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Abstract

Infection with human immunodeficiency virus (HIV) is associated with neuroimaging alterations. However, little
is known about the topological organization of whole-brain networks and the corresponding association with
cognition. As such, we examined structural whole-brain white matter connectivity patterns and cognitive perfor-
mance in 29 HIV+ young adults (mean age = 25.9) with limited or no HIV treatment history. HIV+ participants
and demographically similar HIV� controls (n = 16) residing in South Africa underwent magnetic resonance im-
aging (MRI) and neuropsychological testing. Structural network models were constructed using diffusion MRI-
based multifiber tractography and T1-weighted MRI-based regional gray matter segmentation. Global network
measures included whole-brain structural integration, connection strength, and structural segregation. Cognition
was measured using a neuropsychological global deficit score (GDS) as well as individual cognitive domains.
Results revealed that HIV+ participants exhibited significant disruptions to whole-brain networks, characterized
by weaker structural integration (characteristic path length and efficiency), connection strength, and structural
segregation (clustering coefficient) than HIV� controls ( p < 0.05). GDSs and performance on learning/recall
tasks were negatively correlated with the clustering coefficient ( p < 0.05) in HIV+ participants. Results from
this study indicate disruption to brain network integrity in treatment-limited HIV+ young adults with correspond-
ing abnormalities in cognitive performance.
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Introduction

The human immunodeficiency virus (HIV) crosses the
blood–brain barrier shortly after seroconversion (*8 days)

and before marked immune suppression and overt cognitive
dysfunction (Valcour et al., 2012). Despite the efficacy of com-
bination antiretroviral therapy (cART) in reducing viral load,
current treatments do not appear to prevent or reverse existing
brain damage (Ances et al., 2012; Harezlak et al., 2011; Heaton
et al., 2011). Importantly, research shows axonal disruption and
synaptic injury after HIV infection (Avdoshina et al., 2013;
Ellis et al., 2007; Everall et al., 1999, 2009; Masliah et al.,
1997). Although specific brain regions appear uniquely vulner-

able, HIV-mediated neuronal damage is present throughout the
brain (Ellis et al., 2007; Ragin et al., 2004) and corresponds to
neuropsychological dysfunction (Masliah et al., 1997).

Diffusion tensor imaging (DTI) provides a robust method
for identifying disruptions to the structural connections
throughout the brain. Multiple studies utilizing DTI reveal ab-
normalities in brain white matter capable of disrupting connec-
tivity across brain regions in HIV+ individuals (Filippi et al.,
2001; Gongvatana et al., 2009; Hoare et al., 2011; Ragin
et al., 2004; Thurnher et al., 2005). Furthermore, using com-
plex network analysis, structural changes in white matter con-
nections can be effectively modeled by combining diffusion
magnetic resonance imaging (MRI)-based tractography and
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T1-weighted MRI-based regional gray matter segmentation.
This network-based approach is highly sensitive to alterations
in brain integrity across multiple disease pathologies including
schizophrenia, Alzheimer’s disease, and major depressive dis-
order (Bassett, 2010; Bassett et al., 2008; Bullmore and
Sporns, 2009; He et al., 2008; Lo et al., 2010; Yu et al.,
2011; Zhang et al., 2011).

Complex network analysis has been recently applied to in-
vestigate signatures of HIV neuropathogenesis ( Jahanshad
et al., 2012). In this study, significant disruptions to brain con-
nectivity were identified in older HIV+ adults on cART. How-
ever, the relationship between the topological organization of
white matter and cognitive function in HIV remains unclear.
Furthermore, no studies have examined connectivity metrics
(e.g., structural segregation, structural integration, and con-
nection strength) in younger HIV+ individuals. It is necessary
to fill this gap in the literature to determine the functional rel-
evance of white matter connectivity in HIV+ individuals, in-
dependent of advanced age.

