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Abstract

Brain connectivity investigations are becoming increasingly multimodal and they present challenges for quan-
titatively characterizing and interactively visualizing data. In this study, we present a new set of network-
based software tools for combining functional and anatomical connectivity from magnetic resonance imaging
(MRI) data. The computational tools are available as part of Functional and Tractographic Connectivity Analysis
Toolbox (FATCAT), a toolbox that interfaces with Analysis of Functional NeuroImages (AFNI) and SUrface
MApping (SUMA) for interactive queries and visualization. This includes a novel, tractographic mini-probabilistic
approach to improve streamline tracking in networks. We show how one obtains more robust tracking results for
determining white matter connections by utilizing the uncertainty of the estimated diffusion tensor imaging
(DTI) parameters and a few Monte Carlo iterations. This allows for thresholding based on the number of con-
nections between target pairs to reduce the presence of tracts likely due to noise. To assist users in combining
data, we describe an interface for navigating and performing queries in two-dimensional and three-dimensional
data defined over voxel, surface, tract, and graph domains. These varied types of information can be visualized
simultaneously and the queries performed interactively using SUMA and AFNI. The methods have been
designed to increase the user’s ability to visualize and combine functional MRI and DTI modalities, particularly
in the context of single-subject inferences (e.g., in deep brain stimulation studies). Finally, we present a multi-
variate framework for statistically modeling network-based features in group analysis, which can be imple-
mented for both functional and structural studies.
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Introduction

Magnetic resonance imaging (MRI) provides several
techniques for investigating brain connectivity. In par-

ticular, functional MRI (FMRI) and diffusion tensor imaging
(DTI) are common modalities for observing aspects of func-
tional gray matter (GM) and structural white matter (WM)
properties, respectively. Given the complementary nature
of these methods, it is often desirable to combine them in
studies and this has been an increasing trend in both research
(Bennett and Rypma, 2013; Damoiseaux and Greicius, 2009;
Greicius et al., 2009; Horn et al., 2014; Staempfli et al., 2008;
Sui et al., 2014; Zhu et al., 2014) and clinical applications
(Kleiser et al., 2010; Pillai, 2010; Preti et al., 2014; Zhang
et al., 2013).

The Functional and Tractographic Connectivity Analysis
Toolbox (FATCAT) (Taylor and Saad, 2013) was initially
designed to facilitate the integration of FMRI and diffusion-
based imaging modalities. It contains tools for both task-
based and resting-state FMRI, as well as for both DTI and
high angular resolution diffusion imaging (HARDI), data.
FATCAT is publicly available as part of the open-source
Analysis of Functional NeuroImages (AFNI) package (Cox,
1996) and also interfaces directly with the three-dimensional
(3D) visualization tools of SUrface MApping (SUMA) (Saad
and Reynolds, 2012; Saad et al., 2004). While the toolbox
can be used to calculate voxel-wise quantities, such as vari-
ous functional connectivity parameters, it also contains func-
tionality to calculate and visualize nonlocal features such as
functional correlation matrices, whole-brain connectivity
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maps, tractographic maps, and structural connectivity matri-
ces. These network-based features quantify brain structure
and function at the highest levels of organization.

In this study, we present novel tools to facilitate multimodal
network-based analyses for both individuals and groups. First,
we describe a novel, mini-probabilistic (MINIP) tractography
approach, which improves the robustness of streamline tract
reconstructions by including DTI parameter uncertainty. Sec-
ond, we discuss interactive visualization features using SUMA
and AFNI, allowing the simultaneous display and investiga-
tion of DTI and FMRI data. Finally, we present a two-tiered,
multivariate modeling approach for combining either func-
tional or structural network connectivity with group character-
istic data using functions in AFNI and FATCAT. Figure 1
displays a compact schematic showing the potential roles of
the new features (highlighted in bold) in an analysis pipeline
that includes functional, diffusion-based structural, and
group characteristic data.

MINIP Tracking Methods and Results

The human data shown in this work were acquired from a
control subject of a larger study, which obtained participants

from university campuses in Taipei. Participants were en-
rolled having provided written informed consent. The
study was approved by the local ethics committee and con-
ducted in accordance with the Declaration of Helsinki.
Details of the scanning and acquisition parameters are pro-
vided in Taylor and Saad (2013).

MINIP tracking

Existing methods of DTI (and HARDI)-based tractogra-
phy techniques fall mainly into two categories: deterministic
(DET) (Basser et al., 2000; Conturo et al., 1999; Mori et al.,
1999) and probabilistic (Behrens et al., 2003; Parker et al.,
2003) tracking. In the first case, tracts propagate outward
from seed points until some stopping criterion is reached;
propagation through a given voxel may, for example, be ori-
ented parallel to the local principal eigenvector (Mori et al.,
1999; Taylor et al., 2012) or to some weighted average of
neighboring eigenvectors (Lazar et al., 2003). The DET out-
put is a set of tracts embedded within the brain volume—that
is, a 1D sequence of points, each of which has three spatial
coordinates and possibly attached properties such as DTI
parameter values. While useful in many applications, these

