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Abstract

The two most common types of temporal lobe epilepsy are medial temporal sclerosis (TLE-MTS) epilepsy and
MRI-normal temporal lobe epilepsy (TLE-no). TLE-MTS is specified by its stereotyped focus and spread pattern
of neuronal damage, with pronounced neuronal loss in the hippocampus. TLE-no exhibits normal-appearing hip-
pocampus and more widespread neuronal loss. In both cases, neuronal loss spread appears to be constrained by
the white matter connections. Both varieties of epilepsy reveal pathological abnormalities in increased mean dif-
fusivity (MD). We model MD distribution as a simple consequence of the propagation of neuronal damage. By
applying this model on the structural brain connectivity network of healthy subjects, we can predict at group level
the MD gray matter change in the epilepsy cohorts relative to a control group. Diffusion tensor imaging images
were acquired from 10 patients with TLE-MTS, 11 patients with TLE-no, and 35 healthy subjects. Statistical
validation at the group level suggests high correlation with measured neuronal loss (R = 0.56 for the TLE-
MTS group and R = 0.364 for the TLE-no group). The results of this exploratory work pave the way for potential
future clinical application of the proposed model on individual patients, including predicting neuronal loss
spread, identification of seizure onset zones, and helping in surgical planning.
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Introduction

Epilepsy [recently redefined (Fisher et al., 2014)] is
one of the most prevalent neurological disorders. In

the United States alone, there are 48 new cases of epilepsy
every year for every 100,000. The estimated prevalence of
epilepsy is 7.1 per 1000 people (Hirtz et al., 2007). Common
types of temporal lobe epilepsy (TLE) are medial temporal
sclerosis (TLE-MTS) epilepsy and MRI-normal temporal
lobe epilepsy (TLE-no). TLE-MTS is characterized by a pat-
tern of neuronal loss in the hippocampus and an electroclin-
ical syndrome, with widespread extralimbic atrophy seen in
many cases. TLE-no has normal-appearing hippocampus on
MRI and its epileptogenic area in the temporal lobe is more
widespread, less well defined, and often includes both hippo-
campus and neocortical regions. The hippocampus is the
principal epileptogenic focus.

It is now believed, based on ictal EEG signature, that other
mesial temporal structures play a key role in triggering a sei-
zure, particularly the entorhinal cortex (Bartolomei et al.,
2005). Another key region in the generation of an MTS sei-
zure is the amygdala (Bertram, 2009; Gotman and Levtova,
1996). Some episodes may be generated by the hippocam-

pus, while others may be triggered by the amygdala. Along
with the hippocampus, the amygdala often plays a role in
MTS (Bertram, 2009; Gotman and Levtova, 1996) and can
be the source of seizures. These structures are highly con-
nected, providing significant feedback mechanisms (Staf-
strom, 2005), suggesting that local network hyperexcitability
may be particularly important in seizure propagation. Mueller
and associates (2009) identify cortical thinning in TLE-no
subjects in the superior frontal region and identify positive
correlation between the superior frontal region and the epilep-
togenic focus.

In both TLE-MTS and TLE-no, the topographic patterns of
neuronal loss appear to occur in regions that are connected to
the epileptogenic focus zone through white matter (WM)
fiber connections (Concha et al., 2012). An important issue
in this context is to understand the neural and network basis
underlying these patterns of neuronal loss and the contribu-
tion of WM connectivity pathways. The prevalent hypothesis
in this regard proposes that a seizure activity propagates out-
wards from the epileptogenic zone along its fiber connections,
and neuronal damage is a consequence of local excitotoxicity
(Meldrum, 1993). In this model, the extrahippocampal spread
of seizure activity is primarily responsible for the apparent
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topographic distribution of atrophy (Riederer et al., 2008;
Spencer, 2002; Sutula et al., 2003). The medial temporal
and limbic structures are highly connected to each other, as
well as to the hippocampus.

The resulting subnetwork leads to significant feedback
mechanisms (Stafstrom, 2005), leading to the spread of ini-
tially local epileptogenic activity to widespread connected re-
gions. Since the aberrant hyperactive regions are well-
established early in disease, this model would predict that,
while atrophy may worsen with time, there is no center-out
progression of atrophy. Although neuronal death secondary
to sustained hyperactivity is not entirely understood, it likely
entails mutual intercortical trophic exchanges, ultimately lead-
ing to long-lasting remodeling of brain networks (Bernhardt
et al., 2011), followed by excitotoxicity-induced neuronal
loss. Recent studies, however, suggest a second mechanism
that neuronal loss, and eventually gross atrophy, is a progres-
sive degenerative process triggered at the hyperactive epilep-
togenic focus by excitotoxicity, and extrafocal neuronal loss is
a progressive event as a consequence of a cascade of remote
degeneration, deafferentation, and loss of trophic support.
This hypothesis has found recent support from studies show-
ing that cortical atrophy in epilepsy often co-occurs with
WM degeneration of connected tracts (Concha et al., 2009).

The purpose of this study is to use network theory to deter-
mine whether the progressive deafferentation model is sup-
ported by neuroimaging data in TLE patients. This is a
challenging problem because there is very little longitudinal
neuroimaging data of sufficiently long time spans to conclu-
sively demonstrate progressive degeneration in broad brain
regions. Furthermore, much of this research is phenomeno-
logical and descriptive, hence not well suited for quantitative
assessment. Quantitative model development is further ham-
pered by heterogeneity in the topography of the disease
among TLE patients. In this study, we propose a mathemati-
cal model of progressive neuronal damage as a deafferenta-
tion process enacted on the brain’s structural connectivity
(SC) network.

This model is based on a general class of network diffusion
models previously proposed by our laboratory, which assumes
that the overall behavior of the complex deafferentation pro-
cess can be approximately captured by linear low-order differ-
ential equations defined on network nodes. Similar models
have been proposed and implemented in the areas of signal
and image processing (Elmoataz et al., 2008; Shuman et al.,
2013; Zhang and Hancock, 2008). Recently, network models
applied to brain abnormalities have been published, for exam-
ple, estimating the profile of functional activity in the brain
(Abdelnour et al., 2014), as well as the prediction of the neuro-
degeneration (Raj et al., 2012).

Using network diffusion as a foundation, we derive the spe-
cific dynamic equations governing the evolution of progres-
sive neuronal loss on the brain connectome. Then, we
determine whether this model, when applied to brain connec-
tomes derived from diffusion MRI scans, can successfully pre-
dict the topographic patterns of neuronal loss seen in 10 TLE-
MTS and 11 TLE-no patients. Importantly, we propose that the
model’s predictions can be tested exclusively using cross-
sectional neuroimaging data, without requiring longitudinal
follow-up. The reason for this is that, although the network
model predicts a dynamic spatiotemporal pattern of neuronal
loss that ‘‘radiates’’ outward from the focus region, the topog-

raphy of these patterns is dependent entirely on the network to-
pology, and therefore conserved over large spans of time.