We used diffusion MRI-based tractography and graph-
theoretic approaches to investigate the topological organi-
zation of white matter in 29 HIV+ young adults and 16
HIV� demographically similar controls utilizing fiber-bundle
length (FBL)-defined whole-brain connectivity metrics (struc-
tural segregation, structural integration, and connection
strength). These metrics provide insight into communication
between regions of the brain. We also examined the rela-
tionship between whole-brain topological organization and
cognitive performance using a global deficit score (GDS)
and individual cognitive domain deficit scores (learning/recall,
psychomotor/processing speed, executive function, fine motor
skills and dexterity, and visuospatial skills). We hypothesized
that whole-brain topological organization would be diminished
in HIV+ individuals compared with HIV� controls, and the
degree of abnormalities in the three connectivity metrics
would significantly correlate with poorer cognitive perfor-
mance in young HIV+ individuals.

Methods

Participants

HIV+ participants were recruited from primary care HIV
clinics in Cape Town, South Africa. Patients who were in

the pretreatment counseling phase were identified from clinic
records. Interested participants completed a comprehensive
consent process followed by a detailed medical and demo-
graphic history. All participants were either treatment
naive at enrollment (83%) or had initiated cART within 3
months of enrollment (17%). All but five participants began
treatment within 1 month of enrollment. HIV� participants
were recruited from regional Voluntary Counseling and
Testing Clinics in Cape Town, South Africa. Table 1 provi-
des demographic information for the 29 HIV+ and 16 HIV�
participants.

Inclusion criteria for HIV+ participants included (1) age
between the years of 18 and 45; (2) Xhosa as the primary lan-
guage; (3) HIV serostatus documented by ELISA and con-
firmed by Western blot, plasma HIV RNA, or a second
antibody test for the HIV+ group; and (4) at least 7 years
of formal education (all but one participant reported at
least 10 years of education). Exclusion criteria for all partic-
ipants included (1) any major psychiatric condition that
could significantly affect cognitive status (e.g., schizophre-
nia or bipolar disorder); (2) confounding neurological disor-
ders including multiple sclerosis and other central nervous
system (CNS) conditions; (3) head injury with loss of con-
sciousness greater than 30 min; (4) clinical evidence of op-
portunistic CNS infections (toxoplasmosis, progressive
multifocal leukoencephalopathy, and neoplasms); and (5)
current substance use disorder determined by the Mini-
International Neuropsychiatric Interview Plus (MINIPlus)
(Sheehan et al., 1998). All participants provided signed in-
formed consent. Study procedures were approved by local
university IRB committees.

HIV viral load and CD4 T cell counts

EDTA blood samples were collected at the time of study
visit and plasma and cell aliquots were stored at �70�C.
RNA was isolated from patient samples using the Abbott
RealTime HIV-1 amplification reagent kit, according to the
manufacturer’s instructions. Viral load was determined
using the Abbott m2000sp and the Abbott m2000rt analyzers
(Abbott laboratories, Abbott Park, IL). All HIV+ participants
had a detectable viral load (range 183–1,759,510 copies/
mL). Analyses of cells from fresh blood samples were com-
pleted on the FACSCalibur flow cytometer in conjunction

Table 1. Subject Characteristics

HIV+ (n = 29) HIV� (n = 16) p

Mean age – SD (range) 25.89 – 2.12 (22–29) 24.69 – 4.53 (20–32) 0.55
Mean education – SD (range) 10.76 – 0.69 (10–12) 10.94 – 1.29 (7–12) 0.31
Sex (% male) 17% 31% 0.46
Mean recent CD4

(cells/mm3) – SD (range)
249.79 – 164.23 (35–799)

Mean plasma VL
(copies/mL)a – SD (range)

4.21 – 1.06 (2.26–6.25)

Mean months of infection – SD (range) 9.33 – 19.56 (0–97)
% prescribed antiretroviral therapy 17%
Mean intracranial

volume (cm3) – SD (range)
1307.15 – 246.69 (1027.86–1728.54) 1345.50 – 211.64 (961.03–2033.13) 0.60

Mean global deficit score – SD (range) 0.34 – 0.32 (0–1) 0.18 – 0.22 (0–0.82) 0.06

aViral load log10 transformed.
HIV, human immunodeficiency virus.
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with the MultiSET V1.1.2 software (BD Biosciences, San
Jose, CA) for CD4 T cell counts.