FIG. 1. An example schematic
for combining multimodal mag-
netic resonance imaging (MRI)
data, that is, functional (red) and
diffusion-based structural (blue),
with non-MRI group characteristic
information (green) using Analysis
of Functional NeuroImages
(AFNI), SUrface MApping
(SUMA), and Functional and
Tractographic Connectivity Analy-
sis Toolbox (FATCAT). The novel
tools described in this work are
highlighted in bold text, and sec-
ondary colors reflect the combina-
tion of various types of data. The
pipeline incorporates command line
tools and interactive user visuali-
zation, which are both important
features of data analysis in MRI.
Color images available online at
www.liebertpub.com/brain
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reconstruction methods either ignore the noise that is inher-
ently present in the acquired data or introduce smoothing to
try to reduce its impact. Noise introduces errors into DTI or
HARDI model fits, and as a result, tracts that are propagated
purely deterministically become susceptible to a sizeable
error accumulation (both false negatives and false positives).

In contrast to DET approaches, probabilistic methods typ-
ically perform Monte Carlo simulations of repeated track-
ing through distributions [e.g., estimated using Bayesian
(Behrens et al., 2007) or statistical resampling (Jones, 2003;
Taylor and Saad, 2013; Whitcher et al., 2008) techniques]
of voxel DTI parameter values. The end result of probabilis-
tic tracking is an unordered set of voxels in 3D space through
which a large fraction of generated tracts have passed, and
this region is interpreted as comprising the subvolume of
the brain with the highest likelihood of containing WM con-
nections of interest. While the probabilistic methods account
for noise-induced diffusion model uncertainty, they are often
relatively slow and impractical for interactive investigation.
Moreover, the final voxel maps that are produced lack the or-
dered sequential structure of the linear tract results, which
are often useful for intersubject comparisons (Colby et al.,
2012; Yeatman et al., 2012).

In this study, we propose a novel hybrid tractographic ap-
proach called mini-probabilistic tracking to combine benefits
of both fully probabilistic (PROB) and DET techniques. The
new method makes use of the voxel-wise uncertainty of DTI
parameters in the tracking process, performing a small num-
ber of Monte Carlo simulations through perturbed tensor es-
timates. The ordered tract structure remains intact, but more
robust results are obtained by including the probabilistic dis-
tribution of tensor values during tract propagation. Similar to
PROB approaches, the repeated tracking reinforces the more
likely locations of tract bundles,1 while noise-driven outliers
tend to be isolated. However, the MINIP method is signifi-
cantly faster than the full approach as it generally uses sev-
eral orders of magnitude fewer tracking iterations.

A comparative example of approaches is shown in Figure
2. Tracking was performed on a network of target regions
(here, corresponding to an adult subject’s default mode
resting-state network, from data available in the FATCAT
demo2) using AND-logic with the FATCAT 3dTrackID
function in three separate modes: (A) DET, (B) MINIP,
and (C) PROB. The same basic tract propagation criteria
were used in each case: fractional anisotropy (FA) >0.2, turn-
ing angle <60�, and tract length >20 mm. For DET and
MINIP tracking, eight seed points per voxel were used and
the latter was performed using five Monte Carlo repetitions.
Parameters for PROB tracking were 5 seed points per voxel,
1000 Monte Carlo iterations, and a threshold fraction of 0.05
[so that 5 · 1000 · 0.05 = 250 tracks/voxel were required to
be included in the final WM regions of interest (ROIs)].
DTI parameter (FA and first eigenvector) uncertainty maps
for MINIP and PROB tracking were calculated with FAT-
CAT 3dDWUncert using 300 iterations (Taylor and Saad,
2013). While the overall locations of estimated WM ROIs
are broadly similar, there are noteworthy differences across
the methods.

Arrows in Figure 2A highlight two DET tractographic bun-
dles, each consisting of a single fiber. In Figure 2B, the MINIP
results show several similar fibers for the laterofrontal connec-
tion (yellow arrow) and no additional connections for the ante-
roposterior fiber (orange arrow). These results suggest that the
first is likely to be a bundle connection (as small perturbations
produced similar tracks) and the second an artifact due to
noise. A comparison with PROB volumes in Figure 2C ap-
pears to verify these interpretations. It is worth noting that sev-
eral of the other fiber bundles in Figure 2B appear to be more
robust than those in Figure 2A as well as in greater volumetric
agreement with the PROB results. Additionally, while false
positives (relative to PROB) are apparent in both the DET
and MINIP results above, they are more visually apparent in
the latter case. When performing DET and MINIP tracking
with FATCAT 3dTrackID, bundles between targets having

FIG. 2. Comparison of tractography results of FATCAT 3dTrackID in different modes: (A) deterministic (DET), (B) mini-
probabilistic (MINIP), and (C) fully probabilistic (PROB). AND-logic connections are shown for a network of targets (gray)
using either tracts colored by local orientation in (A, B) or probabilistic volumes shown as green surfaces in (C). The yellow
and orange arrows highlight single-fiber connections between pairs of targets using the DET mode; in the MINIP results, the
former appears to be reinforced by the repeated uncertainty-based tracking, while the latter remains an outlier. This is verified
by comparison with the PROB results and suggests the increased robustness of the MINIP method compared with DET. Color
images available online at www.liebertpub.com/brain

1In FATCAT, a ‘‘bundle’’ is defined as a collection of tracts
through a single ROI (OR-logic) or those connecting a pair of
ROIs (AND-logic).

