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Abstract

Survivors of pediatric acute lymphoblastic leukemia (ALL) are at increased risk for cognitive impairments that
disrupt everyday functioning and decrease quality of life. The specific biological mechanisms underlying cog-
nitive impairment following ALL remain largely unclear, but previous studies consistently demonstrate signif-
icant white matter pathology. We aimed to extend this literature by examining the organization of the white
matter connectome in young patients with a history of ALL treated with chemotherapy only. We applied
graph theoretical analysis to diffusion tensor imaging obtained from 31 survivors of ALL age 5–19 years and
39 matched healthy controls. Results indicated significantly lower small-worldness ( p = 0.007) and network clus-
tering coefficient ( p = 0.019), as well as greater cognitive impairment ( p = 0.027) in the ALL group. Regional
analysis indicated that clustered connectivity in parietal, frontal, hippocampal, amygdalar, thalamic, and occip-
ital regions was altered in the ALL group. Random forest analysis revealed a model of connectome and demo-
graphic variables that could automatically classify survivors of ALL as having cognitive impairment or not
(accuracy = 0.89, p < 0.0001). These findings provide further evidence of brain injury in young survivors of
ALL, even those without a history of central nervous system (CNS) disease or cranial radiation. Efficiency of
local information processing, reorganization of hub connectivity, and cognitive reserve may contribute to cog-
nitive outcome in these children. Certain connectome properties showed U-shaped relationships with cognitive
impairment suggesting an optimal range of regional connectivity.
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Introduction

Cognitive impairment is a common neurotoxicity asso-
ciated with cancer and/or its therapies. This neurotoxic-

ity is often especially debilitating for pediatric cancer
survivors due to disruption of vulnerable, developing neural
circuitry. Candidate mechanisms for cancer-related cogni-
tive impairment include suppression of neural progenitor
proliferation, dysregulation of proinflammatory cytokine
cascades, oxidative stress, microvascular damage, and ge-
netic vulnerabilities (Krull et al., 2013a; Monje and Die-
trich, 2012; Seigers et al., 2010). Neuroimaging studies
indicate that alterations of brain structure and function rep-
resent the final common biological pathway resulting in
cognitive deficit. Few neuroimaging studies have been con-
ducted to date, but white matter pathology is the most con-

sistent finding (Bhojwani et al., 2014; Edelmann et al.,
2014; ElAlfy et al., 2014; Kesler et al., 2010; Morioka
et al., 2013).

White matter properties are commonly measured using dif-
fusion tensor imaging (DTI), a noninvasive, magnetic reso-
nance imaging technique. DTI measures the diffusion of
water molecules along white matter tracts, which is high
along tracts and low perpendicular to them. A variable to quan-
tify this contrast is the fractional anisotropy (FA), with a value
between 0 for fully isotropic and 1 for fully anisotropic diffusiv-
ity. FA is used as a marker for the degree of myelination and
axonal integrity (Mukherjee et al., 2008). DTI is also capable
of detecting the diffusion direction and can thereby be used to
map the trajectory of virtual white matter fibers, or streamlines,
in three-dimensional (3D) space. This technique is referred to as
tractography, or fiber tracking.
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We applied graph theoretical analysis, also known as graph
theory, to DTI data to construct connectomes, which are mod-
els of the brain network comprised of regions and their connec-
tions. Cognitive functions are believed to be supported by
distributed, parallel neural networks that must balance the
competing demands of segregation (specialization) and inte-
gration (Catani et al., 2012). Connectomes tend to display a
‘‘small-world’’ organization, wherein specialized groups or
clusters of neurons are highly connected to each other while
being economically connected to other clusters (Bassett and
Bullmore, 2006). Thus, connectome properties provide unique
insights regarding the efficiency of information processing.

In addition to better representing the distributed, interde-
pendent nature of neural interactions that support cognition,
connectome methods have other distinct advantages over tra-
ditional voxel-wise neuroimaging approaches. Connectome
analyses involve multivariate rather than mass univariate
models and tend to combine multiple sources of imaging in-
formation. For example, DTI connectomes incorporate FA,
tractography, and regional volume. Connectomes also pro-
vide both global and local metrics of brain structure and
function. Thus, connectomes are multimodal, comprehensive
models that improve characterization of the brain’s signifi-
cant complexity.

