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Abstract

White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized
brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is
associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In
this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are inter-
related within ASD and typical development. We assessed the strength of inter-regional white matter correlations
between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering
patterns of the pairwise white matter correlations were constructed and revealed to be different between the two
groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns
formed by inter-regional white matter correlations and compared these properties between ASD and typical de-
velopment. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure
across the brain compared to that in the typical development sample. The ASD group also presented altered to-
pological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight
the potential of graph theory based network characteristics to describe the underlying networks as measured by
diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain
network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses
that have suggested disrupted brain connectivity in ASD.
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Introduction

Autism spectrum disorder (ASD) is a complex, hetero-
geneous neurodevelopmental condition diagnostically

defined by a triad of core features that cluster together within
individuals: qualitative differences in social interaction and
social communication, and repetitive and stereotyped behav-

iors and interests (American Psychiatric Association, 2013).
Though the exact etiology of ASD is unknown, increasing
evidence from neuroimaging research suggests that aberrant
brain connectivity may contribute to these cognitive and be-
havioral deficits (Belmonte et al., 2004; Lainhart, 2006; Min-
shew and Williams, 2007; Müller et al., 2011; Vissers et al.,
2012), impairing the ability to integrate and communicate
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information across the brain (Just et al., 2004). Essential to the
normative functioning of the brain is the white matter micro-
structure, which links discrete gray matter regions together
and coordinates highly efficient, temporally precise communi-
cation between them (Pajevic et al., 2014), thus providing the
structural foundation of brain connectivity. Due to the inherent
role that the brain’s white matter has in facilitating brain mes-
saging and communication, such deviations in neural connec-
tivity may implicate atypical white matter microstructure in the
functional and cognitive deficits observed within the ASD phe-
notype (Ameis and Catani, 2015; Travers et al., 2012).

A number of anatomical and microstructural neuroimaging
findings have shown ASD to be associated with altered cere-
bral white matter, with the majority of such results coming
from magnetic resonance imaging (MRI) volumetry and dif-
fusion tensor imaging (DTI) (Ameis and Catani, 2015; Lange
et al., 2010, 2015; Prigge et al., 2013a; Travers et al., 2012).
For example, the largest of the commissural white matter
pathways, the corpus callosum, has been found to be reduced
in size (Egaas et al., 1995; Prigge et al., 2013b) and have re-
duced white matter integrity in ASD (Alexander et al., 2007a;
Lange et al., 2010). Such atypicalities in the corpus callosum
have more recently been shown to occur longitudinally
throughout development (Lange et al., 2015; Travers et al.,
2015) and begin as early as 6 months (Wolff et al., 2015).
Other imaging studies have found reduced white matter integ-
rity throughout numerous tracts in the brain, including the
cingulum bundle (Barnea-Goraly et al., 2004), arcuate fascic-
ulus (Barnea-Goraly et al., 2010; Fletcher et al., 2010; Noriu-
chi et al., 2010), internal capsules (Brito et al., 2009; Shukla
et al., 2011), frontal white matter pathways (Courchesne and
Pierce, 2005a), temporal-parietal junctions (Barnea-Goraly
et al., 2010; Brieber et al., 2007), and others. For a more com-
plete review, see ( Just et al., 2012; Schipul et al., 2011; Tra-
vers et al., 2012). Moreover, the recurrent finding of abnormal
brain maturation in individuals with autism has been revealed
as a hallmark characteristic of ASD and thought to be a result
of atypical white matter development during early infancy
(Belmonte et al., 2004; Courchesne and Pierce, 2005b;
Courchesne et al., 2007, 2004; Lainhart et al., 1997; Lange
et al., 2015, 2010; Piven et al., 1995; Stevenson et al.,
1997; Travers et al., 2015; Wolff et al., 2015). Together,
the observations of atypical integrity and development sug-
gests that the white matter microstructure has a significant
role in the biological basis and pathogenesis of ASD.

Additionally, there is substantial heterogeneity in the phe-
notype of ASD, and it is unclear whether ASD is associated
with atypical white matter microstructure across multiple
tracts of the brain or if these atypicalities are more localized.
In addition to understanding how brain features may differ
between ASD and typical development (TD), it is equally im-
portant to understand how the microstructure of the brain
covaries with other brain regions in TD and ASD and exam-
ine how such features of neural microstructure may differ be-
tween these two groups (Zielinski et al., 2012). In particular,
significant microstructural correlations of DTI parameters
have been shown to exist in normal adult populations and
are hypothesized to reflect anatomic and/or functional simi-
larities between white matter tracts (Li et al., 2012; Wahl
et al., 2010). Moreover, changes of microstructural correla-
tions from birth to puberty suggest that underlying develop-
mental processes are important for the strengthening of

inter-tract correlations, which may allow the brain to meet
the demands of more advanced cognitive processes as one
transitions from adolescence to early adulthood (Mishra
et al., 2013). Understanding such ‘‘signatures’’ regarding
the white matter microstructure within ASD and how these
characteristics may differ between that of typically develop-
ing individuals are therefore critical. If white matter micro-
structural abnormalities are localized to specific tracts in
ASD, then the microstructural white matter tracts may be
less coherent in ASD than in TD. Also, variations in white
matter tract properties across the brain over a broad age
range may provide information regarding abnormal brain de-
velopment. Such information may provide valuable insight to
identify meaningful subgroups within the autism spectrum.

The development of complex network analysis (Boccaletti
et al., 2006; Strogatz, 2001) has begun to allow neuroimaging
research to abstractly view the brain as a set of elements
(nodes) that are interrelated to one another via functional
and/or structural associations (edges) (Rubinov and Sporns,
2010; Zalesky et al., 2010). Such graph models have been uti-
lized to investigate relationships between brain structure and
function and used as a tool to characterize the network topol-
ogy and organization of the brain (Bullmore and Sporns,
2009; Sporns and Kötter, 2004; Zalesky et al., 2010). Graph
metrics such as modularity, small-worldness, clustering,
local and global efficiency, and others (Rubinov and Sporns,
2010) have been used to quantify the complex topology of
these brain networks into meaningful features (Bullmore
and Sporns, 2009). Furthermore, these characteristic proper-
ties have been observed to differ in Alzheimer’s disease
(Sanz-Arigita et al., 2010; Zhao et al., 2012), multiple sclero-
sis (He et al., 2009), schizophrenia (Alexander-Bloch et al.,
2010; Bassett et al., 2008; Liu et al., 2008), attention deficit
and hyperactivity disorder (Liu et al., 2015; Wang et al.,
2009), epilepsy (Bernhardt et al., 2011) and in infants with in-
trauterine growth restriction (Batalle et al., 2012). These net-
work analyses have been used to examine correlation-based
networks derived from measures of cortical thickness, struc-
tural MRI, and other neuroimaging techniques (Bassett and
Bullmore, 2009), and have been used to identify topological
alterations in clinical diseases and disorders including, epi-
lepsy (Bernhardt et al., 2011), Alzheimer’s disease (Phillips
et al., 2015), and others (Guye et al., 2010). These results pro-
vide converging evidence to support the potential of these
MRI-based network measures as possible means that can
be utilized to glean information about the structure of
correlation-based networks and monitor neurodevelopmental
and neurological disorders.