2Available from http://afni.nimh.nih.gov/pub/dist/tgz/FATCAT_
DEMO.tgz; download and install from a Unix terminal command
line using the AFNI-supplied script, @Install_FATCAT_DEMO.
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a small number of tracts (as highlighted in Fig. 2) can be re-
moved to filter connections that are likely the result of
noise; this editing is done by selecting a minimum threshold
for the number of tracts required to be found in any bundle.

The extents of the WM regions obtained using DET and
MINIP approaches were quantitatively compared with
PROB results using Dice coefficients (Dice, 1945). Tracking
was performed using the same basic parameters described
above for the four networks available in the FATCAT
Demo set (which includes the network shown in Fig. 2)
using AND-logic. Volumetric masks of regions containing
tracts were created for all tracking modes. In MINIP mode,
the number of additional perturbed repetitions was increased
from 0 to 24, and in DET mode, the number of seeds per
voxel was increased to maintain an equivalent number of
total initiated tracts per voxel (e.g., while MINIP had 1, 2,
and 3 repetitions, there were, respectively, 16, 24, and 32
total seeds per voxel for DET). In both MINIP and DET
modes, tract bundles between two targets in the ith repetition
were removed if they contained fewer than 4i tracts to filter
out results likely due to noise.

The Dice coefficients of overlap with the PROB masks
are shown in Figure 3 for each of the four networks (Net-
work A is the same as shown in Fig. 2). In all cases, the
Dice values for MINIP results rise quickly and have a
peak greater than (or in one case, approximately equal to)
the DET ones. The DET results increase and reach a pla-
teau, after which adding more seeds per voxel results in
very little change in results. In the MINIP case, the addition
of Monte Carlo repetitions increased the similarity to the
PROB results quickly, with a peak Dice coefficient typi-
cally reached using five to seven MINIP iterations. The sub-
sequent slow decrease of matching is due to the fact that the
PROB method applies a stricter voxel-wise thresholding
criterion than the bundle threshold. While artifacts are

expected to be present in some degree in all tractographic re-
constructions (Thomas et al., 2014), the preceding examples
show that the inclusion of tensor uncertainty information
greatly increases the reliability and robustness of rendered
results, and in the MINIP case, with very little computational
cost.

Visualization and Interaction

Visualization and user interaction when analyzing data are
important for both research and clinical usage. Having mul-
timodal data complicates these tasks as there are necessarily
several different types and formats of information to com-
bine. Moreover, in modern brain research, it is common to
have several networks to analyze together even when using
only a single modality, such as in resting-state FMRI. The
important question arises: How can one synthesize, view,
and explore the information efficiently?

FATCAT interfaces directly with the AFNI and SUMA
viewers, which provide 2D and 3D representations, respec-
tively. These viewers also communicate with each other
(and with other programs), and together, AFNI and SUMA
render volumes, surfaces, tracts, outlines, and matrices.
SUMA and AFNI can also be controlled from the command
line, making them suitable for navigating large amounts of
data by scripting user interface tasks that are to be repeated
for each new set of data. In this study, we highlight the
more unique aspects of the software relating to network
connectivity.

Tract navigation and InstaTract

Tracts are rendered as segments between the sequential
control points generated by 3dTrackID, and the SUMA inter-
face allows for the selection of individual tracts with the
mouse pointer. The selected location is automatically relayed

FIG. 3. Comparison of AND-
logic DET and MINIP tracking with
PROB results. Dice coefficients
were calculated between regions
containing tracts in each of the DET
and MINIP modes with those in the
PROB mode. The number of Monte
Carlo repetitions in the MINIP
mode was increased to 24, and the
number of seeds per voxel equiva-
lently increased in the DET mode.
MINIP results rise quickly and have
a peak greater than (or equal to, in
one case) those of DET, with a
maximum occurring at approxima-
tely five to seven repetitions in each
of the networks. Color images
available online at www.liebertpub
.com/brain
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to AFNI, causing it to update its own crosshair location.
When viewing whole-brain tractography results, it is often
difficult to distinguish between certain tracts without pruning
obstructing ones to highlight a feature of interest. In most
DTI viewing software [e.g., DTI-Query (Sherbondy et al.,
2005), TrackVis (Wang et al., 2007), and 3D Slicer (www
.slicer.org)], the highlighting masks can be positioned on
locations defined by cortical surface models or by voxel
grids. Navigation of these masks within the voxel grid is
usually constrained to displayed slices, which are determined
by the scanner coordinate system, while navigation on sur-
faces is restricted to the cortical GM sheet, even though it is
WM being investigated.