Small-world topology is established early in brain devel-
opment (Fan et al., 2011) and disrupted connectome organi-
zation has been associated with several other conditions in
children that have similar cognitive profiles to pediatric
acute lymphoblastic leukemia (ALL) survivors. These in-
clude attention deficit hyperactivity disorder (Wang et al.,
2009), mild traumatic brain injury (Yuan et al., 2015), and
learning disability (Hosseini et al., 2013). We previously
showed that the gray matter connectome of young ALL sur-
vivors had lower small-world organization compared to
healthy controls (Hosseini et al., 2012). However, the aim
of this previous study was to test our connectome analysis
toolbox and therefore had limitations with respect to its clin-
ical application. In this study, we expand upon our previous
research in a larger sample, and by using individual level,
DTI-based connectomes. We hypothesized that connectome
organization would be lower in ALL survivors and that these
properties would be associated with cognitive deficits.

Materials and Methods

Participants

This study included 32 children with a history of ALL who
were off therapy for at least 6 months at the time of enroll-

ment. This group was compared with 40 healthy children.
We recruited ALL participants through physician referrals
and a recruitment liaison in the local oncology clinic. Specif-
ically, children that met our eligibility criteria, based on
medical records, were approached by the recruitment liaison
or given the study flyer by their physician during a routine,
oncology follow-up appointment. Eight refused to partici-
pate and an additional three were approached who were
found to be ineligible. Control participants were recruited
through community postings. Demographic and medical
data are shown in Table 1. Exclusion criteria for participants
with ALL were a history of cranial radiation, central ner-
vous system involvement, or gross neuropathology, whereas
major sensory impairments, magnetic resonance imaging
(MRI) contraindications, or any significant medical or psy-
chiatric condition known to affect cognitive function (diag-
nosed before or unrelated to cancer) were exclusion criteria
for both groups. Participants with ALL received intrathecal
chemotherapy through Children’s Oncology Group (COG)
AALL0331 (N = 10), COG AALL0232 (N = 3), Pedia-
tric Oncology Group (POG) 9904 (N = 6), and POG 9905
(N = 13) protocols. Of these, 23 participants received standard
dose and nine received high-dose treatment. Informed consent
was obtained from the parent/legal guardian and assent was
obtained from all participants. Stanford University’s Institu-
tional Review Board approved this study, which was carried
out in accordance with the Declaration of Helsinki.

Cognitive status

We administered the following standardized measures to
all participants: Coding (processing speed), Vocabulary (ex-
pressive language/verbal comprehension), Letter–Number
Sequencing (working memory), and Matrix Reasoning (per-
ceptual reasoning) subtests of the Wechsler Intelligence
Scale for Children 4th Edition (Wechsler, 2003) and Picture
Memory (visual learning) and Verbal Learning subtests of
the Wide Range Assessment of Memory and Learning, 2nd
Edition (Sheslow and Adams, 2005).

Neuroimaging acquisitions and preprocessing

MRI was performed on the same day as the cognitive test-
ing using a GE Discovery MR750 3.0 Tesla whole-body
scanner (GE Medical Systems). High-resolution, T1-
weighted images were acquired using one of two 3D spoiled
gradient echo pulse sequences: TR = 5.9 or 8.5 msec,
TE = 1.452 or 3.396, TI = 300 or 500 msec, flip angle = 11
or 15, FOV = 200 or 240 mm, number of excitation = 1, and