Given the involvement and diversity of white matter mi-
crostructure abnormalities that are reported in ASD (Just
et al., 2012; Lange et al., 2015, 2010; Schipul et al., 2011;
Travers et al., 2015, 2012), investigating the characteristics
of the inter-regional correlations of white matter integrity
may provide insight into the structural coherence of underly-
ing white matter tracts in ASD. Specifically, it would be im-
portant to understand whether or not observed white matter
atypicalities are consistently widespread in ASD, consis-
tently specific in ASD, or a mix of consistent and inconsis-
tent. Characterization of the intricate patterns of white
matter between ASD and TD would therefore be particularly
informative about the intrinsic organization of underlying
white matter microstructure and potentially enhance our
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understanding of how deviant white matter may lead to cog-
nitive and behavioral impairments in ASD.

In this study, DTI was used to investigate whether patterns
of inter-regional correlation differed in a large, cross-sectional
sample of individuals with ASD and typical development. We
constructed correlation matrices from measures of fractional
anisotropy and assessed the strength of the inter-correlations
between these two groups. Using hierarchical clustering,
white matter regions and tracts were grouped to reveal patterns
of microstructural relatedness and to compare the observed
patterns between those of typical development and ASD.
Finally, in an exploratory analysis, metrics from complex net-
work analysis were used to examine the network characteris-
tics of white matter inter-regional correlation networks. We
evaluated the ability of diffusion MRI measures to demon-
strate group differences in global brain network features
from inter-regional correlations. Additional analyses exam-
ined whether ASD and TD groups differed in global and
local complex network features of the brain, such as mean de-
gree, characteristic path length, global and local efficiency,
mean clustering coefficient, modularity, and small-worldness.

Materials and Methods

Participants

The study protocol was approved by both the University
of Utah and University of Wisconsin-Madison Institutional
Review Boards. Participants included 92 males with ASD
and 43 TD nonpsychiatric control males between the ages of
3.3 and 36.8 years. Consent was obtained for all participants,
and both parental consent and participant assent were obtained
for participants under the age of 18 years. This cross-sectional
cohort of individuals was selected from a broader sample of
ASD and TD individuals that have been imaged and assessed
as part of on-going longitudinal investigation of brain and be-
havioral development in ASD from childhood into adulthood
(Lange et al., 2015; Travers et al., 2015, 2014; Zielinski et al.,
2012, 2014). Exclusion criteria included history of severe
head injury, seizure disorder, hypoxia-ischemia, genetic disor-
der associated with ASD (identified with fragile-X testing or
karyotype), known medical cause of ASD diagnosis (e.g.,

known patient history, and physical exam), and/or other neu-
rological disorders. All 135 participants were recruited,
assessed, and underwent MRI scanning at the University of
Utah. See Table 1 for additional participant information.

Participants with ASD were diagnosed according to the
Autism Diagnostic Interview-Revised (ADI-R) (Lord et al.,
1994), Autism Diagnostic Observation Schedule-Generic
(ADOS-G) (Lord et al., 2000), Diagnostic Statistical Manual-
IV (American Psychiatric Association, 1994), and the Inter-
national Statistical Classification of Diseases and Related
Health Problems-10th revision (ICD-10) criteria (World
Health Organization, 2007). Standardized psychiatric assess-
ment, neuropsychological assessment, IQ testing, and assess-
ment with the ADOS-G (Lord et al., 2000) were performed on
TD participants to confirm typical development. Typically
developing and ASD participants did not significantly differ
on age t(133) = 1.62, p = 0.11, however, participants diag-
nosed with ASD had a significantly decreased full-scale IQ
(FSIQ), t(133) = 5.96, p < 0.001.

Imaging protocol

Magnetic resonance images were collected on a Siemens Tim
Trio 3.0 T scanner equipped with an eight-channel receive-only
head radio-frequency coil. Diffusion-weighted imaging (DWI)
data were obtained using a single shot spin-echo echo-planar
imaging pulse sequence. Bipolar gradients with dual-echo refo-
cusing was used to reduce eddy currents (Reese et al., 2003).
Parallel acquisition, with a geometric reduction factor of two,
was used to reduce image distortions from magnetic field inho-
mogeneity and reduce acquisition time. Imaging parameters
consisted of repetition time (TR) = 7000 ms, echo time (TE) =
84 ms, averages = 4, and bandwidth = 1346 Hz/pixel. Imaging
field of view was 25 · 25 cm with an acquisition matrix of
128 · 128, providing a 2 · 2 mm in-plane resolution. Coverage
across the cerebrum and cerebellum was achieved by acquiring
60 axial-oriented contiguous slices with a slice thickness of
2.5 mm. Diffusion data were acquired with diffusion encoded
along 12 noncollinear directions with b = 1000 sec/mm2 and a
single nondiffusion weighted (b = 0 sec/mm2) image. The
total time of the DTI acquisition was 6.5 min.

Table 1. Summary of Subject Characteristic Including Age, Total Motion Index, Height, Head

Circumference, Verbal IQ, Performance IQ, and Full-Scale IQ for the Complete Investigated Cohort

ASD group TD group

N = 92 N = 43

Range Median Mean SD Range Median Mean SD p

Age (years) 3.33–36.83 12.38 13.99 7.94 4.0–29.5 16.17 16.24 6.39 0.1078
TMI 0.69–6.10 1.88 2.00 0.94 0.45–6.70 2.01 2.32 1.16 0.1164
Height (cm) 76.45–196.5 158.50 149.59 27.47 112–194.2 171.75 163.84 22.54 0.008
HC (cm) 49.0–60.7 54.40 54.77 2.86 51.8–59.3 56.35 55.86 2.13 0.0441
VIQ 51–145 98.0 97.39 22.73 94–151 116.0 116.58 13.64 <0.001
PIQ 64–135 100.0 100.63 17.84 90–155 114.0 117.97 16.44 <0.001
FSIQ 61–137 97.0 98.15 20.03 95–153 117.0 119.16 15.36 <0.001

Ranges, medians, means, and standard deviations (SD) are provided. All subjects were males. Between group differences were calculated
using independent sample t-tests.

Bold values denote significant (p < 0.05) difference between ASD and TD groups.
ASD, autism spectrum disorder; FSIQ, full-scale IQ; HC, head circumference; PIQ, performance IQ; TD, typical development; TMI, total

motion index; VIQ, verbal IQ.
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In addition to DWI data, a wide range of pulse sequences,
including a 3D MP-RAGE, 2D proton-density, T2-weighted,
and 2D FLAIR, were collected for clinical review but were
not used in this study.