Similar highlighting modes exist in SUMA, termed Insta-
Tract, in which multiple ROIs can be defined over volume or
surface grids of arbitrary resolutions and orientations, but the
ROIs can additionally be positioned and steered along the
tracts themselves. This ability makes it possible for one to
walk along a tract in 3D, instead of being confined to an ar-
bitrary surface that is not geometrically related to the WM

geometry. It also avoids a difficulty present in many software
programs that are constrained to 2D slices since the fibers
cross through surfaces at various angles in any given scan,
posing a challenge to follow the WM trajectories and to mon-
itor along-tract intersections. The highlighting is carried out
along each tract based on the outcome of the user-defined, ar-
bitrary Boolean function of the ROIs, which themselves can
currently be spheres or parallelepipeds (boxes). Thus, users
may test AND- and OR- logic of connections between simple
geometric volumes in InstaTract mode, navigating the shapes
along the tracts themselves by clicking or dragging. While
such geometrically defined masks can be interactively repo-
sitioned and resized, arbitrary ROI surfaces/masks are sta-
tionary as they represent particular anatomical features.

Furthermore, FATCAT groups the tracts between a given
target pair into bundles that can be rendered in different col-
ors and identified with text (i.e., the names or labels of the
targets themselves) when the user selects a location on a
tract. These features are useful when viewing a complicated
set of tracts, for example, in the output of a connectome,

FIG. 4. (A) Shows tractographic
connectome bundles among a set of
anatomical cortical regions gener-
ated using FreeSurfer parcellation
(data available in the FATCAT
Demo set). Tracts are colored by
bundle [i.e., the set of tracts con-
necting a particular pair of target
regions of interest (ROIs)], and in
(B), the target ROIs are shown in
color as slices in a simultaneous
AFNI viewer. Connectome trac-
tography results are readily gener-
ated with a single command line;
the target ROIs and tractographic
results in this figure can be obtained
using the guided FATCAT Demo
script, Do_11_RUNdti_Connectome_
Examp.tcsh, and the presented re-
sults were generated in <30 sec. An
example of the labeled bundle se-
lection is shown in (A) for the lo-
cation of the yellow crosshair. (C)
Shows labeled structural [fractional
anisotropy (FA)] and functional
(Pearson correlation) matrices for
this connectome generated from a
command line using fat_mat_sel.py
(see the Appendix). Color images
available online at www.liebertpub
.com/brain
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which has several neighboring targets from whole-brain par-
cellation. The bundle viewing and selection features are
shown in Figure 4A, where the names of the targets that
are connected by the selected bundle (i.e., the bundle in
which the crosshairs have been placed) are displayed at the
top of the panel, along with the point location along the
tract and the tract number designation. The tracts themselves
were created using AND-logic DET tracking within a con-
nectome whose targets are cortical regions defined by Free-
Surfer (Fischl, 2012; Fischl et al., 2002) parcellation (shown
in Fig. 4B).

The names of the volumetric ROIs, output by FreeSurfer
(and formatted using @SUMA_Make_Spec_FS) for the
data in Figure 4, are stored as labels within the network
data set, and label pairs are attached to each tract bundle.
For ROI volumes without accompanying labels, there are
AFNI tools (@MakeLabelTable or 3dROIMaker) to pair
each integral ROI value with a user-defined string and to cre-
ate a label table that can be attached to volumes and surface-
based data sets. The labels are propagated from ROIs to their
tractographic connections when using 3dTrackID, simplify-
ing the visual interpretation and referencing of results in fur-
ther AFNI and SUMA analyses. The labels are also
contained in the output files of structural and functional con-
nectivity matrices, which can be loaded into SUMA (see
below in ‘‘Connectivity graphs’’ and in ‘‘Live computations,’’
and Fig. 5), as well as viewed and saved directly from the
command line, as shown in Figure 4C (see also Appendix).

Connectivity graphs

Connectivity data (such as FMRI correlations from
3dNetCorr, structural WM properties from 3dTrackID,
connectivity estimates from structural equation modeling,
or Granger causality analysis from 1dSVAR) can be ren-
dered as a 3D-embedded graph or as a matrix. The dual
modes can be rendered simultaneously in separate linked

viewers. In graph mode, the connections (i.e., off-diagonal
elements of the connectivity matrix or graph edges, equiv-
alently) can be represented by straight line segments or by
tract bundles whenever available and desired, as illus-
trated in the left and right panels, respectively, of Figure
5. The representation is colored by the value of the con-
nection/element, as per the settings of the data mapping
interface.

A displayed connection can also be selected by clicking on
it, as demonstrated by the white highlights in Figure 5. In ma-
trix mode, a connection is represented as a colored cell ele-
ment and can also be selected with a mouse click (again
demonstrated in Figure 5 by the element outlined in white)
to display information about the connection such as magni-
tudes and names of the region pair. For dense connectivity
graphs, it is useful to consider connections to or from a single
node at a time. This operation is done interactively by select-
ing the target node either by clicking on its graphical repre-
sentation (e.g., a ball) or its names in both matrix and 3D
graph rendering modes. We also note that the interface can
handle multiple values per connection, such as a time-
varying connectivity matrix or a set of matrices of different
properties.