Table 1. Demographic and Medical Data Shown as Mean (SD) Unless Otherwise Noted

ALL (N = 31) Controls (N = 39) t/v2 p

Age at evaluation 11 (3.4) 12 (2.9) 1.08 0.284
Maternal education (years) 15 (3.9) 16 (2.4) 0.221 0.826
Gender (female) 55% 39% 1.87 0.172
Minority statusa 52% 44% 0.446 0.504
Age at diagnosis (years) 5.4 (3.7); range: 2–14
Treatment intensity (high) 29%
Time since treatment (months) 35 (31); range: 6–111

aMinority groups included Black, Asian, Hispanic, and Mixed Race.
ALL, acute lymphoblastic leukemia; SD, standard deviation.
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acquisition matrix = 256 · 192 or 256 · 256 mm. Totally,
124 or 176 contiguous coronal slices were acquired with
slice thickness of 1.5 mm and in-plane resolution of 0.859 ·
0.859 mm or 0.781 · 0.781. Diffusion-weighted images were
acquired from 32 or 40 contiguous axial slices (thickness = 3
or 6.6 mm) using a single-shot echo planar imaging (EPI) se-
quence (TE = 62.0 or 76.6, TR = 5000 or 7000 msec, field of
view = 240 mm, matrix size = 128 · 128 mm). The diffusion
tensor acquired for each slice included either four or six im-
ages without diffusion weighting (b = 0 sec/mm2) and diffu-
sion-weighted images along 46 or 48 orthogonal directions
(b = 850 sec/mm2). The EPI sequence was repeated twice.
The number of participants who received the older pulse se-
quences (ALL = 17, controls = 18) was equally distributed
between the two groups (Chi-squared = 0.52, p = 0.47).

DTI data were visually inspected for quality and the data
of one participant in the ALL group and one in the control
group were excluded from all further analyses due to exces-
sive motion and/or distortion artifact. DTI volumes were cor-
rected for eddy current distortion and tensor reconstruction
was performed using linear least-squares fitting in FMRI
Software Library v5.0 (Smith et al., 2004). Deterministic
tractography was performed in TrackVis v0.5.2.2 (Wang
et al., 2007) using the fiber assignment by continuous track-
ing algorithm (Mori and van Zijl, 2002). We employed a cur-
vature threshold of 60� and streamlines were smoothed using
a spline filter (Kesler et al., 2015).

Connectome construction and measurement

We obtained 90 cortical and subcortical regions of interest
(ROIs) in Montreal Neurological Institute space from the
Automated Anatomical Labeling Atlas (Tzourio-Mazoyer
et al., 2002). ROIs were warped into DTI native space as de-
scribed previously (Kesler et al., 2015). We determined the
number of DTI streamlines connecting each pair of ROIs
as well as streamline average FA. Regions were considered
connected if one streamline end-point terminated within
one region and the other end-point terminated within the
other region. This resulted in a 90 · 90 weighted, undirected
connectivity matrix for each participant, which was cor-
rected for DTI pulse sequence (�0.50 = older sequence,
0.50 = newer sequence) using linear regression. A threshold
of three streamlines was applied to minimize false positive
connections (Kesler et al., 2015). We weighted each valid
edge using the product of the streamline number and FA di-
vided by average ROI volume (extracted from T1 images) to
correct for individual differences in brain size. Brain graphs
were constructed for each participant with N = 90 nodes, net-
work degree of E = number of edges, and a network density
of D = E/[(N · (N� 1))/2] representing the fraction of present
connections to all possible connections.

Several metrics were calculated to evaluate the small-
world organization of these brain graphs using Brain Connec-
tivity Toolbox (Rubinov and Sporns, 2010). The clustering
coefficient of a node is defined as the proportion of actual con-
nections to possible connections between a node’s neighbors.
The clustering coefficient of a network is the average of clus-
tering coefficients across nodes and is a measure of network
segregation. We refer to the clustering coefficient of the net-
work as ‘‘network clustering coefficient’’ to distinguish it
from nodal clustering coefficient. Path length is the number

of edges that must be traversed between two nodes. Because
efficient information processing is assumed to follow the
shortest path between nodes, the characteristic path length
of a network is the average shortest path length between all
pairs of nodes in the network and is a measure of network
integration.