Image analysis

All image processing and analyses were conducted at the
University of Wisconsin-Madison. Individual diffusion
weighted images were co-registered to account for any subtle
distortion, translation, and rotation from bulk head motion
and eddy currents using an affine registration tool ( Jenkinson
et al., 2002) from the FMRIB software library (FSL; http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/) software suite. Gradient di-
rections were additionally corrected for rotations (Leemans
and Jones, 2009). Nonparenchyma signals were removed
using FSL’s brain extraction tool (BET) (Smith, 2002) and
diffusion tensors were fit at each voxel using the robust es-
timation of tensors by outlier rejection (RESTORE) (Chang
et al., 2005) algorithm as part of the Camino software
package (Cook et al., 2006). Eigenvalues (k1, k2, k3) were
calculated from these voxel-wise estimates of the diffusion
tensor and quantitative maps of fractional anisotropy (FA)
were then derived (Basser and Pierpaoli, 1996).

DTI-TK was used to generate a population-specific tem-
plate using affine and diffeomorphic diffusion tensor registra-
tion (Zhang et al., 2006) using the full diffusion tensors. White
matter tracts from the JHU ICBM-DTI-81 template (Mori
et al., 2005; Oishi et al., 2008) were spatially aligned to this
population template using the Advanced Normalization
Tools (ANTs) diffeomorphic spatial registration algorithms
(Avants et al., 2008) and nearest neighbor interpolation. The
normalized JHU ICBM-DTI-81 template was then warped
into each subject’s native space by applying the inverse of
the spatial transformations estimated in the population-
specific template generation step. Native-space FA maps
were subsequently parcellated into the 48 white matter tracts
(Supplementary Table S1; Supplementary Data are available
online at www.liebertpub.com/brain) contained within this
template and the median FA value for each tract was com-
puted for each participant. The median FA was selected as
the measure of interest for a given region rather than the
mean, as the median is less sensitive to voxels with extreme
values (Travers et al., 2015).

Comparison of ASD and TD white matter correlation

To evaluate white matter structural relatedness, a matrix
of the correlation between FA of each pair of white matter
tracts was generated for the ASD and TD groups. Each ele-
ment of these symmetric, 48 · 48 correlation matrices was
defined as the nonparametric Spearman’s rank correlation
coefficient between the medians FA of two white matter
tracts. It is well known that FA changes with age (Lange
et al., 2010; Lebel and Beaulieu, 2011; Travers et al.,
2015; Walker et al., 2012) and therefore before calculating
correlation coefficients between white matter tract pairs,
generalized additive models were used to regress the effects
of age out of the pairwise FA correlations. These semi-
parametric methods were used because age-related changes
may not be fully captured by specific parametric models
(Travers et al., 2015). A total motion index (TMI) was addi-
tionally calculated for each participant to account for the

effects of potential group differences in head motion during
scanning, as described (Benner et al., 2011; Yendiki et al.,
2014). Measures of TMI suggested that head motion did
not differ between groups ( p = 0.12), however, this measure
was included as a covariate in the regression models to ascer-
tain that group differences were not a result of differences in
head motion. The residuals from this regression were deter-
mined and replaced the raw FA values in computing the cor-
relation coefficients between two pairs of white matter tracts.
Box’s M-test (Box, 1954) was used to examine significant
( p < 0.001) statistical differences between the correlation
matrices of the ASD and TD groups (i.e., whether the TD
correlation matrix was more consistent across the cells
than the ASD correlation matrix).

Once the DTI-derived correlation matrices were found to
be significantly different between typically developing and
ASD individuals, the discrete entries of the correlation matri-
ces were compared between both groups. Spearman’s rank
correlation coefficients were transformed to z scores using
Fisher’s z-transformation (Fisher, 1915) and the strength of
the pairwise inter-regional correlations were compared be-
tween the autism and TD groups.

Hierarchical clustering of inter-regional
correlation matrices

Hierarchical clustering was employed to identify patterns
of microstructural relatedness within the typical development
and ASD groups, as previously described (Mishra et al.,
2013; Wahl et al., 2010). For clustering purposes, the quantity
1-q, where q corresponds to the Spearman’s rank correlation
coefficient, was calculated for all entries of the group-
specific correlation matrices and used as a measure of dis-
similarity between white matter regions (Mishra et al.,
2013; Wahl et al., 2010). The hierarchical clustering analysis
was performed using the ‘‘hclust’’ function within R version
3.2.1, while the pvclust’’ function in R (Suzuki and Shimo-
daira, 2006) was used to generate p-values of the formed
clusters by performing bootstrap resampling with 10,000
repetitions. An unbiased p-value of 0.05, corresponding to
a 95% confidence level, was selected as the threshold for de-
termining whether formed clusters were significant.

Effects of FSIQ and age on microstructural relatedness

To ensure that observed differences from the previous
analysis did not result from the significant differences in
FSIQ scores between the ASD and TD groups (Table 1),
we performed a secondary analysis by repeating the above
procedure on a subset of ASD and TD individuals, matched
for age and FSIQ (Supplementary Table S2). Correlation ma-
trices for these subgroups were calculated in the same way,
first regressing age from the median FA measures using
the generalized additive models, followed by computing
the Spearman’s rank correlation coefficient between the re-
gression residuals for each pair of white matter tracts.
Box’s M-test (Box, 1954) was again used to examine signif-
icant ( p < 0.001) statistical differences between the age and
IQ matched ASD and TD matrices. Fisher’s z-transformation
(Fisher, 1915) was once more used to assess the strength of
the pairwise correlations between the ASD and TD groups
and hierarchical clustering with bootstrap resampling was
used to examine the patterns of microstructural relatedness.
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Next, we sought to examine whether the observed patterns
of microstructural relatedness change with age. While we
have previously tried to account for such age-related effects
by using the residuals from model regressions, patterns of
microstructural relatedness have been shown to strengthen
from birth to late childhood (Mishra et al., 2013). Thus,
we questioned whether such changes in the microstructural
correlations would also be observed for ASD and TD indi-
viduals from childhood into adulthood. To perform this anal-
ysis, ASD and TD participants younger and older than 15
years of age were first separated into two age groups. ASD
and TD microstructural correlation matrices were next con-
structed for each age group as previously described. Fisher’s
z-transformation (Fisher, 1915) was again used to assess the
strength of the pairwise correlations between age groups and
between the ASD and TD groups. Hierarchical clustering
with bootstrap resampling was used to examine the age
group patterns of microstructural relatedness.

Post hoc white matter network analysis

While comparison of the correlation matrices between ASD
and TD subjects allows identification of an overall difference
between the patterns of white matter inter-relatedness between
these two groups, the information discerned from this global
comparison is limited. Therefore, these results do not enable
us to distinguish how such differences between ASD and
TD may be related to the network structure formed by the
white matter microstructure. The application of graph theory
techniques to neuroimaging data has been increasingly used
to study relationships of structural covariance and connectiv-
ity (Bassett and Bullmore, 2009; Guye et al., 2010; Rubinov
and Sporns, 2010; Sporns, 2013); thus, we hypothesized that
such measures may also be applicable to examine the prop-
erties and group differences of the microstructure correla-
tion matrices in this study. Hence, in a post hoc analysis,
we investigated the global and local network features of
the white matter correlation matrices from the overall
cohort of ASD and TD participants using graph theoretic
analyses.