The biomarker of neuronal loss used in this study is the re-
gional t-statistics of mean diffusivity (MD) calculated from
diffusion tensor imaging (DTI) scans of the TLE-MTS/TLE-
no groups versus an age-matched control group (Assaf et al.,
2003; Mukherjee et al., 2008; Scanlon et al., 2013). DTI is a
noninvasive technique, which measures the direction of
water diffusion in brain tissue. Key to DTI’s usefulness is
the tendency of WM internal fibrous structure to be anisotropic
in normal brains, with water diffusing largely in the direction
of the internal structure.

Although common DTI metrics such as MD and fractional
anisotropy (FA) are typically evaluated in WM rather than
gray matter (GM) (Concha et al., 2009), their utility as GM
markers is also becoming widespread (Bonilha et al., 2010;
Pfefferbaum et al., 2010). MD in particular is especially useful
in epilepsy, where gross atrophy measured from structural
MRI is frequently too insensitive to capture subtle damage
outside the hippocampus. Furthermore, cortical dysplasia is
a common feature of epilepsy, which confounds current corti-
cal thickness or volume measures (DuBois et al., 2011; Thesen
et al., 2011). In contrast, MD is much more sensitive to micro-
structural damage, and may be more suitable as a measure of
neuronal loss in TLE. MD was used as a biometric for evalu-
ation of GM in multiple sclerosis (Bozzali et al., 2002), and a
consistent relationship between GM volumetrics and FA ab-
normalities was reported in Keller and associates (2012) and
Bonilha and associates (2010). In Assaf and associates
(2003), the authors use MD and FA to lateralize TLE-MTS
seizure focus at group level as well as individual patients.
They additionally conclude that MD is superior to FA in iden-
tifying the epileptogenic focus in GM. In a related work, Con-
cha and associates (2009) studying both TLE-MTS and TLE-
no, the authors conclude that, while some regions are affected
equally in both TLE types relative to control group, they ap-
pear to have distinct extratemporal abnormalities.

Results

We next discuss the results of estimating TLE-MTS and
TLE-no group change in MD (Dav) relative to normal sub-
jects as an indirect measure of neuronal loss. All named re-
gions are understood to be from the ipsilateral hemisphere,
unless otherwise specified. For all figures, the lobes are col-
ored for ease of reading as follows: blue is the frontal lobe,
magenta is the parietal lobe, green is the occipital lobe, red
refers to the temporal lobe, and cyan refers to the subcortical
region. For both TLE-MTS and TLE-no, subjects’ Dav maps
were computed and the GM projected on a 90-region SPM
atlas. The subjects were grouped into ipsilateral and contra-
lateral, by side-flipping one group, so that all patients are
left-ipsilateral.

We estimate the distribution of graph diffusion that most
closely resembles the t-statistics obtained from the MTS/
TLE-no versus healthy Dav. We evaluate the Pearson corre-
lation R between the obtained t-statistics and F (Equation
(7)) over a range of t when a given region is seeded. The pro-
cess is repeated over all regions. For each region, we choose
the graph diffusion yielding the highest R as the diffusion
pattern most likely to match the t-statistics (and thus the neu-
ronal loss distribution). To take into account the multiple
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comparison problem, we use the Benjamini and Hochberg
false discovery rate algorithm (Ashby, 2011). We report
both the probability of false positive p and the corrected
probability pfdr. Figure 1 provides an overview of the data-
sets and processing steps, as well as the model implementa-
tion and evaluation.

TLE-MTS mean diffusivity

Figure 2a gives the t-statistics of the TLE-MTS versus
control groups. As expected, the pronounced change in
MD, Dav, (t-stats >2 std) is found in the ipsilateral hippo-
campus (6:09std, p = 2:7 · 10�7; pfdr = 2:43 · 10�5), implying

FIG. 1. Flowchart summarizing
the proposed methodology. Struc-
tural networks are obtained from
healthy subjects, then cortical/sub-
cortical atrophies are predicted
from the graph diffusion model.
Predicted atrophy is then compared
with the atrophy patterns obtained
from the TLE subjects. TLE, tem-
poral lobe epilepsy. Color images
available online at www.liebertpub
.com/brain

FIG. 2. TLE-MTS: posi-
tive t-statistics, (a); the max-
imum R obtained by placing a
seed over each node, (b);
Curve of Pearson correlation
R obtained over a range of t
values, with the curves of the
nodes giving the second and
third largest R (fusiform and
inferior temporal) (c). Dif-
fusion from ipsilateral hip-
pocampus at maximum R
with the t-statistics (d);
Maximum R is obtained at
t = 14:68, with R = 0:561.
MTS, medial temporal scle-
rosis. Color images available
online at www.liebertpub
.com/brain
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neuronal loss. Elsewhere, ipsilateral change in Dav is found
in the frontal lobe (insular gyrus), the occipital lobe (inferior
gyrus), and the temporal lobe (parahippocampal). Change in
Dav relative to normal subjects is additionally found in the
contralateral hemisphere in the frontal lobe (olfactory bulb,
anterior cingulum gyrus), the parietal lobe (postcingulum),
and the occipital lobe (calcarine sulcus and cuneus). Bilateral
increase in Dav is found in the occipital lobes (lingual, middle
occipital, and fusiform gyri) and temporal lobe (middle and
inferior gyri).

Figure 2b gives the highest R obtained when a graph dif-
fusion is seeded at each node. Seeding in the ipsilateral hip-
pocampus gives the highest Pearson correlation (R = 0.560,
p = 9:4 · 10�9; pfdr = 8:50 · 10�7) of all seedings, making it
the likely epileptogenic focus. Given these are MTS subjects,
this result would appear to agree with the likely role of hip-
pocampus as the onset zone. Other regions yielding high R
(>0:5) when seeded (all ipsilateral) are found mainly in
the temporal lobe (fusiform and temporal inferior gyrus)
and the occipital lobe (lingual and occipital inferior gyri).

The graph diffusion seeded in the ipsilateral hippocampus
is given in Figure 2d. The resulting diffusion dominates the
ipsilateral GM. The diffusion reaches a maximum at the hip-
pocampus, followed by the fusiform gyrus. The graph diffu-
sion model predicts ipsilateral high Dav in the temporal lobe
(parahippocampal, and inferior temporal gyri), confirmed in
Mueller and associates (2009) and McDonald and associates
(2008); the subcortical region (thalamus and amygdala), con-
sistent with Bertram (2009); and the occipital region (lingual
gyrus). While the t-statistics in Figure 2a reveals high Dav in
the contralateral olfactory bulb, it is underestimated by the
proposed diffusion model.

