to differences in means between raters. One study (Cao
et al., 2014) used the ICC(2,1) version, which treats raters
as random effects and emphasizes interchangeability be-
tween raters. Eight studies (Andreotti et al., 2014; Bassett
et al., 2011; Braun et al., 2012; Buchanan et al., 2014; Duda
et al., 2014; Guo et al., 2012; Jin et al., 2011; Park et al.,
2012) used the ICC(3,1) version, which treats raters as a
fixed effect and emphasizes inter-rater consistency, that
is, association between a finite set of scanners, but is not
generalizable beyond those scanners. Other methods used
to quantify the test-retest reliability were the CV and
Bland–Altman plots. No study compared ICC types or dis-
cussed the effect of their choice of statistical test on the in-
terpretation of their results.

Discussion

The authors have reviewed and summarized the published
literature that investigates the test-retest reliability of graph-

theoretic brain network metrics. The primary aim was to es-
tablish the reproducibility of graph metrics of brain net-
works. The authors find that reported ICC scores were
often in the good and excellent ranges, indicating that the
test-retest reliability can be adequate under certain condi-
tions. These scores varied between functional and structural
networks. For example, across the studies of functional net-
works, six metrics (the clustering coefficient, characteristic
path length, small-worldness, global efficiency, assortativity,
and local efficiency) had median ICCs across three or more
studies in the good or excellent ranges (Table 2). In the stud-
ies of structural networks, seven metrics (the clustering coef-
ficient, characteristic path length, degree, global efficiency,
modularity, local efficiency, and betweenness centrality)
met the same criteria (Table 3). These were the most repro-
ducible metrics and therefore may be the most promising for
future use in clinical neuroscience research. For the metrics
having three or more ICCs reported for both functional and
structural networks, six of seven were higher in structural
networks, indicating that structural networks may be more
reliable over time.

Another aim was to understand how different methodologi-
cal factors affect the reproducibility of graph summary mea-
sures. There was limited evidence that, when using structural
data, larger ROIs may be preferable, and that when using func-
tional data, smaller ROIs may be preferable. The authors also
find that global metrics are more reproducible than local met-
rics and second-order metrics are more reproducible than
first-order metrics. Different metrics are more or less reproduc-
ible depending on both the acquisition type and the state of the
test subject; for example, Wang and coworkers (2011) show
that for resting-state fMRI data, degree was the most reproduc-
ible metric, whereas for Telesford and associates (2010), under
an executive task fMRI scan, degree was the least reproduc-
ible. There was some evidence that the specific fiber tracking
algorithm used with DTI data had little effect on graph met-
rics’ reproducibility, and that the preprocessing steps taken
can significantly alter metrics’ reproducibility. The optimal
graph threshold type, retest interval, and ICC type were not
clear from the existing literature due to conflicting results,
and the sample size and number of gradient directions had no
clear correspondence to ICC scores (Table 3).

However, this analysis of methodological factors identi-
fies some important issues to be addressed. A major issue is
that the breadth of approaches and the range of reported
ICC types in the included articles prevented meta-analysis
and complicated the identification of any consensus view.
For example, even studies using the same dataset and per-
forming relatively similar analyses report drastically differ-
ent results (Schwarz and McGonigle, 2011; Wang et al.,
2011). There are still many unknowns in the methods
being applied, such as the ideal density threshold or
range, necessary fMRI scan length (known to affect reli-
ability (Birn et al., 2013; Whitlow et al., 2010), type of
atlas, and ROI size; furthermore, the most reproducible of
these is not necessarily the most biologically plausible.
Variability in the research designs of the individual studies
prevented any clear analysis strategy from standing out as
superior, so when testing multiple preprocessing pipelines
or analysis strategies, the authors recommend that research-
ers isolate one variable at a time and study its effect on re-
producibility rather than varying multiple aspects of the
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method at once. In this respect, two articles stand out as
good examples of research upon which future studies
could be modeled (Braun et al., 2012; Cao et al., 2014).
Individual processing steps can have a large impact on re-
sults; for example, the use of global signal regression has
been shown to obscure the findings of increased cortical
power and variance in schizophrenia (Yang et al., 2014).
The authors also suggest that replication studies are per-
formed to establish further the generalizability of the ICC
measurements across cohorts and across more than one re-
peat scan (four of the datasets used in the included studies
are freely available to download (Buchanan et al., 2014;
Duda et al., 2014; Liang et al., 2012; Schwarz and McGo-
nigle, 2011; Wang et al., 2011)).

Previous studies have suggested the use of graph metrics
in clinical trials (Petrella, 2011) and as diagnostic tools
(Quraan et al., 2013; Schoonheim et al., 2013). There is
clear appeal to this approach. Metrics are well defined in
terms of the graph itself, and studies in disease populations
have reported changes in the direction of metric score that
are consistent in relation to the disease status; for example,
in schizophrenia where clustering is consistently lower
than in healthy people (Anderson and Cohen, 2013; He
et al., 2012; Liu et al., 2008; Lynall et al., 2010; Rubinov
et al., 2009). However, in addition to the uncertainties re-
garding the contextual validity of graph summary measures
(i.e., why they correlate with some disease processes, and
whether some metrics hold any biological significance at
all), the issue of reproducibility is critical to address before
graph metrics are used in clinical trials or for clinical diag-
nosis. Several studies have concluded that the reproduc-
ibility of this approach is sufficient to allow application
in clinical research populations (Bassett et al., 2011;
Braun et al., 2012; Niu et al., 2013; Owen et al., 2013;
Tomasi and Volkow, 2011), but others have suggested
the opposite (Andreotti et al., 2014; Deuker et al., 2009).
On the findings of this review, in which the authors have
collated the evidence of graph metric reproducibility as
identified by systematic review, the authors cannot draw
conclusions about clinical relevance. While reproducibility
studies have often demonstrated good ICC measurements,
reproducibility is not the only criterion for suitability for
use in clinical trials; to the authors knowledge there have
been no studies examining the responsiveness of brain net-
work properties to intervention. This review of test-retest
reproducibility studies of GT metrics has also identified a
lack of studies assessing multicenter or multiplatform re-
producibility, which will be important to establish if GT
metrics are to be adopted in future multicenter treatment
trials. Although one of the included studies used data
from two different scanners, no comparison was made be-
tween them (Braun et al., 2012).

This review is also the first to systematically review data
processing strategies used in graph-theoretic analysis of
brain networks in the context of test-retest studies. Andreotti
and colleagues (2014) performed a short qualitative review,
in which they tabulate several parameters of the graph anal-
ysis, but only included six studies and did not compare or dis-
cuss the table in depth. Zuo and Xing (2014) conducted a
qualitative review of the test-retest reliability of resting-
state fMRI measurements in human brain networks, but did
not focus on graph metrics.

This study was limited primarily by incomplete reporting.
The original aim was to meta-analyze the published litera-
ture to provide summarized test-retest reliability data for
the various graph theory metrics, but it became apparent
that meta-analysis was not possible without full reporting of
the variances. Additionally, meta-analysis would be severely
limited by the heterogeneity of the methods employed in in-
dividual studies. To allow future meta-analysis, the authors
recommend that studies report the data fully in terms of var-
iances (standard deviation or range depending on normal or
nonnormal distribution) as well as the type of ICC calcu-
lated. The authors would also warn other authors to take
care when interpreting results based on a mixture of imag-
ing modalities.

Conclusion

The authors have identified the graph metrics, which
show the most promise for future research use. Reproduci-
bility for these metrics was frequently good and excellent.
Methodological factors impact upon reproducibility, and
researchers need to take these into account when planning
their analyses.
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