From the group-specific correlation matrices, we con-
structed a binarized adjacency matrix (Bullmore and Sporns,
2009; Ginestet et al., 2011) of inter-regional correlations.
Each element of this matrix contained either a 1, representing
a correlation between two white matter tracts existed, or a 0,
representing no correlation, for both the ASD and TD groups.
While such an approach has been used to examine the struc-
tural relatedness formed by measures of cortical thickness,
structural MRI, and other neuroimaging strategies (Bernhardt
et al., 2011; Bassett and Bullmore, 2009; Guye et al., 2010;
He et al., 2007; Phillips et al., 2015), this representation is
useful in the current context, as it allows identification and vi-
sualization of patterns between regional DTI relatedness
measures within the ASD and TD groups. A global threshold
was applied to the group-specific correlation matrices to cre-
ate the adjacency matrices. Since topological features of a
network may change with different threshold levels, with
the resulting network becoming increasingly sparse as the
threshold increases (He et al., 2007), we first explored the in-
fluence of the threshold on the mean degree (described below)
of the network and selected the most appropriate global
threshold from this analysis. Figure 1 provides an overall

schematic of how brain networks were constructed from
the group FA maps.

These group-specific adjacency matrices constitute as a de-
scription of the underlying white matter network (He et al.,
2007; He and Evans, 2010) and thus allow a graph theory ap-
proach to compare and evaluate the similarities and differ-
ences in these networks between the ASD and TD groups.
To perform this analysis, the binarized adjacency matrix for
each group was described as an undirected graph, in which
graph nodes correspond to white matter tracts, and the
edges represent significant correlations between the white
matter tracts. Network measures could be subsequently calcu-
lated from the undirected graphs of the ASD and TD groups.
The network measures were examined and their interpreta-
tions are described below.

Mean degree

One of the more fundamental and important measures of a
network is a node’s degree (Bullmore and Sporns, 2009) and
corresponds to the number of links (i.e., nonzero edges) con-
nected to the individual node (Rubinov and Sporns, 2010).
The mean degree of a network is therefore the average de-
gree over all nodes in the network and provides a measure
of the overall network density (Rubinov and Sporns, 2010).

Characteristic path length

The characteristic path length, L, of a graph is defined as
the smallest number of connections required to connect one
node to another, averaged over all node pairs within the
graph (Watts and Strogatz, 1998). The characteristic path
length corresponds to a property that reflects the network’s
capacity to transfer information globally (Ginestet et al.,
2011).

Clustering coefficient

The clustering coefficient, C, is defined as the average of
clustering coefficients over all nodes in the graph, where Ci

represents the clustering coefficient of node i and corre-
sponds to the fraction of existing edges to all possible
edges. This measure is interpreted to represent an average
measure of the local connectedness of the network (Ginestet
et al., 2011).

Global and local efficiency

Similar to characteristic path length and the clustering co-
efficient, global and local efficiency describe a network’s
ability to communicate information. Global efficiency is in-
versely related to the characteristic path length and is typi-
cally considered to be a measure of the network’s overall
ability for information transfer and integrated processing
(Bullmore and Sporns, 2012). Local efficiency, on the other
hand, is related to the clustering coefficient and is interpreted
as the average global efficiency of specific network modules
(Bullmore and Sporns, 2012; Rubinov and Sporns, 2010). A
network with high global efficiency can be viewed as one
that efficiently transfers information across the network (a
global feature), whereas having a high local efficiency
implies efficient local transfer of information, on average
(Ginestet et al., 2011).
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Modularity

An important measure in the study of complex networks is
modularity. Complex networks may be organized by a num-
ber of modules, which are defined as densely connected
nodes that have relatively few connections between other
modules (Bullmore and Sporns, 2009). Modularity, there-
fore, is a measure that estimates a network’s modular struc-
ture (Bullmore and Sporns, 2009; Rubinov and Sporns,
2010), where networks with high modularity have dense con-
nections between nodes within modules, but sparse connec-
tions between nodes of different modules. Identifying
whether a network is made up of groups of modules could
provide information about the dynamics and organization
of the network, with different modules having a specific
role or function within the network (Newman, 2006).

Small-world properties

In addition to these measures, we examined the small-
worldness of the ASD and TD networks. Small-worldness
is defined as a type of network that exhibits groups of highly
clustered vertices (high clustering coefficient), with a limited
number edges connecting the vertex assemblies (low path
length) (Watts and Strogatz, 1998). Clustering coefficients
(Creal) and characteristic path length (Lreal) of the FA-based
anatomical networks were compared with those of 1000 ran-
dom graphs (Crand and Lrand) with the same number of nodes,

mean degree, and degree distribution. We calculated the
small-world parameters: c = Creal

Crand
, k = Lreal

Lrand
, and r = c

k, in
which a small-world network should fulfill the following
conditions: c > 1, k* 1, and therefore r > 1 (Achard et al.,
2006; Watts and Strogatz, 1998). Small-worldness is an im-
portant characteristic of a network as it represents an optimal
balance between global integration and local processing
(Batalle et al., 2012; Sporns et al., 2004).

As described previously, the correlation threshold level
has significant impact on the topological characteristics.
When this threshold level reaches a value such that the
mean degree of the resulting network is less than the natural
logarithm of the number of nodes contained in the network
[i.e., for the current study: mean degree < ln(# nodes) =
3.87], small-world characteristics are not estimable (Achard
et al., 2006; Watts and Strogatz, 1998). Thus, the global
threshold used to construct the network adjacency matri-
ces was selected through a sensitivity analysis that esti-
mated the influence of the threshold level on the mean
degree of the network. The threshold that was the strongest
while preserving estimable small-world properties for
both the ASD and TD networks (i.e., mean degee >3.87)
was selected as the optimal threshold and used for further
analyses.

Graph theory measures were calculated within MATLAB
(MathWorks, Natick, MA) using the freely available Brain Con-
nectivity Toolbox (BCT, www.brain-connectivity-toolbox.net/).

FIG. 1. Overall schematic
depicting the construction of the
structural brain networks and graph
theory measures. ASD, autism
spectrum disorder; TD, typical
development. Color images avail-
able online at www.liebertpub.com/
brain
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Group comparisons between graph topological features were
tested using permutation tests based on 5000 permutations.

Results

The inter-regional correlation matrices of the TD and ASD
groups and the difference between these matrices are
depicted in the top panel of Figure 2, while the bottom
panel provides a gravitational plot representation created
within Gephi (Bastian et al., 2009) of the inter-regional cor-
relations for both groups. Within the gravitational plot repre-
sentation, each tract is displayed as a circular node while
each node is linked together by an edge that is representative
of the correlation of FA between the two regions. Shorter
edges and more closely spaced nodes signify a stronger cor-
relation. Qualitatively, it can be appreciated that the ASD
graph contains more nodes that are further apart, signifying

a less inter-related white matter microstructure than the typ-
ically developing group. This observation can also be appre-
ciated from the cooler colors in the correlation matrix of the
ASD group. Quantitatively, Box’s M-test comparing the
ASD and TD FA correlation matrices showed an overall sig-
nificant difference in the inter-relatedness of white matter
metrics between the groups ( p < 0.001).