We note that when the correlation R of the t-statistics and
the estimated atrophy distribution are evaluated only over the

ipsilateral hemisphere, we obtain R = 0:707 (p = 5:9 · 10�8;
pfdr = 5:3 · 10�6). Contralateral correlation gives R = 0:449
(p = 2 · 10�3; pfdr = 1:1 · 10�2). This is not surprising as the
long fibers connecting contralateral/ipsilateral regions tend
to be underestimated by the current methods. Across the hemi-
spheres, SC tends to be weaker than within the hemispheres.

Figure 2c depicts R as a function of t for the three nodes
yielding the highest R when each node is seeded. When the
ipsilateral hippocampus is seeded, the Pearson correlation in-
creases until it reaches a peak of R = 0:560 at t = 14:68. Sim-
ilarly, the fusiform and the lingual gyrus, respectively, reach
R = 0:520 at t = 18:02 (p = 1:5 · 10�7; pfdr = 5:7 · 10�6) and
R = 0:506 at t = 28:36 (p = 3:6 · 10�7; pfdr = 6:7 · 10�6). In
addition, the inferior temporal gyrus has comparable R,
with R = 0:506 at t = 18:24 (p = 3:7 · 10�7; pfdr = 6:7 · 10�6).

In Figure 3, we plant a seed in the ipsilateral hippocampus
and allow it to diffuse in the network. At t = 1, the diffusion
is largely confined to the subcortical region, in addition to the
temporal lobe. Around t = 2:67, the graph starts diffusing into
the parietal and occipital regions. Around diffusion depth
t = 8:23, the diffusion begins to correlate with the Dav pattern,
reaching a maximum R at t = 14:68, as described above, and fa-
vorably comparing with the t-statistics in Figure 2a.

We investigate the model’s performance in the ipsilat-
eral network only. Figure 4a depicts the positive ipsilateral
t-statistics. In this case, the graph diffusion is constrained
to the ipsilateral cortex only. As shown in Figure 4b, all
(ipsilateral) correlation values increase, with the highest
R reached once again at the hippocampus, (R = 0:685,
p = 2:1 · 10�7; pfdr = 9:4 · 10�6).

Other ipsilateral regions revealing a higher R include the
parahippocampal (R = 0:490, p = 6:4 · 10�4; pfdr = 4:2 · 10�3),
lingual (R = 0:561, p = 6:2 · 10�5; pfdr = 5:6 · 10�4), inferior
occipital (R = 0:588, p = 2:1 · 10�5; pfdr = 2:4 · 10�4), middle

FIG. 3. TLE-MTS: graph evolution when the ipsilateral hippocampus is seeded. Color images available online at www
.liebertpub.com/brain
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temporal (R = 0:527, p = 1:9 · 10�4; pfdr = 1:5 · 10�3), inferior
temporal gyrus (R = 0:650, p = 1:4 · 10�6; pfdr = 3:0 · 10�5),
and the thalamus (R = 0:438, p = 2:6 · 10�3; pfdr = 1:3 · 10�2).
The resulting graph diffusion depicted in Figure 4d shows
a similarity to the ipsilateral Dav map of Figure 4a. Table 1
lists the 10 nodes with the highest network diffusion depicted
in Figure 4d. From Figure 4c, the diffusion from the hippo-
campus reaches a maximum at t = 21:91. The figure addition-
ally gives the curves of the nodes with the second and third
highest R, the inferior temporal gyrus and the fusiform (sim-
ilar to the case of the full network), respectively, given by
R = 0:650 at t = 27:25 and R = 0:630 at t = 24:58.

When we consider the contribution of the individual eigen-
modes to the entire network (taking their absolute values), eigen-
mode u78 gives R = 0:382 (p = 2:03 · 10�4; pfdr = 1:8 · 10�2),

as given in Figure 5c. Figure 5b reflects eigenmode u78 on the
glass brain.

TLE-no mean diffusivity

Similar to the previous Section ‘‘TLE-MTS Mean Diffu-
sivity,’’ we compute the graph diffusion on an SC of a repre-
sentative healthy brain that most closely matches the MD
abnormalities in the case of TLE-no.

The t-statistics reflecting the MD abnormalities of a
group of TLE-no patients compared with a healthy group
is depicted in Figure 6a. The peak Dav is reached in the occip-
ital region at the contralateral inferior gyrus (t-stats = 3:19std,
p = 2:6 · 10�3; pfdr = 1:2 · 10�1), followed by the contralateral
insula (t-stats = 3:06std, p = 3:7 · 10�3; pfdr = 1:2 · 10�1) and

FIG. 4. TLE-MTS: Graph
diffusion when only the ipsi-
lateral hemisphere is consid-
ered. Ipsilateral positive t-
statistics (a); R when each
ipsilateral node is seeded,
with maximum R resulting
from seeding the hippocam-
pus (b); correlation curves for
the three nodes giving the
highest R (c), diffusion from
the ipsilateral hippocampus
(d). Table 1 lists the 10 nodes
with the highest diffusion
values. Color images avail-
able online at www.liebertpub
.com/brain

Table 1. Regions with the Highest Network Diffusion for the TLE-MTS (Left, and Fig. 4),
and TLE-no (Right, and Fig. 6) for the Case of 45 Regions (Ipsilateral Hemisphere)

MTS nodes MTS diffusion TLE-no nodes TLE-no diffusion

Hippocampus 1.74 Temporal-Inf 1.63
Precuneus 0.77 Temporal-Mid 0.83
Parahippocampal 0.76 Fusiform 0.77
Fusiform 0.76 Occipital-Mid 0.73
Temporal-Mid 0.73 Occipital-Inf 0.68
Lingual 0.73 Parahippocampal 0.67
Occipital-Mid 0.70 Hippocampus 0.66
Insula 0.68 Temporal-Pole-Sup 0.66
Temporal-Pole-Sup 0.68 Temporal-Pole-Mid 0.64
Calcarine 0.66 Lingual 0.59

TLE-MTS, temporal lobe epilepsy medial temporal sclerosis.
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the ipsilateral temporal inferior gyrus (t-stats = 3:04std,
p = 3:9 · 10�3, pfdr = 1:2 · 10�1). Significant change in Dav

relative to normal subjects (t-stats >2std) is found in the (con-
tralateral) frontal lobe (olfactory bulb, anterior cingulum), occip-
ital lobe (calcarine fissure), and parietal lobe (precuneus).
Ipsilateral change in Dav is found in the subcortical region (hip-
pocampus) and temporal lobe (fusiform). Bilateral increase in
Dav is found in the frontal lobe (inferior orbital and insula
gyri), the occipital lobe (inferior gyri), and the temporal lobe (in-
ferior gyri).