Small-worldness is associated with high network cluster-
ing and low characteristic path length (Bassett and Bullmore,
2006). Thus, small-worldness index is calculated as CN/LN,
where CN is the normalized network clustering coefficient
and LN is the normalized characteristic path length of the net-
work. These values were normalized by the mean network
clustering coefficient and characteristic path length of 20
random networks with the same number of nodes, total
edges, and degree distribution as the networks of interest
(Hosseini and Kesler, 2013; Hosseini et al., 2012). Connec-
tome properties were computed at minimum network con-
nection density (0.12) as well as across a range of densities
(0.12–0.27) using the area under the curve (AUC).

We defined a node as a hub if its degree was at least one
standard deviation (SD) higher than the mean network de-
gree (Sporns et al., 2007). We also evaluated connectome
modularity to provide insight regarding subnetwork organi-
zation. This is accomplished by decomposing the network
into nonoverlapping groups of regions (modules) that have
maximal within-group connections and minimal between-
group connections (Sporns and Betzel, 2016). Within-
module degree Z-score and participation coefficient were
calculated for hub regions that showed altered nodal connec-
tivity (Guimera and Amaral, 2005).

Statistical analyses

Connectome properties. Global and regional small-
world connectome properties, including small-worldness
index, network clustering coefficient, characteristic path
length, nodal clustering, and modularity, were compared be-
tween groups using nonparametric permutation analysis with
2000 repetitions (Bruno et al., 2012). This results in a permu-
tation distribution of difference under the null hypothesis.
The actual between-group difference in network measure
of interest was then placed in the corresponding permutation
distribution and a two-tailed p-value was calculated based on
its percentile position.

Cognitive status. Group differences in individual cogni-
tive test scores were evaluated using analysis of variance.
Z-scores were calculated for each test score based on the
control group’s mean and SD. A participant was rated as hav-
ing impaired cognitive function if two or more tests had a Z-
score at or below �1.5 and/or one test had a Z-score at or
below �2.0 (Wefel et al., 2011). The number of impaired
participants was compared between groups using Chi-
squared analysis.

Predictors of cognitive impairment. We used random for-
est (Breiman, 2001) classification to determine an algo-
rithm for automatically predicting cognitive impairment (1 =
impaired, 0 = unimpaired) in the ALL group. This approach
involves an ensemble of decision trees that are decorrelated
through bootstrap sampling of training sets. Specifically, the
tree learning algorithm uses random subsets of features to
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grow multiple trees (a forest) that predict the class of the sub-
ject. The overall result of the random forest is the class with
the highest number of votes across all trees. Random forest
models are versatile, high-performance machine learning
methods that are able to handle both continuous and categor-
ical predictors, able to learn complex interactions between
predictors and less prone to overfitting than other methods
(Kingsford and Salzberg, 2008).

Only significant connectome properties were included as
predictors (features). A correlation matrix was calculated to
identify redundant features (those with 0.75 or higher abso-
lute correlation). Because of their high correlation (r = 0.94),
small-worldness index was included, but network cluster-
ing was not. Demographic variables were age at enrollment
(years), female gender (1 = female, 0 = male), minority status
(1 = minority, 0 = nonminority), and maternal education level
(years) as a proxy of cognitive reserve (Kesler et al., 2010).
Medical/treatment features were age at diagnosis (years),
high-dose treatment (1 = high dose, 0 = standard dose), and
time since treatment completion (months).

Recursive feature elimination was used to remove mini-
mally contributing features and optimize the classification.
The validity of the classifier was tested using bootstrapping
(Efron and Tibshirani, 1997). Modeling steps, including re-
cursive feature elimination, training, tuning, testing, and
evaluation of feature importance, were carried out with the
R statistical package (R Foundation) using the Classification
and Regression Training (caret) (Kuhn, 2008) and random-
Forest (Liaw and Wiener, 2002) packages.

Results

Global connectome properties

As shown in Figure 1, both groups demonstrated expected
small-world connectome organization as indicated by small-

worldness index greater than one across network densities
(Humphries and Gurney, 2008). There were no individual
participants in either group who demonstrated a small-world-
ness index less than 1. At minimum network connection
density, the ALL group showed significantly lower network
clustering coefficient ( p = 0.019) and small-worldness index
( p = 0.007) (Table 2). Characteristic path length was not sig-
nificantly different between groups ( p = 0.78). These results
were confirmed by AUC analysis across network densities
(Table 2).