In general, the TD group had stronger inter-regional correla-
tions compared to the ASD group, with 55% (620/1128) of the
independent entries in the TD correlation matrix having higher
values than the ASD correlation matrix. The strongest of corre-
lations within the TD group existed between the homologous
pairs of the left and right posterior limb of the internal capsule
(q = 0.87), while the left and right posterior corona radiata exhi-
bited the strongest correlation in the ASD group (q= 0.79).
Using the Fisher z-transformation to compare these correlation
matrices (top right Fig. 2) shows that 48 of these pairwise

FIG. 2. (A) White matter inter-regional correlation matrices for the typically developing (left) and ASD (middle) participants.
Correlations are separated by midline, right, and left hemispheres to easily appreciate within- and inter-hemisphere microstruc-
tural correlations. White matter tracts from the JHU ICBM-DTI-81 template were used. See Supplementary Table S1 for refer-
ence of the tract abbreviations. Comparison using Fisher Z-transform (right) shows, in general, stronger inter-regional
correlations compared to the ASD group. (B) Gravitational plots of the correlations between the FA measurements of 48
white matter tracts between the TD (left in red) and ASD (right, in green) groups. Nodes represent regions of interest, while
edge lengths represent the magnitudes of correlation coefficients between pairs of regions of interest. Shorter edges depict larger
correlation coefficients, which signify more closely spaced nodes in the correlation space. As can be seen, the white matter mi-
crostructure of different tracts in the ASD group was significantly less interrelated (less correlated) than that of the typically de-
veloping group ( p < 0.001, Box M-test). TD, typical development. Color images available online at www.liebertpub.com/brain
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differences are significantly higher in the TD group, while 18
pairwise differences were higher in the ASD group ( p < 0.05).

Patterns of microstructural relatedness within and between
the TD and ASD groups were further examined using hierar-
chical clustering applied to the group correlation matrices,
while confidence levels for the resulting clusters were calcu-
lated from a bootstrapping approach using 10,000 repetitions
(Suzuki and Shimodaira, 2006). The results from this cluster-
ing are displayed as a dendrogram and are depicted in Figure 3
for the TD (left panel) and ASD (right panel) groups. Values
at branches correspond to the approximately unbiased (AU) p-
values, bootstrap probability values, and cluster ranks, as

computed with ‘‘pvclust,’’ while significant clusters with
AU >95 are outlined by red rectangles (Suzuki and Shimo-
daira, 2006). Dendrograms from both groups show that, in
general, the strongest within-group correlations are among ho-
mologous tracts, though not all pairs of tracts exhibit this fea-
ture. Within the TD group, two statistically significant clusters
were formed and incorporated all examined white matter re-
gions. These two clusters appear to create a partition between
projection tracts (e.g., corticospinal tracts, medial leminiscus,
cerebellar peduncle) and the association (e.g., cingulum, supe-
rior/inferior occipito-frontal fasicului, superior longitudinal
fasciculi) and commissure tracts (e.g., corpus callosum).

FIG. 3. Hierarchical clustering of inter-regional correlations for typical development and ASD. Values at branches corre-
spond to the approximately unbiased (AU) p-values, bootstrap probability values, and cluster ranks, as computed with
‘‘pvclust,’’ while significant clusters with AU >95 are outlined by red rectangles. Within-group correlations among homol-
ogous tracts displayed the strongest of relationships. Color images available online at www.liebertpub.com/brain

FIG. 4. Inter-regional correlation matrices for age and FSIQ-matched subjects. Correlations are divided as in Figure 2.
Consistent with the differences observed with the full sample, these matrices were found to be significantly different
( p < 0.001, Box M-test), with the typical development group having, in general, stronger and more widespread inter-regional
correlations. FSIQ, full-scale IQ. Color images available online at www.liebertpub.com/brain
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Conversely, in the ASD group, 12 distinct clusters were
formed, however, these were partitioned into smaller groups
and mostly between homologous white matter regions.

Effects of FSIQ and age on microstructural relatedness

Follow-up analysis examined these same measures with
an age and FSIQ matched subset to ensure the observed dif-
ferences did not result from the difference in IQ scores between

the ASD and TD groups. Correlation matrices between ASD
and TD in this age and IQ matched subset (Fig. 4) were also
found to be significantly different ( p < 0.001) consistent
with the group differences observed with the full sample.
Within the TD group, the average correlations were larger
in the left hemisphere compared to the right hemisphere
(qLEFT = 0.2180; qRIGHT = 0.2136), while in the ASD group,
the right hemispheric correlations were larger (qLEFT = 0.16;
qRIGHT = 0.22). As before, the TD group had a higher mean

FIG. 5. Inter-regional correlation matrices from typically developing and ASD participants younger and older than 15 years
of age. Correlations are divided as in Figure 2. Correlation differences between age groups (bottom panel) and within-group
(right panel) are additionally shown. In general, older participants have stronger inter-regional correlations, suggesting the
inter-regional correlations change with advancing age. Correlations between homologous white matter regions appear stron-
ger in the older ages for the TD group, while these correlations appear stronger in the younger ASD participants. Color images
available online at www.liebertpub.com/brain
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correlation among homologous white matter tracts (q = 0.61)
compared to the ASD group (q = 0.58). The strongest corre-
lations in the TD group were again found between the homol-
ogous pairs of the left and right posterior limb of the internal
capsule (q = 0.89), while the left and right superior longitudi-
nal fasciculus exhibited the strongest correlation in the ASD
group (q = 0.78). While homologous pairs were again ob-
served to exhibit stronger correlations than nonhomologous
pairs within both groups. The resulting dendrograms (Sup-
plementary Fig. S1) additionally show distinct clustering pat-
terns between the groups. In particular, the genu, body, and
splenium of the corpus callosum of the TD group together
formed a significant grouping, while in the ASD group
these three regions can be seen to be separately partitioned.

The developmental effects of white matter inter-
relatedness were broadly assessed by separating the ASD
and TD participants into two age groups of younger and
older than 15 years of age. Correlation matrices for the youn-
ger and older age groups are shown in Figure 5, while the hi-
erarchical clustering dendrogram is shown in Supplementary
Figure S2 for both TD and ASD participants. Fisher z-
transformations of the correlation matrices from both the
TD and ASD groups indicate that compared to younger par-
ticipants, older participants have stronger inter-regional cor-
relations. While similarities to those of the full cohort of
participants exist, some important differences can be no-
ticed. Within the younger TD group, the strongest of corre-
lations exist between the right and left extreme capsule
(q = 0.81), while in the older sample we observe the right
and left posterior limb of the internal capsules to have the
strongest relationships (q = 0.91). However, in the ASD
group, the strongest correlation exists between the left and
right superior corona radiata (q = 0.81) in the younger age
group and between the right and left medial lemenicus
(q = 0.79) in the older participants. Additionally, the pairing
of homologous white matter regions appears to be more
prominent in the older ages for the TD group, while pairing
of homologous regions appears more prevalent in the youn-
ger ASD participants.