Neuroimaging acquisition

Neuroimaging was acquired on a 3T Siemens Allegra
scanner (Siemens AG, Erlangen, Germany), with a four-
channel phased-array head coil. Thirty unique diffusion gra-
dient directions at b = 1000 sec/mm2 were repeated to give a
total of 60 diffusion weighted volumes using a customized
single-shot multislice echo-planar tensor-encoded imaging
sequence. Six baseline images were acquired and interleaved
in the diffusion-weighted scans to improve motion correc-
tion. Seventy contiguous slices were obtained per contrast
with a 128 · 128 matrix and field of view of 218 · 218 mm
(isotropic 1.7 · 1.7 · 1.7 mm3 voxels); time of repetition
(TR): 10 sec, echo time (TE): 103 ms using a full-Fourier
transform. We also acquired a T1-weighted three-dimensional
magnetization-prepared rapid acquisition gradient echo se-
quence (TR = 2400 ms, TE = 2.38 ms, inversion time [TI] =
1000 ms flip angle = 8�, 162 slices, and voxel size = 1 · 1 · 1
mm3 for volumetric analyses).

Neuroimaging analysis

The T1-weighted MR images were processed with Free-
surfer version 5.1.0 (Fischl, 2012) to obtain a high-resolution
gray matter parcellation. The diffusion-weighted MR images
were processed with a pipeline including FSL 5.0 ( Jenkinson
et al., 2012) and custom software, described as follows. First,
FSL eddy current was used to correct for motion and eddy
currents by registering each diffusion-weighted volume to
the first baseline with an affine transformation. The gradient-
encoding vectors were also rotated to account for the spatial
transformation of each volume (Leemans and Jones, 2009).
Then, FSL BET was run for brain extraction, and XFIBRES
was run to obtain ball-and-sticks diffusion models in each
voxel (Behrens et al., 2007). Model fitting was performed
with two stick compartments to improve tractography in
areas with complex anatomy, such as crossing fibers. Whole-

brain deterministic streamline tractography was performed to
obtain geometric models of white matter pathways.

Tractography was executed utilizing an extension of the
standard streamline approach to use multiple fibers per
voxel with the following parameters: four seeds per voxel,
an angle threshold of 50�, a minimum length of 10 mm,
and a minimum volume fraction of 0.1. During tracking, a
kernel regression estimation framework (Cabeen et al.,
2016) was used for smooth interpolation of the multifiber
ball-and-sticks models with a Gaussian kernel using a spa-
tial bandwidth of 1.5 mm and window of 1 mm voxels of
7 · 7 · 7. Then a subject-specific structural network model
was constructed from the combination of diffusion MR trac-
tography and T1-weighted MRI gray matter labels from the
Desikan–Killiany atlas (Desikan et al., 2006) and subcortical
segmentations obtained from Freesurfer. For each pair of re-
gions, a structural connection was defined by first selecting
fibers with end-points in pairs of gray matter areas and
then computing the average FBL of the selected fibers to rep-
resent connection strength (Correia et al., 2008). To avoid
resampling artifacts, the tractography was performed in na-
tive space and then the curve data were transformed to T1-
space to test for intersection with gray matter regions. This
step registered the T1-weighted MRI to the average baseline
diffusion scan using FSL FLIRT with the mutual information
criteria and an affine transformation. The resulting weighted
undirected connectivity matrix was analyzed with the Brain
Connectivity Toolbox (http://https://sites.google.com/site/
bctnet/) to obtain global network measures of connection
strength, structural segregation (clustering coefficient), and
structural integration (characteristic path length and global
efficiency) (Fig. 1; Rubinov and Sporns, 2010).

Neuropsychological evaluation

The neuropsychological battery included tests of the fol-
lowing domains: Learning/recall—(1) Hopkins Verbal
Learning Test-Revised (HVLT-R; Brandt and Benedict,
2001) and (2) Brief Visuospatial Memory Test-Revised