Live computations: multimodal data surfing

Navigating connectivity data is particularly challenging
since it essentially squares the number of values one has to
display and select. We described in the previous sections
how one could highlight (or alternatively prune) tracts, bun-
dles, and graph connectivity to digest the data for a few target
regions at a single time. In this section, we present features
for adding resting-state functional connectivity to results in
a manner that allows one to perform interactive simulta-
neous anatomical and functional connectivity queries. The
description also serves to illustrate other novel attributes of
the software.

FIG. 5. Rendering of connectivity matrices in SUMA. The first two panels show the three-dimensional (3D) graph and
matrix rendering modes of the data. In this mode, off-diagonal matrix elements are rendered with straight-line edges
whose colors reflect the feature’s value in the matrix (middle panel), as per the user’s selected settings. The panel on the
right shows the same graph, but with tractography bundles used to represent the connections, as opposed to segments,
and the bundle coloring remains based on the connection value in the matrix. All views support selection of either an
individual connection (the equivalent of one element of the matrix) or the set of connections to and from a single node
(the equivalent of one row/column of the matrix). In addition, as noted in the middle panel, one can interactively cycle
through time-varying matrices or any stack of matrices with the same dimensions. The rendering of data in this figure can
be obtained using the guided FATCAT Demo script, Do_09_VISdti_SUMA_visual_ex2.tcsh. Color images available online
at www.liebertpub.com/brain
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We begin by briefly describing InstaCorr, which allows
one to perform interactive pattern matching (e.g., by
using correlation) between a particular data source (seed)
and the rest of the time series data set defined over the
same domain (surface or volume). For instance, with the
click (or click and drag) of the pointer, a new correlation
map is computed and displayed using the seed at the point-
er’s location. The seed location can be set by clicking any-
where in either SUMA or AFNI: computed correlations are
displayed in AFNI through InstaCorr and sent to SUMA for
display on the surface models (Fig. 6). The same seed loca-
tion can be used to set the location of the tract-selecting
ROI mask in InstaTract. To view tracts within the surface,
while still viewing the functional connectivity on the sur-
face, one can pry apart the cortical surfaces. As illustrated
in the lower part of Figure 6, the surfaces retain their color-
ation and a record of their coordinates in closed space dur-
ing further manipulations.

Group-Level Statistical Analyses

Multivariate modeling of networks

In this section, we describe a two-tiered analysis for inves-
tigating the associations of either functional or structural data
with predictors of interest across a group. FATCAT func-
tions are used to combine MRI results with group descriptive
data and to allow the user to define a model for the AFNI
multivariate modeling program, 3dMVM (Chen et al., 2014).

The first stage of analysis takes place at the network level,
where multivariate modeling is performed, since it is appli-
cable for analyzing sets of nonindependent measures. That
is, a group of simultaneous, MRI-derived response variables
at each spatial location (e.g., WM properties throughout a set
of tracked ROIs or GM correlations within a functional net-
work) is modeled by multiple explanatory variables (e.g.,
sex, age, behavioral measures, and clinical measures). This
modeling can be performed independently for each separate

FIG. 6. An illustration of the process for interactive, single-subject functional, and anatomical connectivity queries. (Note
that all displayed objects are loaded into the same AFNI and SUMA sessions, and subsets are shown at a time here for clarity.)
The top row, left, illustrates whole-brain tractography results computed with 3dTrackID and displayed over a single anatom-
ical slice for reference. The top row, right, shows the FreeSurfer-generated cortical models. Users can then select a mask
(white sphere) and restrict the displayed tracts to those passing through it (via InstaTract). That same mask can be used to
set the seed location for automatically generating a functional connectivity correlation map (via InstaCorr), the results of
which are shown in color on the cortical surface. As described in the text, the placement of the seed can be done in the
3D views of SUMA or in the 2D views of AFNI. The results of the anatomical and functional connectivity queries are ren-
dered together in the middle of the figure. Since seeing through the cortical surface is difficult, even when transparency is
enabled (not shown here), the user can pry the cortex open with the mouse pointer, better revealing the patterns of anatomical
and functional connectivity (lower middle path). The user can then navigate the seed along the pried cortex, or along any
other rendered structure, to update the seed placement and to trigger an update of both the anatomical and functional con-
nectivity results (bottom row). The illustrated tasks can be recreated with the guided FATCAT Demo script, @Do_09_VISdti_
SUMA_visual_ex3.tcsh. Color images available online at www.liebertpub.com/brain
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response (data) variable, such as (depending on the types of
data available) Pearson correlation, FA, mean diffusivity, T1
relaxation time, proton density, and tracked ROI volume.

Even though the conventional multivariate model pre-
cisely characterizes the above hypotheses, its power perfor-
mance is lackluster in real practice. To address this, the
3dMVM function utilizes an approximation approach within
the multivariate platform, which, in conjunction with a few
auxiliary tests, can achieve a higher statistical power than
conventional multivariate testing while still maintaining
well-controlled false positives (Chen et al., 2015). This ap-
proach essentially looks for a significant effect at any single
or any combination of network connections. Then, if signif-
icant effects are found at the network level, the second stage
of analysis implements post hoc tests for each connection to
determine, for example, which individual elements show the
strongest relationships driving the network effects.