Figure 6b gives the Pearson correlations R when each node is
seeded and allowed to diffuse in the structural network. Diffu-
sions seeded in the occipital lobes lead to highest correla-
tions with the t-statistics. Specifically, diffusion from the
contralateral calcarine sulcus yields R = 0:364 (p = 4:2 · 10�4;
pfdr = 3:1 · 10�2), followed by the occipital inferior ipsilateral
and contralateral gyri (R = 0:341, p = 10�3, pfdr = 3:1 · 10�2

and R = 0:349, p = 7:6 · 10�4, pfdr = 3:1 · 10�2, respectively).
Referring to the t-statistics (Figure 6a), the contralateral calcar-
ine sulcus has one of the more pronounced changes in Dav when
compared with the healthy group. The contralateral occipital in-
ferior gyrus has the second highest change in Dav and shows one
of the highest correlations in graph diffusion. In fact, the Pearson
correlation between the t-statistics and the vector of maximum
correlation for each node yield R = 0:695 (p = 3 · 10�14).

Figure 6d illustrates the diffusion from the contralateral
calcarine sulcus. At the diffusion point of highest correla-
tion with the t-statistics, the graph diffusion is dominated
by the calcarine sulcus node, followed bilaterally by the
precuneus. Elsewhere, the diffusion stands out in the con-
tralateral middle occipital gyrus. The contralateral hemi-
sphere nodes of the calcarine sulcus diffusion are more
strongly correlated to their t-statistics counterparts, with
R = 0:475 (p = 9:8 · 10�4; pfdr = 1:5 · 10�2), than the ipsilat-
eral hemisphere nodes (R = 0:207, p = 0:17, pfdr = 0:99). We
observe that in this case, when the ipsilateral hemisphere
diffusion nodes correlated with the t-statistics counterparts,
the highest R is in fact obtained at the inferior temporal
node, with R = 0:467 (p = 1:2 · 10�3; pfdr = 1:1 · 10�1).

When only the ipsilateral nodes of the left temporal nodes
diffusion correlated with the t-statistics counterparts, we ob-
tain R = 0:467:

The curve of R versus t in Figure 6c shows that the peak R for
the contralateral calcarine seeding is reached at t = 59:96 with
R = 0:364. The second highest correlation results from seeding
the contralateral inferior occipital gyrus, yielding R = 0:349 at
t = 99:67. The ipsilateral hippocampus results in R = 0:286 at
t = 112:13 (p = 6:3 · 10�3; pfdr = 4:7 · 10�2) when seeded.

Similar to the TLE-MTS analysis in TLE-MTS Mean Dif-
fusivity Section, we next consider only the nodes spanning

FIG. 5. TLE-no and TLE-MTS as a function of eigenmodes juij. Eigenmode ju2j (a) captures an approximation of TLE-no
t-stats with R = 0.363 (c). On the other hand ju78j (b) captures an approximation of TLE-MTS t-stats with R = 0.382 (d). Color
images available online at www.liebertpub.com/brain
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FIG. 6. TLE-no: Positive t-
statistics, (a); the maximum
R obtained from seeding all
nodes, (b); diffusion from
contralateral calcarine gyrus
at maximum R with the t-
statistics (d); curve of R
obtained over a range of t
values for the contralateral
calcarine and occipital infe-
rior, and the ipsilateral hip-
pocampus (c). Highest R is
obtained when the contralat-
eral calcarine is seeded, with
t = 59:96 and R = 0:364. Color
images available online at
www.liebertpub.com/brain

FIG. 7. TLE-no: graph
diffusion when only the ipsi-
lateral hemisphere is consid-
ered. Ipsilateral positive t-
statistics (a); R when each
ipsilateral node is seeded,
with maximum R resulting
from seeding the inferior
temporal gyrus (R = 0:543)
(b); correlation curves for the
three nodes giving the highest
R (c), diffusion from the ip-
silateral inferior temporal
gyrus (d). Table 1 lists the 10
nodes with the highest diffu-
sion values. Color images
available online at www
.liebertpub.com/brain
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the ipsilateral hemisphere. The ipsilateral hemisphere t-
statistics is now given in Figure 7a. The correlation due to
seeding at each of the hemisphere’s nodes is given in
Figure 7b. The R values now significantly increase, with
the ipsilateral inferior temporal gyrus correlating most
(R = 0:543, p = 1:2 · 10�4; pfdr = 5:3 · 10�3). Other nodes
where the corresponding diffusions give high correlations
are the occipital inferior, fusiform, and lingual, as well as
the hippocampus and the calcarine sulcus. The set of corre-
lations obtained from seeding each node gives a relatively
high R when correlated with the ipsilateral t-statistics vector,
with R = 0:725 and p = 1:8 · 10�8.

Considering the diffusion from the ipsilateral inferior
temporal gyrus, given in Figure 7d, it is dominated by the
occipital and the temporal lobes, and the hippocampus,
with some diffusion in the parietal lobe. Table 1 lists
the 10 TLE-no nodes with the highest network diffusion
depicted in Figure 7d. The corresponding graph diffusion
from the inferior temporal gyrus shows somewhat high
value at the precuneus area, even though the inferior tempo-
ral gyrus is not directly connected to it. However, the infe-
rior temporal gyrus is structurally strongly connected to the
middle temporal gyrus, which in turn is connected to the
precuneus.

Figure 7c gives the R versus t curves for the inferior temporal
gyrus (R = 0:543, t = 21:91, p = 1:2 · 10�4; pfdr = 5:3 · 10�3),
the fusiform (R = 0:492, t = 21:91, p = 6 · 10�4; pfdr = 9:6 ·
10�3), and the hippocampus (R = 0:404, t = 25:92, p = 5:9 ·
10�3; pfdr = 4:4 · 10�2).

Once again, considering the contribution of the individ-
ual eigenmodes (taking their absolute values) over the full
network, eigenmode u2 gives R = 0:363 (p = 4:4 · 10�4;
pfdr = 4:0 · 10� 2), as given in Figure 5d. Figure 5a reflects
eigenmode u2 on the glass brain.