Post hoc white matter network analysis

Figure 6 displays the mean degree of the resulting inter-
regional FA-based network with respect to the correlation
threshold for both the ASD and TD groups. Mean network
degree appears to decrease rapidly as the correlation thresh-
old increases. A line denoting the natural logarithm of the
number of nodes of the network is also displayed and serves
as a reference to which the small-world properties are no lon-
ger estimable (Achard et al., 2006; Watts and Strogatz,
1998). Thus, for the FA-based network, a correlation thresh-
old of r > 0.41 was selected as the global threshold to apply to
the adjacency matrices, as this threshold was the maximum
value such that the mean degree of the ASD and TD net-
works was greater than 3.87 (i.e., ln(48)).

Using the above results, the FA correlation matrices were
binarized to construct adjacency matrices for each group by
thresholding the FA correlation matrix at the r > 0.41 level.
The adjacency matrices constructed from the FA correlations
and a graphical visualization [constructed using Circos
(Krzywinski et al., 2009)] of the similarities and differences
of the ASD and TD networks are shown in Figure 7. The

ASD FA network consisted of 99 links, involving 83.33%
(40 of 48) of the white matter regions, while the TD FA net-
work contained 166 significant links across 95.83% (46 of 48)
of the white matter regions. Fifty-three of the corresponding
links overlapped both the ASD and TD networks (Fig. 8).
The total number of links within the left and right hemi-
spheres were greater in the TD group (left = 35; right = 32)
compared to the ASD group (left = 17; right = 15), while the
TD group additionally had a larger number of links between
the left and right hemispheres (76 compared to 41). Within
the TD brain network, the right hemispheric retrolenticular
limb of the internal capsule contained the largest number of
links; while the left hemispheric superior longitudinal fascic-
ulus contained the most links for the ASD FA network.

We calculated the network topological properties from the
FA-derived structural networks and for the network of white
matter tracts within the right and left hemispheres, sepa-
rately, and tested for group differences using permutation
testing. Results from this analysis are provided in Table 2.
The mean clustering coefficient, global efficiency, mean
local efficiency, and mean degree of the FA network were
found to differ significantly between the ASD and TD
groups, with all four of these metrics being reduced in the
ASD group. Similarly, these were found to be different be-
tween TD and ASD right hemisphere white matter tracts,
while TD and ASD measures of global efficiency, mean
local efficiency, and mean degree were found to differ across
the left hemisphere. The characteristic path length and net-
work modularity were not found to be significantly different
between ASD and TD FA-based networks. Interestingly,
both FA-based networks displayed small-world characteristics,

FIG. 6. Mean degree as a function of the correlation thresh-
old for the TD (red) and ASD (green) groups. The mean de-
gree of the brain white matter networks decreases as the
correlation threshold increases. A reference line (in orange)
denotes the minimum mean degree such that small-world
properties are estimable. From this analysis, a correlation
threshold of 0.45 was selected as the optimal global thresh-
old, as this value was the largest threshold such that small-
world properties could still be calculated. Color images
available online at www.liebertpub.com/brain
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however, none of these network parameters were found to be
significantly different between the TD and ASD networks.

Discussion

This study sought to compare the regional inter-
relatedness of white matter microstructure in ASD versus
typical development at the group level. We report organiza-
tional alterations in white matter microstructure and group

differences in topological properties of the structural archi-
tecture constructed from DTI parameters. Significant inter-
regional correlations were found to exist within the white
matter of TD and ASD groups, while the strengths and clus-
tering configurations of these microstructural correlations
were found to differ. These microstructural patterns were
found to display small-world structure in both groups,
which is consistent with previous studies employing com-
plex network analysis and graph theory (Sporns et al.,

FIG. 7. Adjacency matrices and graphical visualization (‘‘connectogram’’) of brain white matter networks for the TD and ASD
groups. Individual white matter tracts were broadly grouped by region (outside labels), while the individual tract is indicated by the
inside of the circle. Adjacency matrices are separated by right and left hemisphere as in Figure 2. Connectograms are symmetric
about the center, with left hemisphere tracts on the left, and right hemisphere tracts on the right. Connectograms were constructed
using the Circos software package (Krzywinski et al., 2009). Color images available online at www.liebertpub.com/brain
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2004). The group with ASD, however, exhibited a reduced
mean clustering coefficient, global and local efficiency, and
mean degree, compared to those of typical development.
These results indicate a complex imbalance between struc-
tural organization and connectivity in ASD (Batalle et al.,
2012), suggesting that white matter microstructure in the
disorder may be less coherently organized and may be sub-
optimal for the communication of information across the
brain in the ASD group. These findings are in agreement
with and add to a growing body of evidence that suggest

white matter microstructure plays an important role in
autism.

Significant group differences in the overall microstruc-
tural relatedness of circuit integrity (FA) between individu-
als with ASD and those with typical development are
demonstrated. These differences appear to be characterized
by the ASD group having a less inter-related white matter
microstructure. Follow-up analyses provided additional
evidence that this overall group difference was not related
to age or IQ differences between TD and ASD groups.

FIG. 8. (A) Matrix visualization of the distinct and overlapping white matter relationships between the TD and ASD
groups. TD-specific inter-tract relationships are displayed in light blue, ASD-specific white matter tract relationships are
shown in orange, and overlapping relationships are displayed in red. (B) Graphical visualization of group-specific and over-
lapping white matter relationships. Color images available online at www.liebertpub.com/brain
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Our results indicate that, at the group level, individuals with
ASD have significantly less uniformity in white matter mi-
crostructure across multiple tracts of the brain compared to
individuals with typical development. While this is consis-
tent with previous studies that have shown ASD to be asso-
ciated with reduced white matter integrity across many
white matter pathways ( Just et al., 2012; Schipul et al.,
2011; Travers et al., 2012), it is important to note that
these results do not implicate specific white matter regional
differences between typically developing and ASD individ-
uals. Our results indicate, however, that some of the rela-
tionships between white matter regions are reduced within
the white matter microstructure of individuals with ASD
across the brain. One can thus hypothesize that factors
such as aberrant early brain development and/or atypical
myelination, occurring prenatally and during the first few
years of life (Deoni et al., 2012), could lead to such overall
microstructural differences. Future research is needed to in-
vestigate these and other hypotheses to better understand
the biologically based mechanisms underlying ASD and
typical development and thus improve the lives of individ-
uals with autism.