Regional connectome properties

The two groups demonstrated a similar profile of hub re-
gions, including supplementary motor area, putamen, ante-
rior cingulate, superior frontal gyrus, insula, precuneus,
cuneus, and hippocampus. However, the ALL group demon-
strated significantly altered nodal clustering coefficient in
several of these hub regions. Specifically, nodal clustering
was lower in left amygdala, right middle frontal orbital
gyrus, right lingual gyrus, and bilateral supramarginal gyri.
The ALL group also demonstrated significantly higher clus-
tering in left cuneus, left middle frontal gyrus, left hippocam-
pus, left insula, left superior occipital gyrus, and right
thalamus (Fig. 2). Modularity was not different between
the two groups at minimum density ( p = 0.499) or across
densities ( p = 0.150). Five nearly identical modules were
detected for each group (Fig. 3). Module 1 consists of bilat-
eral dorsal mesial regions surrounding somatosensory corti-
ces. Module 2 consists of right hemisphere posterior
parietal–occipital regions. Module 3 includes bilateral fron-
tal–striatal regions. Modules 4 and 5 were lateralized to
right and left hemisphere, respectively, and consisted of sev-
eral frontal–parietal and mesial temporal regions. Hubs with
altered nodal clustering (left cuneus, left hippocampus, and
left insula) demonstrated significantly lower participation

FIG. 1. Both groups demon-
strated expected small-world con-
nectome organization with small-
worldness index being greater than
1 across network densities. The
ALL group demonstrated signifi-
cantly lower small-worldness index
compared to controls (Con). Error
bars show standard deviation. ALL,
acute lymphoblastic leukemia.
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coefficients ( p < 0.0001) and altered within-module degree
( p < 0.0001, Table 3).

Cognitive performance

As shown in Table 4, the ALL group demonstrated signif-
icantly greater cognitive impairment ( p = 0.027) with lower
scores compared with controls on measures of verbal mem-
ory, processing speed, and vocabulary ( p < 0.034).

Predictors of cognitive performance

Random forest classification indicated a significantly accurate
model for predicting cognitive impairment in the ALL group.
Classification accuracy was 89.39% ( p < 0.0001). Sensitivity
was 95.83% and specificity was 85.71%. As detailed in Figure
4, variables in this model included nodal clustering (right mid-
dle orbital frontal gyrus, left superior occipital gyrus), left
cuneus within-model degree Z-score and maternal education.

Discussion

This is the first study, to our knowledge, to examine the
white matter connectome in young survivors of pediatric
ALL. Our findings indicate that connectome small-worldness
is lower in these children compared to same-age peers. This
reflected lower network clustering coefficient. A small-world
network is organized in such a manner that most regions are
connected to their neighbors (high clustering) and can be
reached by every other region through a small number of
steps (low path length). High connectivity of neighboring
regions supports efficient local processing (Simon, 1962).
Therefore, our findings suggest decreased connectivity within
neighboring brain regions such that efficiency of local infor-
mation processing is reduced in young survivors of ALL.
Accordingly, the ALL group also showed greater cognitive
impairment than controls.

Our analysis identified five modules in each group, consis-
tent with those observed in a previous study of typically

FIG. 2. Compared to controls, the
ALL group demonstrated signifi-
cantly altered nodal clustering co-
efficient in several regions. Warm
colors indicate areas of higher
clustering, including left cuneus,
left middle frontal gyrus, left hip-
pocampus, left insula, left superior
occipital gyrus, and right thalamus.
Cool colors indicate regions of
lower clustering, including left
amygdala, right middle frontal or-
bital gyrus, right lingual gyrus, and
bilateral supramarginal gyri.