Statistical significance

A t-test between the TLE-MTS and TLE-no groups is
performed on the correlation value R obtained from the
two groups after each region has been seeded, as well as
on the corresponding diffusion depth tcrit obtained for
each node seeding and each group. In the case of the full
90 nodes networks, the R t-statistics is insignificant, with
�0.77 std and p = 0:44 (pfdr = 0:44). On the other hand,
the diffusion depth tcrit at which a maximum R is reached
yields �2.61 std with p = 9:7 · 10�3 (pfdr = 1:9 · 10�2).
When only the ipsilateral hemisphere is considered, we ob-
tain a significant value for R, 4.42 std (p = 2:9 · 10�5;
pfdr = 5:6 · 10�5) and a nearly significant value for tcrit,
1.96 std (p = 5:3 · 10�2; pfdr = 5:3 · 10�2).

The effect of choice of connectivity measure

The SC network is typically constructed using one of three
measures (Iturria-Medina et al., 2007): anatomical connec-
tion strength (ACS); anatomical connection density (ACD);
and anatomical connection probability (ACP), used in this
work. All three SC measures yield comparable results. For
comparison purposes, the SC measures are implemented in
the graph diffusion model for the TLE-MTS full network
case. Figure 8 depicts the results, with the upper left plot giv-
ing the R resulting from a graph diffusion at each node for the
ACD case. Similar steps are followed for the cases ACP (top

right) and ACS (bottom left). A scatter plot of the R values
obtained from ACS versus those obtained from ACP reveals
a nearly straight line (Fig. 8 bottom right). In addition, the R
values obtained from ACS and ACP are themselves highly
correlated, with R = 0:976.

Discussion

Summary of main results

A graph diffusion-based model of progressive deafferenta-
tion in epilepsy is proposed, employing a simple first-order
differential equation constrained on the structural network.
The model assumes that the topography of neuronal loss is
a result of the network-wide effect of progressive deafferen-
tation by a diffusive spread process restricted to the network
and seeded at the epileptogenic onset zone, for example, hip-
pocampus in TLE-MTS. Our model is essentially a mathe-
matical encoding of this progressive deafferentation, which
is assumed to be mediated by loss of trophic support, axonal
reaction, and retrograde and anterograde degeneration. The
model was validated by computing the Pearson correlation
between patients’ regional MD as a surrogate of neuronal
loss, and the model was evaluated at all diffusion time
points for each region.

The TLE-MTS estimate gives a strong resemblance to
measured group-level MD from 10 TLE subjects. Due to
its highly localized neuronal loss (ipsilateral hippocampus),
TLE-MTS yields the best prediction with high correlation
metric R (Fig. 2c, d). TLE-MTS shows strong validation of
our model, where the proposed graph diffusion estimates
are highly correlated with group-level t-statistics and appear

FIG. 8. Implementing three types of SC anatomical connec-
tion to the graph diffusion model in the case of TLE-MTS.
While all three cases give similar results, the R values obtained
from ACS and ACP are highly correlated (R = 0:976). ACS,
anatomical connection strength; ACP, anatomical connection
probability.
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to be consistent with similar conclusions reached in the liter-
ature. A higher Pearson correlation is obtained when we con-
sider only the ipsilateral cortex hemisphere (Fig. 4).

The heterogeneity of the TLE-no case leads to lower R
values when evaluated on the entire cortex for all nodes.
The highest R is obtained when the contralateral calcarine
sulcus is seeded. From the observed prominence of occipital
and contralateral regions, it appears likely that TLE-no rep-
resents a heterogeneous and nonfocally seeded disease,
which involves temporal cortices prominently, but not exclu-
sively. When only the ipsilateral hemisphere is considered,
the inferior temporal gyrus stands out as a possible epilepto-
genic focus, a likely onset region, as suggested in Mueller
and associates (2009). The resulting TLE-no estimate when
the SC is restricted only to the ipsilateral hemisphere may
be due to both the tendency of TLE-no to spread in both
hemispheres and the limitations of the current methods of es-
timating SC where the resulting network has the hemispheres
typically weakly connected.

The proposed model has only one degree of freedom, t.
Despite, or perhaps thanks to, the model’s simplicity, it is
possible to capture large-scale patterns (in our case, neuronal
loss distribution) of such a complex system as the brain, re-
quiring only the SC of a healthy subject. This suggests that it
is possible to reduce the complex spatiotemporal dynamics
of network-based progressive deafferentation and resultant
neuronal loss to a low-dimensional model. The model’s sim-
plicity leads to a fast implementation with minimal compu-
tational power.

The presented results support the feasibility and suitabil-
ity of network diffusion as a model of epilepsy-induced
neuronal loss. Although the GD model was tested here on
group-level MD statistics of relatively homogeneous epi-
lepsy subtypes with stereotyped topography, they support a
role, in future work, for the model in clinically relevant anal-
ysis of individual epilepsy patients. The quantitative and de-
terministic nature of the model could in the future make it
possible to predict an individual subject’s neuronal loss pat-
terns. It might become possible to provide more accurate per-
sonalized prognosis regarding likely cognitive, motor, and
other deficits. Ideally, given the subject’s current state, the
model can help identify the network edges through which
epilepsy-related influences would most strongly spread,
which could provide invaluable information during surgery
preparation. This is the motivation for our work and will
be addressed in future studies. The linearity of the proposed
method makes it possible to invert the diffusion process,
which could potentially enable inferring the epileptogenic
focus from the patient’s measured atrophy patterns.

In addition to MD, many other diffusion-related mea-
sures have been proposed, including fractional anisotrophy
(FA) and radial (RD) and axial (AD) diffusivity. It is possi-
ble that some of these alternate measures might also be ap-
propriate for the purpose at hand. Our choice of MD was
driven by the fact that it is not dependent on fiber orienta-
tion, which is less useful as a measure of neuronal integrity
than in WM where orientation is a key element. AD has a
similar dependence on orientation. However, RD might be
an interesting measure to test in the future, as it is presum-
ably exclusive of orientational aspects of diffusion, and
might therefore form a reasonable measure of neuronal integ-
rity in GM.

Neuronal loss and GD model prediction

The hippocampus is highly connected with regions of the
parietal lobe, particularly the precuneus, posterior cingulate,
and bilateral inferior parietal regions. Thus deafferentation in
TLE-MTS could plausibly lead to neuronal loss in the pari-
etal lobe (Bettus et al., 2009), as confirmed by our GD
model, which predicts strong neuronal loss in the ipsilateral
parietal lobe and especially the precuneus.