Hierarchical clustering of the correlational distances to
form a dendrogram of the microstructural relationships pro-
vides a unique, data-driven method to assess underlying pat-
terns of brain microstructure. Such methods have been
previously used in DTI studies across adults (Wahl et al.,
2010) and during early child development (Mishra et al.,
2013), however, to the best of our knowledge, this is the
first investigation to use this approach to examine micro-
structural differences within ASD. Our findings are consis-
tent with previous analyses that show homologous regions
and tracts to exhibit, in general, stronger inter-regional corre-
lations (Mishra et al., 2013; Wahl et al., 2010), however, we
find the clustering patterns to differ between individuals with
ASD and those that are typically developing. In particular,
the right and left posterior limb of the internal capsule had
the strongest correlation (q = 0.87) within the TD group,
while these homologous pairs were ranked sixth among the
correlations in the ASD group. In the ASD group, the weak-
est of FA correlations between homologous white matter
pathways were found between the left and right superior cer-
ebellar peduncle (q = 0.35), possibly reflecting a localized al-
teration of the microstructural organization of the superior

Table 2. Graph Theory Measures Calculated for Autism Spectrum

Disorder and Typical Development Groups

ASD TD p

Full network
Mean degree 4.13 (0.83) 6.92 (0.68) <0.001
Clustering coefficient 0.26 (0.02) 0.39 (0.03) 0.0014
Characteristic path length 3.19 (0.56) 2.31 (0.55) 0.2350
Global efficiency 0.26 (0.02) 0.46 (0.03) <0.001
Mean local efficiency 0.33 (0.03) 0.55 (0.02) <0.001
Modularity 0.40 (0.08) 0.37 (0.08) 0.8354

Small-worldness properties
G 1.62 (0.46) 2.18 (0.46) 0.5820
L 1.33 (0.32) 1.09 (0.14) 0.2080
r 1.22 (0.46) 2.00 (0.46) 0.5260

Right hemisphere
Mean degree 1.43 (0.43) 3.05 (0.51) <0.001
Clustering coefficient 0.04 (0.06) 0.33 (0.06) <0.001
Characteristic path length 2.04 (0.49) 2.33 (0.49) 0.6778
Global efficiency 0.15 (0.03) 0.41 (0.03) <0.001
Mean local efficiency 0.04 (0.06) 0.39 (0.06) <0.001
Modularity 0.39 (0.08) 0.37 (0.08) 0.8802

Small-worldness properties
c 0.38 (0.45) 2.39 (0.47) 0.3260
k 0.99 (0.03) 0.97 (0.12) 0.9520
r 0.39 (0.45) 2.46 (0.47) 0.3200

Left hemisphere
Mean degree 1.62 (0.54) 3.33 (0.65) <0.001
Clustering coefficient 0.19 (0.06) 0.30 (0.06) 0.1452
Characteristic path length 1.52 (0.50) 2.23 (0.49) 0.2920
Global efficiency 0.14 (0.03) 0.39 (0.02) <0.001
Mean local efficiency 0.19 (0.06) 0.36 (0.06) 0.05
Modularity 0.29 (0.08) 0.40 (0.08) 0.3158

Small-worldness properties
c 2.09 (0.44) 1.75 (0.44) 0.2280
k 0.82 (0.12) 1.14 (0.09) 0.6820
r 2.54 (0.44) 1.52 (0.44) 0.4740

Between group comparisons of graph theory measures were conducted using permutation testing based upon 5000 permutations.
Bold values denote significant (p < 0.05) difference between ASD and TD groups.
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cerebellar peduncles (Sivaswamy et al., 2010). Such atypi-
calities may lead to dysfunction of these cerebellar efferent
pathways, impairing the connectivity of other brain net-
works, such as the cerebellar-thalamo-cortical network, and
altering sensorimotor, adaptive social behaviors, and other
cognitive processes (Catani et al., 2008; Nair et al., 2013;
Sivaswamy et al., 2010).

The differences in the patterns of significant clusters be-
tween the TD and ASD groups are additionally interesting.
Within the TD group, two significant clusters emerged
from the hierarchical clustering, incorporating all the exam-
ined white matter regions and appearing to partition projec-
tion tracts from the association and commissure tracts.
Conversely, within the ASD group, 12 smaller and distinct
clusters were formed. While these patterns may reflect struc-
tural and/or functional similarities between the regional
white matter measures (Wahl et al., 2010), such patterns
may also be indicative of disrupted microstructural organiza-
tion and connectivity of white matter. The clustering of more
localized brain regions, as seen in the correlation/association
matrices and dendrograms of the ASD group, may reflect the
hypothesized local overconnectivity in ASD, while the lack
of larger groups of white matter regions may reflect a disrup-
tion of connectivity between larger brain networks (Wass,
2011). This hypothesis would also suggest that the larger
clusters formed within the TD group are indicative of a
more tightly coupled white matter microstructure.

We found in addition that the global and mean local effi-
ciencies of the FA-based structural networks to be signifi-
cantly different between the ASD and TD groups. Both
global and mean local efficiency, network-based metrics re-
lated to information transmission characteristics of that net-
work (Bullmore and Sporns, 2012, 2009), were found to be
reduced in the ASD network. The ASD FA-based network
is also observed to have a decreased mean network degree
and mean clustering coefficient, compared to the TD net-
work, suggesting that the ASD network consisted of, on av-
erage, of a sparser set of associations between white matter
tracts. Taken together, these results may allude to a structural
framework in which altered brain connectivity exists (Zielin-
ski et al., 2012). Such a model of local overconnectivity
would predict white matter tracts to exhibit increased fiber
volume and higher fiber density (Wass, 2011). Furthermore,
such increased local fiber density could impair the convey-
ance of neural signals to broader brain regions, causing indi-
vidual brain regions to become independent and isolated
from the rest of the brain, and therefore having a detrimental
effect on global connectivity ( Just et al., 2012; Kana et al.,
2011). As brain structure and its organization influence
brain function ( Johnson and Munakata, 2005), such alter-
ations of structural connectivity will undoubtedly impact
brain function. Alterations of the network of the white matter
microstructure could, therefore, be responsible for widely
reported deficits of functional connectivity in ASD (Ander-
son et al., 2011; Cherkassky et al., 2006; Kana et al., 2006;
Kleinhans et al., 2008; Müller et al., 2011). Studies examin-
ing the relationships between structural and functional con-
nectivity have been limited (Uddin et al., 2013), and
therefore future studies that explore relationships between
structural and functional connectivity are critical to gain fur-
ther understanding of how white matter microstructure alter-
ations impact the ASD phenotype.

Differences in small-worldness between the ASD brain net-
work model and typically developing controls were not found
to be statistically significant. Complex networks that possess
small-world properties are thought to be ideal, as these types
of networks provide an optimal balance of local processing
and global information propagation (Sporns et al., 2004).
While such types of networks have been reported to exist in
a wide range of natural and technological systems (Boccaletti
et al., 2006; Strogatz, 2001; Watts and Strogatz, 1998), graph
analyses have revealed small-world characteristics in struc-
tural brain networks (Bullmore and Bassett, 2011; Bullmore
and Sporns, 2009). Though this study did not find such differ-
ences in small-world features in structural white matter net-
works, such properties may be altered within autism (Wang
et al., 2009). Speculatively, differences in ‘‘small-worldness’’
of ASD brain networks could reflect a less optimal topological
network organization. Disruption of such structural small-
world characteristics could result in alterations of the interac-
tions between brain regions that are needed to support cogni-
tive and behavioral functioning (Damoiseaux and Greicius,
2009), providing further support for the hypothesis that ASD
is a disorder of widespread alterations of the white matter
microstructure.