A practical example of this network analysis with 3dMVM is
presented in Figure 7 for the case of a WM study (NB: the fol-
lowing example could equivalently be of a GM study, using
functional connectivity strength as the between target quantity
of interest). The researchers may pose the question: Are CASI
(cognitive abilities screening assessment) score values in a par-
ticular population associated with WM properties, such as FA?
This relationship can be investigated while controlling for
other explanatory variables, such as age, sex, and years of ed-
ucation. First, the researchers generate the targets in each sub-
ject’s diffusion space for tracking, perhaps by mapping sets of
functional GM ROIs. Then, tractography (e.g., mini- or fully
probabilistic) is performed to determine the most likely loca-
tions of WM associated with pairs of the targets, producing
a set of WM ROIs throughout the network. From each region,
one can calculate a representative quantity, such as the mean
FA, producing a set of simultaneous measures that represent
the WM connections throughout the network. The first step
of 3dMVM analysis includes the full set of response variables
(i.e., all mean FA values), examining whether the network’s
WM as a whole is related to CASI scores. If there is a relation-
ship found at a nominal significance level (e.g., 0.05), the
3dMVM second step of analysis investigates which region(s)
has(ve) the strongest associations (i.e., most statistical signif-

icance), using a general linear model for each mean FA with
the same set of explanatory variables.

The general implementation of this process with FATCAT
and AFNI 3dMVM for any functional or structural network
properties is illustrated in Figure 8. Starting with (A), a net-
work of ROIs for FMRI/DTI analysis, then 3dNetCorr/
3dTrackID can be used to calculate (B) functional/structural
matrices for each subject in the group. In step (C), the set of
connectivity matrices is then combined with a descriptive
group table that holds columns of quantitative or categorical
variables such as age, sex, psychometric test scores, and ge-
netic factors (e.g., a file exported from a spreadsheet, with
one row of values per subject). The synthesis of the MRI-
derived matrices and the group variables is made using
fat_mvm_prep.py, which creates a single multivariate table
for the group. This program also automatically selects only
functional/structural matrix elements that are present for all
subjects in the group as the multivariate modeling software
does not currently account for missing data in individuals.
This selection procedure may be necessary in FMRI studies,
for example, if subjects have different numbers of ROIs in a
given network, or in DTI studies, where each region is typi-
cally not directly connected to all others and the patterns of
estimated connections often exhibit variation across a group.

The user then specifies symbolically (D) a model with
explanatory variables from the group table variables. The
model may include both quantitative and categorical vari-
ables (the latter of which are tested with omnibus F-tests),
such as age and sex, as well as interactions between the var-
iables. The model of interest is entered as a simple list to the
function fat_mvm_scripter.py, which builds both the group
model and the follow-up post hoc tests for each ROI in the
AFNI 3dMVM command (Chen et al., 2014). The result is
a script to be executed, producing both (E) network-level
and (F) individual connection-based results. This methodol-
ogy has been demonstrated in a DTI study of infants with
prenatal alcohol exposure (Taylor et al., 2015). The two-
tiered analysis was used to locate WM that showed a signif-
icant association between alcohol exposure and structural
properties, as well as to determine which diffusion parame-
ters showed the greatest sensitivity to exposure.

FIG. 7. An example case of
combining 3dTrackID tractography
and 3dMVM multivariate model
testing to investigate the relation-
ships of white matter (WM) prop-
erties (here, FA) and subject test
scores [here, cognitive abilities
screening assessment (CASI) val-
ues] while controlling for other
factors. The investigation is first
made at the network level, and if
significant relationships are ob-
served, one follows up using post
hoc general linear models (GLMs)
for the same model for each ROI.
This procedure may equivalently be
performed using 3dNetCorr’s
functional connectivity estimates
between pairs of targets in a net-
work in place of tractography.
Color images available online at
www.liebertpub.com/brain
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Creating latent variables from a group table

Often in brain imaging studies, a variety of supplementary
data have been collected for subjects in the group, such as
psychometric tests, neurobehavioral scores, and other de-
scriptive characteristics. Many of these factors are often
not independent, while also being attributable to a small
number of underlying features of interest, such as attention,
working memory, and emotional state. They may have the
additional practical limitation of possessing low individual
contrast. In such a scenario, factor analysis can be used to de-
rive a set of latent variables from the original correlated
group of factors, reducing the dimensionality of the data
based on their covariance structure. FATCAT now includes
a command line factor analysis tool to estimate such latent
variables from quantitative variables in a group table.

The FATCAT program, fat_lat_csv.py, implements the
function factanal() in the package FAiR (Goodrich, 2014)
of the open-source language R (R Core Team, 2014). To sim-
plify the final variable structure, the loadings table is rotated
using the varimax method (Kaiser, 1958). To facilitate inter-
preting what features the output latent variables represent,
the calculated Thompson scores (Thomson, 1951) for each
factor’s variables are also reported. The number of latent var-
iables (i.e., the dimensionality reduction) can be chosen by
the user or by a data-driven methodology using parallel anal-
ysis. The latter is implemented using the R function paran()
in the package paran (Dinno, 2012), which utilizes Horn’s
method to evaluate factors (Horn, 1965). By default in fat_
lat_csv.py, Horn’s method is run with a large number of
Monte Carlo iterations (5000) and a high centile threshold
(99%) to reduce bias in the chosen number of components
(Glorfeld, 1995). The estimated latent variables are then in-
cluded in a new group table for use in the multivariate test-
ing, as described above.