Related to Mueller and associates (2009), the model predicts
widespread TLE-MTS neuronal loss in the ipsilateral temporal
lobe (fusiform, parahippocampal), in agreement with McDo-
nald and associates (2008). In addition, the GD model predicts
neuronal loss in the ipsilateral inferior and middle temporal
gyri, ipsilateral lateral orbital frontal gyrus, and ipsilateral lin-
gual gyrus. The model also predicts significant neuronal loss in
ipsilateral the subcortical structure, particularly in the thala-
mus, putamen, and the hippocampus.

The model predicts additional neuronal loss in the frontal
lobe, especially in the ipsilateral olfactory bulb, the inferior
orbitofrontal gyrus, and the insula cortex. Bernahrdt and asso-
ciates (2008) report neuronal loss in the temporal lobe, as sub-
sequently confirmed in Mueller and associates (2009), but
also in the frontal lobe (Lin et al., 2007) where it is proposed
that under certain conditions, mesiotemporal epilepsy activi-
ties would propagate through the thalamus to the frontocentral
areas. Related to the findings in Mueller and associates
(2009), it is found that the frontal and parietal regions play a
crucial role in the evolution of complex partial seizure (Englot
and Blumenfeld, 2009), likely contributing to the atrophies
predicted in the same regions by the proposed GD model.

TLE-no epilepsy has, in general, different atrophy distri-
bution from its TLE-MTS counterpart. In this work, GD
over the entire GM nodes gives the contralateral calcarine
as an epilepsy focus candidate for seed diffusion, leading
to the highest R with MD abnormalities. Given the heteroge-
neity in epilepsy origin in TLE-no, it is unlikely that this is
the best, or the only seed for our model. The correlation co-
efficient itself is rather weak. Another explanation of the low
TLE-no R is the limited long-range connectivity obtained
from the SC matrix needed for the GD model.

While analysis over the whole GM yielded limited correla-
tion with the t-statistics, confining the analysis only to the ip-
silateral hemisphere yielded results that are more in line with
published literature. It is shown in Scanlon and associates
(2013); Mueller and associates (2007, 2009); and Carne and
associates (2007) using FA abnormalities that TLE-no anom-
alies are consistently found in the frontal lobe regions, includ-
ing the insula, in addition to the ipsilateral inferior temporal
gyrus. In the network of the ipsilateral hemisphere, the GD
seeded at the inferior temporal gyrus yields the highest R as
shown in TLE-no Mean Diffusivity Section. This is consistent
with the MD abnormality findings of the GD model in the
frontal lobe (inferior orbitofrontal gyrus, rolandic operculum,
olfactory bulb, and insula), as well as the inferior temporal
gyrus. Unlike TLE-MTS where the MD abnormalities stand
out mainly in the ipsilateral hemisphere and thus lead to a bet-
ter estimate of the MD abnormalities spread, the TLE-no case
tends to spread across the hemispheres.

The proposed model suggests that neuronal loss due to epi-
lepsy is driven by GD in the structural network, modeled by
the symmetric normalized Laplacian. The Laplacian matrix
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L’s eigenvector can capture an approximate presentation of the
neuronal loss due to TLE. For example, the eigenmode ju2j
corresponding to a small eigenvalue gives a correlation of
R = 0:363, approximating the TLE-no MD abnormality. Inter-
estingly, eigenmode ju78j captures neuronal loss at the hippo-
campus as well as at the inferior temporal gyrus, a region
considered a candidate for TLE-no epileptogenic focus (Muel-
ler et al., 2009). Performing similar analysis with the TLE-MTS
t-statistics gives eigenmode u78 as the one with highest R.

Relationship to current work in brain network analysis

The GD model proposed in this work is closely related to a
family of techniques adopted in the areas of signal and image
processing (Elmoataz et al., 2008; Zhang and Hancock, 2008).
Elmoataz and associates (2008) proposed a GD model for
image enhancement using weighted graphs. Image smoothing
methods based on heat kernels and weighted undirected graphs
have been proposed in Zhang and Hancock (2008). Bougleux
and associates (2007) developed image smoothing and denois-
ing approaches based on Laplacian operators. Shuman and asso-
ciates (2013) gave an excellent general discussion of graph
signal and image processing. Our laboratory developed a similar
network model reflecting macroscopic evolution of neurodegen-
erative brain diseases (Raj et al., 2012). A similar graph diffu-
sion model was also successful in capturing the relationship
between structural and functional connectivities.

The fact that seemingly distinct brain processes such as
neurodegenerative spread to functional networks to epilepsy
are captured by a simple GD model indicates a probable con-
vergence in large scale brain patterns, at least, as a first-order
approximation. A clue to this convergent behavior comes
from the recurring role of certain common elements in
many neurological diseases; for instance, medial temporal
area and the hippocampus play a central role in both Alz-
heimer’s dementia and TLE.

This study is also related to the larger and higher topical
interest in graph theory as an analysis tool for brain net-
works, as well as focused application in epilepsy. A recent
review of graph theory and its application summarizes the
usefulness in brain network analysis (Reijneveld et al.,
2007; Telesford et al., 2011). Another review of networks ap-
plication to brain functional and structural graphs discusses
brain connectivity viewed as a small-world network (Bassett
and Bullmore, 2006). The authors discuss the mathematical
theory underlying small world analysis and examine how it
translates as a quantification tool of connectivity matrices.

A review of network theory application to epilepsy (Lemieux
et al., 2011) sheds light on functional and structural networks
analysis and the challenges arising from analyzing epilepsy-
disrupted networks. In particular, network models have been
successfully applied to epilepsy where, for example, Bern-
hardt and associates (2011) use graph analysis of cortical
thickness to show that TLE subjects exhibit brain networks
with altered topology. Moreover, the authors find increased
path length and clustering in TLE subjects. In a related
work, Raj and associates (2010) confirm prior findings
using networks methods that, significant focal thinning in
the ipsilateral temporal lobe for the case of TLE-MTS exhib-
its weaker and more widespread bilateral thinning. They ad-
ditionally develop new network metrics that lead to
enhanced discrimination of the type of epilepsy.

Alterations in functional connectivity during interictal state
have been observed in TLE patients (Sequeira et al., 2013),
and a reduced activity is observed in the default mode network
in those with epilepsy disorder (Zhang et al., 2010). In addi-
tion, Sequeira and associates (2013) observed an increased
connectivity in the medial temporal lobe and in several sub-
cortical structures, while finding a reduced connectivity in dis-
tant cortical structures. The reduced baseline activity may be a
compensatory mechanism to reduce the risk of seizure and
excitotoxicity, although it may contribute to deafferentation.
Also, the seizure activity has been shown to cause a decou-
pling of structural versus functional connectivity (Zhang
et al., 2010). Network alterations have been observed to pro-
mote the onset of future seizures through the formation of
pro-TLE kainatergic synapses (Ben-Ari et al., 2008).