While there is converging evidence that suggest brain con-
nectivity is altered in ASD, even in children as young as 24
months of age (Lewis et al., 2014), a critical question re-
mains as yet unanswered, namely of when in brain develop-
ment do these atypicalities first present themselves? The
human brain undergoes many changes throughout much of
the lifespan, while most rapidly developing during the first
years of life (Casey et al., 2005; Dean et al., 2014; Deoni
et al., 2012; Evans and Brain Development Cooperative
Group, 2006; Giedd et al., 1999; Giedd and Rapoport,
2010; Lange et al., 1997). Developmental processes, such
as synapse formation, dendritic sprouting, gyrification, and
myelination, establish and refine the structural and functional
brain networks that ultimately enable local and global pro-
cessing of complex information (Durston and Casey,
2006). Indeed, we found the patterns of microstructural cor-
relations to change between participants younger and older
than 15 years of age, suggesting developmental and other bi-
ological processes occurring during this time may contribute
and alter such microstructural relationships. Such age-related
changes have been examined and noted to affect microstruc-
tural relationships from infancy to young adolescence, with
correlations becoming stronger as one ages (Mishra et al.,
2013). Morever, age-related changes of topological proper-
ties of structural brain networks have additionaly been ob-
served throughout typical development (Liu et al., 2014;
Montembeault et al., 2012; Wu et al., 2012; Yap et al.,
2011; Zielinski et al., 2010). For example, Wu et al. (2012)
observed robust decreases in local efficiency and increases
in global efficiency from young to middle age, which they at-
tributed these findings to maturational changes that enable
more efficient information processing (Wu et al., 2012) in
healthy individuals. Small-world characteristics appear to
be present by 2 years of age (Yap et al., 2011). Other demo-
graphic and environmental factors may additionally influ-
ence the underlying patterns of these structural networks,
however, these await future research. Longitudinal studies
of infants and children at risk for developing ASD may pro-
vide the opportunity to discern when differences in the
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patterns of microstructural relatedness arise while studies
that investigate the relationships of genetic and environmen-
tal factors on brain network properties will help determine
the role that these elements have on the formation of such
differences. Equally important are longitudinal studies that
examine the development and maturation of network-based
brain structure, function, and connectivity from early child-
hood into adulthood in autism as such studies will provide in-
valuable insight into how different patterns of change in
networks are related to clinical course and outcome.

Although the results reported in this study suggest alter-
ations of white matter microstructure in ASD, the cause of
such differences remains unclear. DTI-derived coefficients
(i.e., FA) describe local measures of water diffusion and anisot-
ropy. While these are sensitive to the underlying white matter
microstructure, a broad range of microstructural changes can
influence these parameters (Alexander et al., 2007b; Beaulieu,
2002; Jones et al., 2013). Thus, it is challenging to attribute
such findings or differences to specific white matter mecha-
nisms that may be responsible. As an alternative, quantitative
imaging techniques, such as neurite orientation dispersion
and density imaging (Zhang et al., 2012), quantitative magne-
tization transfer imaging (Alexander et al., 2011), and relaxom-
etry (Deoni, 2010), while being more complex to implement
than DTI, may allow a more specific interpretation of findings
between individuals with ASD and typically developing indi-
viduals. Moreover, the development of novel quantitative bio-
markers that target the direct measurement of specific white
matter characteristics, such as the myelin water fraction
(Deoni et al., 2008; MacKay et al., 1994) or the myelin g-
ratio (Stikov et al., 2015; Dean et al., 2016), may be increas-
ingly useful for understanding specific microstructural differ-
ences that arise between individuals with ASD and typical
development.

This study has several possible limitations. First, the deci-
sion to examine atlas-based regions instead of taking a
whole-brain approach may limit the resolution of network-
level effects. While the use of such voxel-wise methods
are desirable for future research, the use of atlas-based re-
gions allows us characterize the microstructural correlations
between two pairs of white matter regions more directly. A
second possible limitation is that our DTI-based brain net-
works were obtained from the FA correlation matrices
using global, conservative threshold criteria, allowing us to
only examine relationships having strong correlations.
Determination of a definitive threshold for the construction
of complex brain networks is a methodological problem
that has been described in previous studies utilizing network
analyses (He et al., 2007; Serrano et al., 2009), while others
have proposed alternative strategies for constructing brain-
based networks (Alexander-Bloch et al., 2010; Zalesky
et al., 2010). Nonetheless, previous studies have suggested
that global and alternative thresholding techniques provide
broadly consistent network-level results (Alexander-Bloch
et al., 2010). Finally, this study is cross-sectional and there
is an uneven balance among the number of typically develop-
ing controls and individuals with ASD. Although cross-
sectional studies are informative, longitudinal studies of
brain network measures computed from individuals would
enable individual network topological differences to be stud-
ied, an important aspect of understanding the heterogeneity
associated with ASD (Lange et al., 2015; Travers et al.,

2015), and normative brain development (Dean et al.,
2014; Giedd et al., 1999; Lebel and Beaulieu, 2011). Inves-
tigating individual variability of topological characteristics
would likely be informative for future research.

Conclusion

In conclusion, this study presents a complex network anal-
ysis of the inter-related characteristics of white matter micro-
structure in a large sample of individual with ASD and
typical development. Its results demonstrate that networks
formed within the brains of individuals with ASD are less in-
terrelated and may be suboptimal regarding efficient integra-
tion and processing of complex information. Further, its
results highlight the impact that white matter microstructure
has on the ASD phenotype, and adds to a growing body of
literature, suggesting that ASD is associated with widespread
alterations of underlying white matter microstructure. Given
the role white matter plays in the coordination of rapid and
synchronized brain communication, the network deficiencies
observed here are likely to have a lasting influence on many
behavioral and cognitive characteristics of ASD.
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Illa M, Acosta-Rojas R, Amat-Roldan I, Gratacos E. 2012.
Altered small-world topology of structural brain networks
in infants with intrauterine growth restriction and its associ-
ation with later neurodevelopmental outcome. Neuroimage
60:1352–1366.

Beaulieu C. 2002. The basis of anisotropic water diffusion in the
nervous system—a technical review. NMR Biomed 15:435–
455.

Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM,
Carper RA, Webb SJ. 2004. Autism and abnormal develop-
ment of brain connectivity. J Neurosci 24:9228–9231.

Benner T, van der Kouwe AJW, Sorensen AG. 2011. Diffusion
imaging with prospective motion correction and reacquisi-
tion. Magn Reson Med 66:154–167.

Bernhardt BC, Chen Z, He Y, Evans AC, Bernasconi N. 2011.
Graph-theoretical analysis reveals disrupted small-world or-
ganization of cortical thickness correlation networks in tem-
poral lobe epilepsy. Cereb Cortex 21:2147–2157.

Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D. 2006.
Complex networks: structure and dynamics. Phys Rep 424:
175–308.

Box GEP. 1954. Some theorems on quadratic forms applied in
the study of analysis of variance problems, II. Effects of in-
equality of variance and of correlation between errors in
the two-way classification. Ann Math Stat 25:484–498.

Brieber S, Neufang S, Bruning N, Kamp Becker I, Remschmidt
H, Herpertz Dahlmann B, Fink GR, Konrad K. 2007. Struc-
tural brain abnormalities in adolescents with autism spectrum
disorder and patients with attention deficit/hyperactivity dis-
order. J Child Psychol Psychiatry 48:1251–1258.

Brito AR, Vasconcelos MM, Domingues RC, Hygino da Cruz
LC, Rodrigues L, de S, Gasparetto EL, Calçada CABP.
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