FIG. 1. Structural network analysis visualizations. Left: A visualization of imaging-based reconstructions of anatomy,
showing diffusion magnetic resonance imaging (MRI)-based tractography and T1-weighted MRI-based gray matter segmen-
tations. The left hemisphere shows Desikan–Killiany regions-of-interest and the right hemisphere shows streamline tractog-
raphy curves used to define connectivity between regions. Right: A visualization of a structural network model derived from
neuroimaging data. The left hemisphere shows Desikan–Killiany regions-of-interest and the right hemisphere shows a node-
link diagram representing the topological organization of white matter. Nodes are placed at the centroid of each region and
the links are derived from the average fiber bundle length between the pairs of regions with structural connections. Color
images available online at www.liebertpub.com/brain
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(BVMT-R; Benedict et al., 1996). Total correct on the imme-
diate and delayed recall trials was defined as the dependent
variables for the HVLT-R and BVMT-R. Psychomotor/
processing speed—(1) Color Trails 1 (D’Elia and Satz,
1996), (2) Trail Making Test A (Reitan, 1955), and (3)
Digit Symbol (Wechsler et al., 2008). Time to completion
was the dependent variable for Color Trails 1 and Trail Mak-
ing Test A. Total correct was the dependent variable for Digit
Symbol. Executive function—(1) Color Trails 2 (D’Elia and
Satz, 1996) and (2) Wisconsin Card Sorting Test (WCST;
Heaton et al., 1993). Time to completion was the dependent
variable for Color Trails 2, and total perseveration errors served
as the dependent variable for the WCST. Visuospatial
skills—Block Design from the WAIS-IV (Wechsler, 1997).
Total correct was the dependent variable. Fine motor skills
and dexterity—Grooved Pegboard Test (Kløve, 1963) nondom-
inant hand. Time to completion was the dependent variable.

Determination of domain-specific and global
neuropsychological function

For data reduction purposes, raw data from the neuropsycho-
logical test battery were converted to T scores using mean and
standard deviations from a sample of 52 HIV� individuals
recruited from South Africa. A deficit score (ranging from 0
to 5 with a score of 0 indicating normal range and greater
scores indicating greater impairment) for each test was deter-
mined using the methods previously reported by Carey et al.
(2004). This approach provides a more sensitive method for
generating a summary neuropsychological score than averag-
ing neuropsychological scores (Carey et al., 2004; Heaton
et al., 2004). A GDS was then obtained for each participant,
with higher scores indicative of greater impairment. A GDS
provides a continuous measure of impairment with scores
>0.5 providing high rates of specificity (0.89) and positive pre-
dictive value (0.83) in establishing HIV-associated impairment
(Carey et al., 2004; Heaton et al., 2004).

Domain-specific deficit scores were calculated using
methods similar to the calculation for the GDS. Specifically,
standardized T scores for each neuropsychological test were
converted to a deficit score between 0 and 5. The deficit
scores were averaged to determine domain-specific deficit
scores (i.e., learning/recall, psychomotor/processing speed,
executive function, fine motor skills and dexterity, and visuo-
spatial skills).

Statistical analysis

All statistical analyses were conducted utilizing SPSS,
version 24. Differences in age, sex, and education between
HIV+ and HIV� participants were examined using indepen-
dent sample t-tests (age and education) and chi-squared ana-
lyses (sex) to determine potential covariates for the primary

analyses. Differences in whole-brain topological organiza-
tion between groups were examined using three separate an-
alyses of covariance or multivariate analyses of covariance
(ANCOVA/MANCOVA) models, depending on the number
of metrics in each category. HIV serostatus served as the in-
dependent variable and individual measures of topological
organization served as dependent variables in each analysis,
with intracranial volume as a covariate. The measures of to-
pological organization included structural segregation (clus-
tering coefficient), structural integration (characteristic path
length and global efficiency), and connection strength.
Viral load was natural log transformed to achieve a normal
distribution for correlation analyses. Pearson’s correlations
were used to determine whether individual measures of con-
nectivity were significantly related to HIV clinical variables
(CD4 T cell count and log-transformed viral load).

With respect to the distribution of GDS and domain-
specific deficit scores, the standardized skewness coefficients
and the standardized kurtosis coefficients revealed signifi-
cant departures from normality in the entire sample and
within the HIV+ group. Therefore, a nonparametric proce-
dure, Spearman’s rank order correlation (i.e., Spearman’s
rho), was performed to address all correlations that included
the GDS or domain scores. These analyses were performed
within the HIV+ sample as well as collapsed across the
HIV+ and HIV� groups.

