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Disentangling Brain Graphs:
A Note on the Conflation of Network and Connectivity Analyses
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Abstract

Understanding the human brain remains the holy grail in biomedical science, and arguably in all of the sciences.
Our brains represent the most complex systems in the world (and some contend the universe) comprising nearly
100 billion neurons with septillions of possible connections between them. The structure of these connections
engenders an efficient hierarchical system capable of consciousness, as well as complex thoughts, feelings,
and behaviors. Brain connectivity and network analyses have exploded over the last decade due to their potential
in helping us understand both normal and abnormal brain function. Functional connectivity (FC) analysis exam-
ines functional associations between time series pairs in specified brain voxels or regions. Brain network analysis
serves as a distinct subfield of connectivity analysis, in which associations are quantified for all time series pairs
to create an interconnected representation of the brain (a brain network), which allows studying its systemic
properties. While connectivity analyses underlie network analyses, the subtle distinction between the two re-
search areas has generally been overlooked in the literature, with them often being referred to synonymously.
However, developing more useful analytic methods and allowing for more precise biological interpretations re-
quire distinguishing these two complementary domains.

Introduction

Brain connectivity and network analyses have ex-
ploded over the last decade, moving to the forefront of

the neuroimaging field. Their importance in our understand-
ing normal and abnormal brain function has been well docu-
mented (Biswal et al., 2010; Sporns, 2010). Functional
connectivity (FC) analysis examines functional associations
between time series pairs in specified brain voxels or regions
(Biswal et al., 1995). Functional brain network analysis
serves as a distinct subfield of FC analysis, in which associ-
ations are quantified for all time series pairs to create an
interconnected representation of the brain (a brain network).
The resulting connection matrix is often thresholded to cre-
ate a binary adjacency matrix that retains significant connec-
tions (edges) while removing weaker ones, but weighted
(continuous) network analyses are gaining traction due to re-
cent methodological advances (Rubinov and Sporns, 2011).
The appeal of the network approach is that it allows studying
how systemic properties of the brain relate to behavioral and
health outcomes (Bassett and Bullmore, 2009; Bullmore and

Sporns, 2009; Simpson et al., 2013; Telesford et al., 2011).
In this study, we focus on FC and network analyses, but
the commentary in this note applies to structural analyses
as well.

As we have noted in Simpson and Laurienti (2015) and
elsewhere, the systemic organization present in brain net-
works confers much of our brains’ functional abilities as con-
nections may be lost due to an adverse health condition, but
compensatory connections may develop as a result to main-
tain organizational consistency and functional performance
as illustrated in Figure 1. Thus, different groups (or individ-
uals) may exhibit differences in connectivity, while retain-
ing the same network structure. In reality, the brain, likely,
only partially compensates for damaged connections as has
been discussed in both the brain network science literature
(Fischer et al., 2014; Fornito et al., 2015; Qi et al., 2010)
and neuroscience literature more generally (Barulli and
Stern, 2013), especially in adult brains. Hence, connectivity
and network analyses may provide distinct, but complemen-
tary insight into individual and group differences, making
joint or hybrid analyses crucial to our understanding of
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normal and abnormal brain function. In the following sec-
tions, we briefly delineate methods for connectivity and net-
work analyses and discuss the importance of joint and
hybrid methodology for expanding the scope of neuroscience
research.

Connectivity Methods

FC methods comprise both methods for estimating the
functional association between time series pairs in specified
brain regions and for drawing inference from these estimated
connections as a function of covariates of interest (e.g., dis-
ease status). Estimation methods fall into three categories:
association measures, modeling approaches, and partitioning
methods. Pairwise correlation is the most commonly used as-
sociation measure, with measures such as coherence, mutual
information, and generalized synchronization employed less
frequently. Partial correlation provides a multivariate analog
of pairwise correlation that better distinguishes direct from
indirect connections, but presents computational challenges,
which have been the focus of ongoing research (Chen et al.,
2013). Modeling approaches for estimating connectivity
are diverse yet remain relatively limited in use due to the
acceptance of more easily implementable association mea-
sures. These modeling methods, surveyed in Simpson and as-
sociates (2013) and Bowman and associates (2015), often
inherently allow identifying group-related connectivity dif-
ferences, which remain a subsequent step when associa-
tion methods are employed. Partitioning methods, which
group brain areas together in sets that exhibit more within
set functional similarity than between set similarity, include
independent component analysis and cluster analysis ap-
proaches (e.g., K-means clustering, fuzzy clustering, hierar-
chical clustering).

Most inferential approaches for identifying difference in
FC either stem from the modeling-based estimation methods
noted above or rely on mass-univariate comparisons between
the employed association measure (often correlation) of the
connections with a multiple testing correction applied.
Under this mass-univariate umbrella, Smith and associates
(2013) treated the partial correlation of each edge as a cova-
riate in a general linear (regression) model predicting various
participant phenotypes (e.g., behavioral measure). Further

details on connectivity methods can be found in Simpson
and associates (2013) and Bowman and associates (2015).