Table 2. Global Connectome Properties Shown as Mean (SD)

ALL (N = 31) Controls (N = 39) pa

At minimum connection density (0.12)
Normalized network clustering coefficient 3.23 (0.16) 3.31 (0.17) 0.019
Normalized characteristic path length 1.18 (0.02) 1.18 (0.02) 0.78
Small-worldness index 2.73 (0.12) 2.81 (0.14) 0.007
Modularity 0.441 (0.01) 0.445 (0.01) 0.499

AUC across densities (0.12–0.27)
Normalized network clustering coefficient 0.351 (0.01) 0.356 (0.01) 0.048
Normalized characteristic path length 0.170 (0.002) 0.170 (0.002) 0.251
Small-worldness index 0.308 (0.01) 0.314 (0.01) 0.013
Modularity 0.057 (0.002) 0.057 (0.002) 0.150

aTwo-tailed, based on percentile position in permutation distribution.
AUC, area under the curve.
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developing children (Chen et al., 2013). Although the capac-
ity of the brain network to be decomposed into modules did
not differ between groups, nodal clustering in the ALL group
was significantly altered in regions within all five modules.
Module 5 included the highest percentage of atypically clus-
tered regions (23% vs. 5–10%). This module was a left later-
alized subnetwork of frontal–parietal and mesial temporal
regions, including amygdala and hippocampus. These re-
gions are known to support the executive and memory func-
tions that were lower than typical in the ALL group. Module
5 also included regions shown to be associated with vocabu-
lary skills in children such as inferior frontal, inferior tempo-
ral, inferior parietal, and precentral gyri (Lee et al., 2014).

A previous study by Edelmann et al. (2014) in slightly older
ALL survivors demonstrated a primarily left lateralized profile
of alterations in FA in comparison between chemotherapy-
treated patients and healthy controls. Given that others have
shown bilateral alteration of FA (Morioka et al., 2013) as
well as no group differences in FA (Genschaft et al., 2013),
the significance, if any, of left lateralized findings remains un-

clear. However, increased left hemisphere susceptibility has
been consistently noted in several other neurological condi-
tions. Potential reasons for this preferential vulnerability
include asymmetry in hemodynamics and developmental
trajectory (Njiokiktjien, 2006). The language-dominant hemi-
sphere tends to be more highly connected (Parker et al., 2005)
which is associated with greater energy demands (Lord et al.,
2013). Left hemisphere may therefore be less resilience to dis-
ruption of physiological resources due to injury and disease.
Although nonsignificant, there were more left-handed con-
trols, so we repeated analyses post hoc with handedness
as a covariate. This did not change our results and handed-
ness was not a significant contributor to the models
( p > 0.33). Waber et al. (1992) previously noted that children
who were younger than 36 months of age, when treated
for ALL, tended to demonstrate right hemisphere-based
cognitive difficulties, whereas children treated at older
ages, demonstrated left hemisphere-related difficulties.
We did not detect a significant effect of age at diagnosis
on cognitive impairment, but our sample consisted of
children who were diagnosed at age 5 years, on average.
Therefore, our results seem to support the findings of
Waber and colleagues.

FIG. 3. Brain graphs for
the control group (top row)
and ALL group (bottom row)
with edges represented by
lines and nodes represented
by spheres. Sphere size re-
flects nodal clustering. Edges
are shown with equal weight
for illustration purposes.
Node color corresponds to
module membership. Both
groups demonstrated five
nearly identical modules, al-
though certain nodes within
each module, particularly
module 5, showed altered
clustering in the ALL group
compared to controls.

Table 3. Modular Properties of Hub Regions

Showing Significantly Altered Clustered

Connectivity Shown as Mean (SD)

ALL (N = 31) Controls (N = 39) pa

Participation coefficient
Left cuneus 0.50 (0.09) 0.70 (0.06) <0.0001
Left hippocampus 0.50 (0.06) 0.62(0.07) <0.0001
Left insula 0.49 (0.07) 0.63 (0.03) <0.0001

Within-module degree Z-score
Left cuneus 0.35 (0.75) �0.64 (0.51) <0.0001
Left hippocampus �0.70 (0.30) 0.28 (0.44) <0.0001
Left insula �0.69 (0.41) �0.003 (0.37) <0.0001

aTwo-tailed, based on percentile position in permutation distribution.