Long-term exposure to TLE leads to a progressive worsen-
ing in functional as well as structural connectivities. For ex-
ample, van Dellen and associates (2009) performed graph
analysis on the electrocorticography of temporal lobe sur-
gery patients and concluded that functional connectivity net-
works in the ipsilateral temporal lobe exhibit increased
randomness in the subjects with a longer history of epilepsy.
Similarly, Zhang and associates (2010) in a study of idio-
pathic generalized epilepsy show that function and structure
networks are less than optimal and exhibit altered connec-
tivities in both cortical and subcortical regions. Our work
is different from these studies, which are phenomenological
description of network alterations in epilepsy. In contrast, we
attempt, in this study, a specific model of network-based pro-
gressive deafferentation starting from first principles.

Clinical applications

Although validation was performed, in this study, on
group-level neuronal loss statistics of homogeneous epilepsy
subtypes with stereotyped topography, they support a role for
the model in clinically relevant analysis of individual epi-
lepsy patients. In addition to the scientific question of resolv-
ing the mechanism of spread of epilepsy in the brain,
eventual clinical applications were the motivation for our
work. Some of these applications are listed in this study,
and will be addressed in future studies.

Since the model is quantitative and deterministic, it may
in the future be used as a predictive tool in determining fu-
ture patterns of neuronal loss in a subject, based on their
current pattern. It might become possible to provide more
accurate personalized prognosis regarding likely cognitive,
motor, and other deficits. Given the subject’s current state,
the model can help identify the network edges through
which epilepsy-related influences would most strongly
spread, which could provide invaluable information during
surgery preparation. The linearity of the proposed method
makes it possible to invert the diffusion process, which in
turn could enable estimation of the epileptogenic focus of
a patient’s brain. Thus, the model can be reversed, starting
with the neuronal loss distribution, to estimate the epilepto-
genic focus in a given patient without the need for the intra-
cranial EEG step. This can potentially help streamline the
decision as to whether a given TLE patient makes a good
candidate for surgery.

Properly validated quantitative models of spread have the
potential to become indispensable tools in clinical care and
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management, for instance, as a predictive tool for assessing a
patient’s likely future topography of neuronal loss and poten-
tial for cognitive/motor impairment. Such a tool could allow
identification of the seizure onset zone and other regions of
epileptogenic activity—important clinical questions during
surgery planning. Much of this research is phenomenological
and descriptive, hence not well suited as quantitative tools.
Quantitative model development is further hampered by het-
erogeneity in the topography of the disease among TLE pa-
tients. Although this study was restricted to group analysis as
a means of testing the proposed models, our approach is
completely applicable to single-subject analysis, in which
case it would benefit from the individual patient’s unique
connectome and neuronal loss profiles. Thus, the proposed
method could be applicable even in heterogeneous epilep-
sies, for instance, frontal lobe epilepsy of diverse etiology.

Study limitations

Limitations of neuroimaging data processing, including
MD and diffusion MRI-derived tractography, means that
SC between topologically distant regions are under-
weighted and sometimes unreliable, especially interhemi-
spheric connections. Validity of the proposed graph
diffusion model depends on the accuracy of SC. As a re-
sult, the model underestimates contralateral abnormality
as is clearly shown in the TLE-no abnormality estimate,
where the graph diffusion over the entire network misses
the likely focus, but captures it when the structural net-
work is limited to the ipsilateral hemisphere. An addi-
tional limitation is the use of different scanners in the
healthy connectome scans and TLE subjects, however,
for the purpose of obtaining regional MD, t-statistics
healthy controls and TLE patients were acquired on the
same scanner.

The connectome scans involving high angular resolution
DTI were performed separately on a different healthy cohort
on a different scanner, but these data are not directly com-
pared to TLE data at any stage during the presented analysis.
Another limitation of this study is that it does not take into
account the feedback mechanism between structure and
function, where progressive neuronal damage has a func-
tional correlate, and consequent change in structure leads
to an alteration in function. The presented validation study
was confined to group-level neuronal loss statistics, as a con-
sequence, we were only able to include in our analysis the
epilepsy subtypes TLE-MTS, which has stereotyped topo-
graphic distributions, and TLE-no.

Materials and Methods

Network notation

In a brain network, each node represents a GM region lo-
cated on either the neocortex or in deep brain subcortical
areas. We define a network G = V,E with a set of N nodes
given by V = fviji 2 1, . . . , Ng and a set of edges given
by an ordered node pair E = f(i, j)ji 2 V; j 2 Vg (Chung,
1997). Between any two nodes i and j, there might exist a
fiber pathway whose connectivity weight ci, j 2 [0,1) can
be measured from dMRI tractography, and this defines a
connectivity matrix C = fci, jj(i, j) 2 Eg. Although some in-
dividual neurons are known to be directional, dMRI does

not allow measurement of directionality. Major fiber
bundles resolvable by dMRI, especially corticocortical path-
ways, are generally bidirectional, having roughly equal num-
ber of connections in either direction (Albright, 1984). We
define the connectivity strength or the weighted degree of a
node i in this graph as the sum of all connection weights:

di = +
jj(i, j)2E

ci, j: (1)

Table 2 describes the various parameters and variables
used in this work.

A network diffusion model for epilepsy

Spread of neuronal loss. We propose a simple linear
model, which assumes that neuronal loss is a propagation
event triggered at an onset zone by excitotoxicity or other
events. The neuronal loss then spreads throughout the
brain network through a degenerative process modulated
by loss of trophic support, axonal reaction, and retrograde
as well as anterograde degeneration. We model this hy-
pothesis as a dynamic process enacted on the structural
network This choice precludes investigation of the effect
of dynamically changing network connectivity and simply
assumes a static intact network. Clearly, these assump-
tions are going to become inapplicable in advanced
cases with widespread and strong atrophy.