Network Methods

Network methods aim to describe, model, or draw infer-
ence from fully constructed networks (derived from the esti-
mated connectivity patterns). Descriptive methods aim to
quantify systemic properties such as clustering (‘‘local com-
munication’’), path length (‘‘global communication’’), mod-
ularity, and order l degree distribution (Bagrow et al., 2008).
As with connectivity methods, most inferential network
methods, which aim to identify differences in systemic prop-
erties, rely on univariate approaches. Network metrics
(e.g., clustering, path length) at the network or nodal level
are often rudimentarily compared employing a t-test or
ANOVA-like techniques. More sophisticated univariate ap-
proaches include the network-based statistic and spatial pair-
wise clustering (Zalesky et al., 2012). Both methods are
predicated on connection by connection comparisons and
then subsequently aggregate the results of these comparisons
to identify clusters of edge-based differences. A related mul-
tivariate approach, partial least squares, identifies FC pat-
terns (i.e., edge combinations) that optimally covary with
experimental design parameters such as group status or
task condition (Berman et al., 2014; McIntosh et al., 1996;
Mišić et al., 2014; Shen et al., 2015; Wold, 1985). While
often labeled as network methods, one could categorize
these three approaches as connectivity methods, given their
focus on sets of connections and the designation of network
methods as those that emphasize systemic properties of con-
nectivity patterns. While these approaches have led to impor-
tant insights, gaining a deeper understanding of normal and
abnormal changes in complex functional organization de-
mands methods that leverage the wealth of data present in
an entire brain network. As noted in the Introduction, this
systemic organization confers much of our brains’ functional
abilities as functional connections may be lost due to an ad-
verse health condition, but compensatory connections may
develop as a result to maintain organizational consistency
and functional performance. Thus, we believe that gaining
insight into this organization requires a multivariate model-
ing framework that allows assessing the effects of systemic

FIG. 1. Cartoon demon-
strating examples of changes
in the flow of information
through alternative (compen-
satory) network paths fol-
lowing damage of an original
connection (red). The orange
line indicates the use of a
previously silent pathway.
The green lines show that
information may reach the
target through an indirect
pathway.
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properties (network measures) and phenotype (e.g., demo-
graphics, disease status, etc.) on the overall network struc-
ture. That is, if we have

Data
Yi : network of participant i

Xi : covariate information,

�

we wish to accurately estimate the probability density function
of the network, given the covariates (P(YijXi,hi), where hi are
the parameters that relate the covariates to the network struc-
ture. We have made strides in developing such a framework
both with exponential random graph models (ERGMs) (Simp-
son et al., 2011, 2012) and mixed models (Simpson and Laur-
ienti, 2015), but more work is needed on refining these
approaches, and developing new ones.

The ERGM and mixed modeling frameworks provide
complementary multivariate approaches for analyzing the
brain at the network level, that is, for assessing systemic
infrastructural properties of the entire network as opposed
to just properties of specific nodes or connections. ERGMs
allow efficiently representing network data by modeling its
global structure as a function of local substructural proper-
ties. However, they are limited in their ability to examine
specific connections, compare groups of networks, and as-
sess the relationship between networks and phenotypic char-
acteristics. Mixed models generally allow examining specific
connections, are well suited for group comparisons, and en-
able assessing the relationship between networks and pheno-
typic traits, complementing ERGMs, but are limited in their
ability to capture the inherent complex dependence structure
of brain networks. Our approach in Simpson and Laurienti
(2015) attempts to adapt mixed models to the brain network
context and account for this dependence structure. It also
serves as what could be considered a rudimentary connectiv-
ity/network analysis hybrid method given its use of dyads as
outcome variables, while accounting for dependence and net-
work properties through the random effects and network
metric fixed-effects parameters. Given their flexibility,
mixed models may provide the machinery necessary to de-
velop the needed hybrid methods for furthering our under-
standing of brain function. At a minimum, they will be
beneficial in joint network/connectivity analyses in conjunc-
tion with an appropriate connectivity method.

Conclusion

As with all biological systems, studying the brain at vari-
ous levels (micro, meso, and macro) remains paramount, es-
pecially given the hierarchical nature of its physiology. In
our context, this requires analyzing both connectivity prop-
erties (specific interregional connections) and higher level
network properties (systemic architecture). An alternate con-
ception puts these two sets of properties under the same net-
work analysis umbrella, as opposed to viewing them as
distinct interrelated domains, with connections representing
the basic level and graph properties representing the sys-
temic higher level. Both conceptions necessitate a multilevel
approach, which is particularly important given the ability of
the brain to compensate at the network level for damage to
specific connections. Thus, drawing more precise biological
conclusions and advancing our understanding of brain func-
tion demand hybrid analyses that derive an insight both at the
individual connection and network level. These analyses

may result from jointly assessing connectivity and network
properties with separate methodologies, akin to multimodal
neuroimaging analysis, or from novel hybrid methodologies.
Moving a new field forward necessitates refining the lan-
guage and concepts used within it. Properly distinguishing
connectivity from network analyses provides a step in this di-
rection and allows better leveraging the complementary in-
formation contained in these two domains.
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