Discussion

We have presented several new tools3 that are available in
FATCAT, highlighting their integration with novel function-
ality and features in AFNI and SUMA. The methods have
been designed to increase the user’s ability to visualize and
combine FMRI and DTI modalities, as well as to easily ex-
plore statistical relationships in group studies.

MINIP tractography has been introduced as an enhance-
ment to purely DET tracking in networks. The uncertainty-
based procedure improves the detection of connections,
while bundle thresholding reduces the likelihood of obtain-
ing tracts sensitive to noise (as does the typical sparsity of
target volumes in functional networks). Importantly, these
benefits come at very little computational cost (unlike the
full probabilistic tracking software), and this method pre-
serves the sequential organization of fiber bundle reconstruc-
tions for individual or group analyses.

MINIP tracking has also been implemented in exploratory
structural analyses, such as placing target ROIs within re-
lated WM (Taylor et al., 2015). Such investigations highlight
the utility of interactive data visualization, in particular with
the combination of SUMA and AFNI. These visualization

FIG. 8. A schematic for integrating MRI-based connectiv-
ity and group characteristic data in network-based analyses
using multivariate statistics with FATCAT and 3dMVM.
For a detailed description of steps A-F, see the text in "Multi-
variate modeling of networks." Briefly, one starts with (A) a
network of ROIs, from which (B) functional or structural
connectivity matrices are calculated for each subject (e.g.,
using 3dNetCorr or 3dTrackID, respectively). (C) The set
of connectivity matrices are then combined with any group
characteristic data into a single table. The user then specifies
(D) a statistical model to examine relations at both (E) the
network-level and (F) the individual ROI level. Color images
available online at www.liebertpub.com/brain

3More detailed help documentation for AFNI, FATCAT, SUMA,
and their combination is available online, including further examples
and illustrations: http://afni.nimh.nih.gov/pub/dist/doc/htmldoc/.
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methods are directly applicable in a clinical realm to inves-
tigate estimated structural maps within the brain. For exam-
ple, recent studies have utilized tractography reconstructions
to guide the placement of electrodes for deep brain stimula-
tion (Rive-Posse et al., 2014). The simultaneous viewing
of FMRI and DTI data allows for a more detailed represen-
tation and exploration of complicated function/structure in-
teractions within the brain. Being able to visually navigate
through multimodal data sets at the same time allows one
to develop a deeper understanding of the potential, and the
limitations, of the data at hand. This is a crucial exercise
for enabling the discovery of otherwise un-noticeable arti-
facts ( Jo et al., 2010) or of striking features of the data
(Gotts et al., 2013). While the multimodal visualizations
and explorations in this work have been focused on individ-
ual subjects, it should be noted that the InstaCorr interface in
AFNI and SUMA can also be used to perform group-level,
seed-based correlation contrasts interactively, which is be-
yond the scope of the work presented herein (Cox, 2012;
Saad and Reynolds, 2012).

Finally, methods for implementing network-based statisti-
cal group analyses were described. FATCAT now contains
command line programs for performing factor analysis to es-
timate latent variables within a group characteristic table
(fat_lat_csv.py); combining functional correlation and struc-
tural matrices from MRI analyses with group tables of sub-
ject data (fat_mvm_prep.py); and building a model for
multivariate analysis with AFNI 3dMVM (fat_mvm_scripter
.py), calculating both the network- and ROI-based statistics.
Each function is run with a simple set of options and param-
eter lists. There are typically several connectivity parame-
ters calculated and output into a single file by FATCAT
3dNetCorr (e.g., Pearson correlation, Fisher Z score, and
partial correlations) and 3dTrackID (e.g., WM volume,
FA, MD, L1, RD, and number of tracts). For efficient exam-
ination of these parameters simultaneously, the FATCAT
programs apply the user-defined multivariate models to
each individual parameter matrix in parallel, and then
output the results (both network and post hoc statistics) to
a single file.

The presented techniques allow investigation of the net-
work levels of brain functional and structural connectivity
in an individual, which are often of interest in neuroimaging
studies. In contrast to voxel-based methods, which often
have tens of thousands of voxels (or more, with the increas-
ing resolution of modern scanning techniques), this approach
has the advantage of not requiring such severe corrections for
multiple comparisons. As a consequence, these multivariate
methods can be used to explore comparisons of properties
across networks or among the parameters themselves (Taylor
et al., 2015). The post hoc tests of each matrix element (i.e.,
target connection) then provide finer resolution for describ-
ing relative connectivity–predictor associations on a smaller
local scale.