We assume that a single event entailing loss of x0
1 neurons

per voxel in an isolated region R1 triggers internal (to the re-
gion) degenerative dynamics given by x1(t) = x0

1 exp (�bt).
This is then the ‘‘impulse response’’ of the region and simply
encodes the fact that a single insult will cause further degen-
eration, persisting in the region with a half-life of 1=b. This
corresponds to a simple damped system described by
dx1(t)=dt =�bx1(t). Next, consider a pair of cortical regions
R1 and R2, whose connectivity weight is c1, 2. In a short time
interval dt, let the number of newly deceased neurons in R2
be N2x2, where N2 is the number of voxels in R2. This group
of external newly deceased neurons then triggers degenera-
tion in R1, modeled as a Poisson process. Accounting for

Table 2. Summary of the Variables

and Definitions Used in This Text

Parameter
or variable Role

G Structural network of N nodes
V Set of nodes of G
vi ith node of G
E Set of edges of G
C SC matrix
ci, j Element (i, j) of C
di Weighted degree of node i
L Laplacian of C
ki ith eigenvalue of L
ui ith eigenvector of L
D Diagonal degree matrix of L
b Diffusion rate
xi(t) Neuronal loss in the i region
Ni No. of voxels in ith region Ri
F Atrophy spread due to neuronal loss

SC, structural connectivity.
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both the internal and externally induced neuronal loss dy-
namics in R1, we have

dx1(t)

dt
= b

1

N1

c1, 2

1

d2

N2x2(t)� x1(t)

� �
; (2)

where we assume identical rate constant b for both the in-
ternal and external neuronal loss dynamics for simplicity.
For multiple afferent into R1, we modify Equation (2) to

dxi(t)

dt
= b

1

Ni

+
j

ci, j

1

dj

Njxj(t)� xi(t)

 !
: (3)

Now, assuming a relationship between GM volume Nk and
ith node degree di given by Nk/

ffiffiffiffiffi
dk

p
8j2V, we have

dxi(t)

dt
= b d

� 1
2

i +
j

ci, jd
� 1

2

j xj(t)� xi(t)

 !
: (4)

On the entire network, Equation (4) can be compactly
expressed as

dx(t)

dt
= � bLx(t); (5)

where x(t) is an N · 1 vector describing the fraction of ep-
ileptogenic neurons in all brain regions, and matrix L is the
well-known symmetric and normalized Laplacian

L = I�D�
1
2CD�

1
2;

where D is the diagonal degree matrix with the node de-
gree di as the ith diagonal element. Equation (5) admits a
closed form solution x(t) = exp (�bLt)x0, giving a time-
dependent process starting with initial ‘‘seed’’ map x0 at
t = 0 and ending at a uniform distribution at t =1, such
that eventually all regions degenerate at the same constant
rate. Since x(t) denotes the number of newly deceased neu-
rons at any instant, the overall neuronal loss during the de-
generative process is given by the time integral

F(t) /
Z t

0

x(s)ds, (6)

which has a closed form solution

F(t) =
1

b
+
K

i = 1

1

ki

1� exp (�bkit)ð Þuiu
1
i , x0; (7)

F(t) is a function of time, where time has units of years since
the model captures the slow spread of degenerating neurons.
Since the true time since onset is not empirically accessible
in general, in Results Section we will estimate the diffusion
time as the instant tcrit when the theoretical pattern F(t) best
matches measured neuronal loss pattern in the subject. Both
tcrit and the rate constant b are a priori inaccessible and must
be empirically determined by data fitting. Seed vector x0 is
known in the TLE-MTS case to a high level of confidence
since prominent hippocampal sclerosis indicates a high likeli-
hood that it is indeed the focus location. Thus, we initialize x0

by a unit vector, which is zero except for the element corre-
sponding to the hippocampus node, which is 1. Details of rel-
evant network theory can be found in Chung (1997).

Study TLE population

Three groups consisting of 11 TLE-no subjects, 10 TLE-
MTS subjects, and 35 healthy subjects were recruited. Sub-
jects underwent scanning on a Siemens Allegra 3T scanner at
New York University Center for Brain Imaging. All partici-
pants had a T1-weighted MRI sequence optimized for gray-
WM contrast. (TR = 2530 ms, TE = 3.25 ms, T1 = 1100 ms,
flip angle = 7�, field of view (FOV) = 256 mm, matrix = 256 ·
256 · 192, voxel size = 1 · 1:33 · 1:33mm3). Images were cor-
rected for nonlinear warping caused by nonuniform fields cre-
ated by the gradient coils. The DTI volumes were segmented
and atlased into 90 regions using SPM 8 (Friston et al.,
2007), and masks defining GM and WM were obtained.
Finally, the MD over all the GM 90 regions was obtained.
Table 3 lists the demographics of all three groups.

Regarding the TLE-MTS group, the mean age differs from
the healthy and TLE-no groups due to the availability of sub-
jects with both T1 and DTI data. However, this does not
seem to adversely impact the proposed models performance
as the prediction matches published work on TLE-MTS (Rie-
derer et al., 2008; Spencer, 2002).

Connectome matrices from healthy cohorts

SC matrices were obtained from eight subjects. The sub-
jects’ ages range from 23 to 60, with three females and
five males. Subjects were scanned under normal subject pro-
tocol approved by the institutional review board (IRB).
Table 3 gives the demographics of the connectome group.

T1-weighted structural MR and high angular resolution
diffusion imaging (HARDI) data were collected on eight
healthy adults on a 3T GE Signa EXCITE scanner (GE
Healthcare, Waukesha, WI). HARDI data were acquired
using 55 isotropically distributed diffusion-encoding direc-
tions at b = 1000s=mm2 and one at b = 0s=mm2, acquired
at 72 1.8 mm thick interleaved slices with no gap between sli-
ces and 128 · 128 matrix size that was zero-filled during re-
construction to 256 · 256 with an FOV of 230 mm. The
structural scan was an axial 3D inversion recovery fast
spoiled gradient recalled echo (FSPGR) T1-weighted proto-
col (TE = 1.5 msec, TR = 6.3 msec, TI = 400 msec, flip angle
of 15) with 230 mm FOV and 156 1.0 mm contiguous parti-
tions at a 256 · 256 matrix.

Structural and diffusion MR volumes were coregistered
using SPM tools in MATLAB (Alemán-Gómez et al.,
2006; Friston et al., 1994), and then parcellated into 90
cerebral cortical structures as per Tzourio-Mazoyer and as-
sociates (2002). Parcellated regions were used to seed prob-
abilistic tractography in coregistered diffusion MRI volumes.
Connectivity weight between any two regions was given by a
weighted sum of tracts going between them, as per Iturria-
Medina and associates (2007). Simple statistical thresholding
was performed to remove spurious weak connections,

Table 3. Subjects’ Demographics

Group Gender (F/M) Age

Connectum 3/5 35 – 13
Healthy 18/17 39 – 13
TLE-MTS 5/5 29 – 11
TLE-no 6/5 35 – 14
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defined as those below the p = 0:001 level of significance.
Probabilistic masks, including both white and GM, were
obtained. At p>0:001, the thresholded network has 11:56
nonzero connections. Threshold level p>0:001 has been
previously reported in Ivković and associates (2012).
Since the proposed diffusion model is linear, a change in
p should not adversely affect the model’s prediction. A
voxel was included in the mask if both its GM and WM
probabilities exceeded 0:5.
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