Table 4. Cognitive Data Shown as Mean (SD)

ALL
(N = 31)

Controls
(N = 39) F/v2 p

Coding 50 (9.2) 54 (8.6) 4.71 0.034
Digits 51 (8.4) 54 (9.9) 3.04 0.086
List learning 48 (11) 56 (7.3) 16.4 <0.0001
Picture memory 43 (8.6) 47 (10) 3.91 0.052
Vocabulary 54 (13) 60 (12) 5.35 0.024
Matrix reasoning 52 (11) 55 (8.6) 2.17 0.146
Impaired 39% 15% 4.92 0.027
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FIG. 4. Partial dependence plots from random forest classification for features (predictors) in the final model. These plots
illustrate the marginal effect of the feature on the class probability (‘‘impaired’’) after partialling out the influence of all other
variables in the model. Cognitive impairment in the ALL group was associated with lower right middle orbital frontal clus-
tering coefficient and lower cognitive reserve (maternal education). Nonlinear relationships were noted for left superior oc-
cipital clustering coefficient and left cuneus within-module degree Z-score, wherein extreme values tended to be associated
with greater probability of impairment.
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Although the two groups showed a similar profile of hub
regions, clustered connectivity of several of these hubs
(i.e., left hippocampus, left insula, left cuneus) was atypi-
cally high in the ALL group. Hubs play an important role
in network resilience and regulation of information flow
(Vertes and Bullmore, 2015). Hubs with higher intramodular
connectivity are known as provincial hubs (high within-mod-
ule degree, low participation coefficient), whereas those that
are more connected to other modules (low within-module de-
gree, high participation coefficient) are connectors. The left
hippocampal and left insular hubs in the ALL group demon-
strated lower participation in the entire network as well as
lower intramodular connectivity compared to controls, but
these alterations were not significantly predictive of cogni-
tive impairment. In the ALL group, the left cuneus showed
lower participation coefficient and higher within-module de-
gree compared to controls and the latter was associated with
intact cognitive function. These results suggest that problem-
atic regional hyperconnectivity of the left cuneus might be
offset to some extent by increased intramodular connectivity
of this region.

A previous study from our group involving adult onset can-
cer also suggested that increased connectivity of certain re-
gions may confer a cognitive performance benefit in some
cases (Hosseini and Kesler, 2014). In the present study, differ-
ences in nodal connectivity involved a profile of both higher
and lower nodal clustering compared to controls, which is
consistent with our previous study of pediatric ALL survivors
showing both hyper- and hypoconnectivity of regions in in-
trinsic functional networks (Kesler et al., 2014). The study
by Edelmann et al. (2014) showed that increased FA in certain
regions was associated with poorer cognitive functioning.
They suggested that this unexpected relationship may reflect
glial scarring and/or white matter compaction.

Our findings contribute novel information by highlighting
the complexity of interpreting atypically high versus low
white matter connectivity. As shown in Figure 4, the rela-
tionship of regional connectivity with cognitive impairment
tended to be nonlinear, approximating a U-shaped function
such that extreme values were associated with impairment.
This suggests that cognition is associated with an optimal
range of regional connectivity. Additionally, these findings
may help explain the general tendency for correlations be-
tween neuroimaging metrics and neuropsychological test
scores to be lacking, middling, and/or inconsistent across
various populations. As suggested by a reviewer, we exam-
ined, post hoc, traditional multiple regression between cogni-
tive test scores and connectome properties. No significant
relationships were identified ( p > 0.47). Such linear ap-
proaches would have missed our important findings that sug-
gest cognitive preservation or impairment likely depends on
the balance between various competing neural systems and
processes. This information could potentially inform treat-
ment strategies by suggesting that blindly increasing or de-
creasing certain neural features may result in unwanted
side effects. Further research is required to determine the
profile of compensatory versus pathological connectome
changes following pediatric ALL.

Our results also indicated that maternal education, a proxy
for cognitive reserve, helped predict cognitive impairment
among young survivors of ALL. Consistent with the cognitive
reserve hypothesis, those with higher maternal education lev-

els (i.e., higher reserve) demonstrated an advantage relative to
those with lower reserve. Previous research from our group
has demonstrated the role of cognitive reserve as a moderator
of individual cognitive outcomes in ALL, such that those with
higher cognitive reserve prove robust to brain damage up until
a critical level for impairment (Kesler et al., 2010).