Further development of FATCAT will include approaches
for utilizing along-tract statistics in characterizing individu-
als’ WM properties. In addition, to be able to account for
missing data in group tables, future versions will utilize lin-
ear mixed-effects (LME) modeling using AFNI 3dLME
(Chen et al., 2013). It is also expected that (as has already
happened since the initial FATCAT release) further analysis
tools will be developed in response to users’ requests.
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Appendix

We highlight some of the additional tools and features that
are newly available in Functional and Tractographic Connec-
tivity Analysis Toolbox (FATCAT) for the processing of dif-
fusion tensor imaging and functional magnetic resonance
imaging (FMRI) data. Scripted examples of each are pro-
vided in the freely available FATCAT and FAT_MVM
Demos.4 Most of these features have been developed to in-
crease the ease of processing and investigating data, which
may have the important consequence of reducing processing
mistakes as well as of aiding the understanding of results.

It should first be noted that the originally separate FAT-
CAT functions for deterministic and probabilistic tracking
have been combined into a single function (3dTrackID),
which can now be operated in three separate modes: DET
(deterministic), MINIP (mini-probabilistic; see the introduc-
tion in the main text), and PROB (fully probabilistic). Track-
ing can also now be performed on data sets with multiple
propagation directions per voxel, as in high angular resolu-
tion diffusion imaging (HARDI) reconstructions. HARDI
model fitting is not currently available within FATCAT or
Analysis of Functional NeuroImages (AFNI), but instead
can easily be estimated using other packages, for example,
DSI-Studio (http://dsi-studio.labsolver.org; an example pro-
cessing script is included in the FATCAT Demo), Diffusion
Toolkit (Wang et al., 2007), or Dipy (Garyfallidis et al.,
2014). While preprocessing functions for the correction of
subject motion, eddy currents, and EPI distortions are not
available in FATCAT or AFNI, these may be found easily in
other software, such as TORTOISE (Pierpaoli et al., 2010),
which has an AFNI format output option.

The formatting of diffusion gradient information varies
across software packages and applications, requiring various
conversions between rows and columns (e.g., when converting
from DICOM); gradients and either row-first or diagonal-first
tensors (e.g., when using TORTOISE); including b-values in
a separate file or in the gradient file (e.g., if using DSI-Studio);
including a row of zero gradients or not (e.g., when using AFNI
3dDWItoDT); etc. As diffusion weighted imaging (DWI) pro-
cessing often requires the use of several packages and func-
tions, it is useful to have a flexible command line tool for
converting among these formats. In FATCAT, 1dDW_Gra-
d_o_Mat is able to convert b-value and b-vector information

among the above-listed format options. Additionally, the
signs of gradient components can be flipped to convert a
given scanner coordinate convention to that of the chosen
software tool. Due to the DT symmetry properties, this
sign change does not affect scalar parameters, but it will
cause rotations in the eigenvectors, whose effects are highly
noticeable in tractography (see comparisons with various
relative gradient flips in Fig. A1). For example, often data
acquired using Siemens 3T scanners (Erlangen, Germany)
require a sign change in the y-component (via the switch -
flip_y) before using FATCAT 3dTrackID (although each
center must check their own data, particularly when prepro-
cessing with any given software package). A FATCAT
script file, @GradFlipTest, uses whole-brain tracking to es-
timate an appropriate gradient flip for a data set, subject to
visual verification.

The DWI data sets may also be processed simultaneously
with, and using information contained in, the gradient table.
1dDW_Grad_o_Mat utilizes the b-value or -vector informa-
tion to locate b0 volumes in the DWI protocol and to average
them together to create a single b0 reference with high signal-
to-noise ratio (-proc_dset option). Additionally, 1dDW_Gra-
d_o_Mat can compress acquisitions with repeated sets of
gradients by averaging those volumes and adjusting the gra-
dient table to match (-dwi_comp_fac option).

For FMRI processing, 3dNetCorr has been updated to in-
clude several features. In addition to Pearson correlation and
Fisher Z-transform connectivity matrices, partial correlation
matrices can be calculated (-part_corr). Moreover, when cal-
culating connectivity matrices, one can also simultaneously
generate whole-brain connectivity maps for the average
time series of each region of interest (ROI), either as Pearson
correlation (-ts_wb_corr) or Fisher Z scores (ts_wb_Z). The
output connectivity matrices may also contain ROI labels
from a user-defined table (such as from anatomical parcella-
tions). The functional matrices (as well as those output by
3dTrackID) may be viewed as connected graphs in SUMA
with the edges colored by the element values (see Fig. 5 in
the main text); additionally, these matrices may be viewed
and saved in two dimension using a new command line
tool, fat_mat_sel.py, allowing for rapid selection and cus-
tomization of the figures (Fig. 4C in the main text).

4See main text for FATCAT Demo download. The FAT_MVM
Demo is available from http://afni.nimh.nih.gov/pub/dist/tgz/
FAT_MVM_DEMO.tgz; download and install from terminal com-
mand line using @Install_FAT_MVM_DEMO.
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FIG. A1. Effects of not correcting recorded gradient vectors by flipping the sign of an affected component. Whole-brain
tractographic reconstructions are shown (from the left) for corrected gradients and gradients with alternately uncorrected x-,
y-, and z-components. Views in descending order: coronal from front, axial from above, and the latter repeated with a spher-
ical selection mask. Color images available online at www.liebertpub.com/brain
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