Frontal–parietal and temporal regions are noted as robust-
ness-related brain regions with respect to cognitive reserve
(Santarnecchi et al., 2015). Interestingly, we identified
many of these same regions as having altered clustering in
the ALL group. This may suggest that altered connectivity
in these areas is associated with cognitive impairment that
becomes manifest after a certain threshold of damage. Fur-
thermore, the present findings are remarkable in that the
expected advantage of reserve on cognition was not con-
ferred unless maternal education was *17 years or more
(Fig. 4). It is possible that reserve factors must occur at
high levels to offer sufficient resilience against cognitive im-
pairments from ALL and its treatments. However, alternative
proxies could yield different results. Further investigation re-
garding this association between cognitive reserve and resil-
ience to ALL is needed, particularly using longitudinal
designs.

The specific molecular and cellular mechanisms underlying
white matter damage following pediatric ALL are currently
unclear. Leukoencephalopathies immediately following intra-
thecal methotrexate treatments are a well-known risk (Reddick
et al., 2005). There is some indication that susceptibility may
relate to particular gene variants, many of which are involved
in neurogenesis (Bhojwani et al., 2014). Methotrexate has
been shown to disrupt oligodendroglial progenitor cells and
phospholipids important for myelination and white matter de-
velopment (Krull et al., 2013b; Monje and Dietrich, 2012).
Progenitor cells in white matter appear to be more sensitive
to methotrexate than those in gray matter (Wood et al.,
2014), which may help explain why white matter injury
tends to be the more common finding in survivors of pediatric
ALL. Methotrexate may also increase microglial activation
(Seigers et al., 2010; Wood et al., 2014), which is associated
with several neurotoxic effects, including oxidative and nitro-
sative stress (Lull and Block, 2010). These mechanisms would
be expected to have diffuse rather than focal effects, which is
consistent with our findings.

This study has several limitations, including small sample
size and cross-sectional design. Without longitudinal data,
the differential effects of cancer pathology, chemotherapy,
and/or other disease and treatment-related factors cannot be de-
termined. We did not observe significant effects of medical/
treatment variables on connectome organization or cognitive
function. These have historically been inconsistent predictors
perhaps due, in part, to the heterogeneity and small sample
sizes involved in many studies. We also did not have available
data regarding specific methotrexate dose or exposure to other
relevant medication such as glucocorticoids, for example, and,
therefore, further research is required. We had a large number
of potential predictors of cognitive outcome in a small sample
and, therefore, our study may have lacked power to detect
certain effects. Our study involved two different DTI pulse
sequences including an older, less optimal sequence. However,
we employed careful quality assurance methods; pulse se-
quence was equally distributed between the groups and was
not associated with connectome properties. Our cognitive
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battery was very limited in the number of tests and breadth of
cognitive domains covered. We chose a very brief battery to re-
duce burden and increase compliance in our young cohort, but
additional tests may have provided further insights regarding
the clinical significance of connectome alterations. Finally, al-
ternative methods such as the use of probabilistic rather than
deterministic tractography and/or different regional parcella-
tion schemes may yield different results.

Conclusion

Despite these limitations, we provide further evidence of
brain injury in children with ALL who were without CNS dis-
ease and treated with chemotherapy alone. We contribute
novel findings to this field of research by presenting the
first evidence of altered connectome properties and their asso-
ciation with cognitive dysfunction. We also illustrate an inter-
esting preliminary model for predicting cognitive impairment
from a combination of connectome properties and cognitive
reserve. Continued research regarding the mechanisms by
which ALL and chemotherapy disrupt connectome topology
and cognitive function could help identify interventions that
will protect against these neurotoxicities without reducing
the anticancer efficacy of treatment regimens. Small-world
connectomes are highly associated with gene expression net-
works and also appear to be preserved across species (Calabr-
ese et al., 2015; Fakhry and Ji, 2015). Thus, connectome
studies potentially provide unique translational opportunities
to identify intervention targets for ALL-related cognitive
impairment.
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