Results

Subject characteristics are listed in Table 1. There were no
statistically significant differences in demographic factors
(age, education, and sex) between HIV+ and HIV� partici-
pants. The ANCOVA/MANCOVA models revealed signifi-
cantly weaker structural segregation in HIV+ participants,
defined by a lower clustering coefficient (F(1,42) = 11.20,
p = 0.002), Cohen’s d = 1.06), as well as weaker structural inte-
gration defined by higher characteristic path length and lower
global efficiency (Wilks’ L= 0.77, F(2,41) = 6.10, p = 0.005,
d = 0.79), with characteristic path length F(1,42) = 12.23,
p = 0.001, d = 1.12) and global efficiency F(1,41) = 12.33,
p = 0.001, d = 1.12) both significantly contributing to the
model. Lastly, HIV+ participants showed weaker connection
strength (F(1,42) = 8.29, p = 0.006, d = 0.92) (Table 2). Pear-
son’s correlational analyses revealed that CD4 T cell count
and viral load were not significantly associated with any indi-
vidual measures of connectivity (r < j0.30j; p > 0.05).

Relationships between GDSs and connectivity metrics

Collapsed across HIV+ and HIV� participants, Spearman’s
rho revealed statistically significant correlations between GDSs
with global characteristic path length (r = 0.34, p = 0.027) and
mean connection strength (r =�0.31, p = 0.046). Trend level

Table 2. Differences in Network Connectivity Between HIV+ and HIV� Participants

HIV+ (n = 29) HIV� (n = 16) p

Global clustering coefficient (mm) 53.18 (4.47) 57.67 (3.37) 0.002
Global characteristic path length (1/mm) 0.015 (0.0012) 0.013 (0.0009) 0.001
Global efficiency (mm) 77.86 (7.17) 85.62 (6.54) 0.001
Global connection strength (mm) 2939.75 (385.99) 3271.76 (312.58) 0.006

Values are represented in mean (SD).
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relationships were also observed with global efficiency (r =
�0.30, p = 0.057) and clustering coefficient (r =�0.30, p =
0.055). Together, these results indicate that poorer cognitive
performance is associated with abnormal network indices.
When examined specifically within the HIV+ sample, Spear-
man’s rho showed statistically significant negative relationships
between the GDS and the clustering coefficient (r =�0.40,
p = 0.042), and trend level negative associations with global
efficiency (r =�0.38, p = 0.056) and connection strength (r =
�0.37, p = 0.062). A trend level positive relationship was ob-
served between the GDS and characteristic path length
(r = 0.37, p = 0.060).

Relationships between domain-specific deficit scores
and connectivity metrics

Collapsed across HIV+ and HIV� participants, poorer
learning/recall was significantly associated with higher
global characteristic path length (r = 0.36, p = 0.010), lower
mean connection strength (r =�0.37, p = 0.012), lower
global efficiency (r =�0.36, p = 0.016), and lower cluster-
ing coefficient (r =�0.39, p = 0.009). No other significant re-
lationships were observed between the brain connectivity
metrics and psychomotor/processing speed, executive func-
tion, fine motor skills and dexterity, or visuospatial skills
(r < j0.30j, p > 0.05). When examined specifically within
the HIV+ sample, learning/recall deficit scores were signifi-
cantly negatively associated with the clustering coefficient
(r =�0.40, p = 0.037). Negative trend level relationships
were observed between learning/recall deficit scores and
mean connection strength (r =�0.36, p = 0.064) and global
efficiency (r =�0.36, p = 0.058), whereas a trend level posi-
tive relationship was observed with global characteristic
length (r = 0.36, p = 0.052). No significant relationships were
observed between the connectivity metrics and psychomotor/
processing speed, executive function, fine motor skills, and
dexterity, or visuospatial skills (r < j0.30j, p > 0.05) in the
HIV+ sample.

Discussion

This study revealed topological disorganization of brain
white matter in HIV, including abnormalities in structural
segregation, structural integration, and connection strength.
Furthermore, these abnormalities in network connectivity
metrics were significantly associated with cognitive dysfunc-
tion both across the entire sample and specifically within the
HIV+ group. These abnormalities were not significantly re-
lated to HIV clinical status (CD4 T cell count and viral
load). Findings indicate that younger HIV+ participants
with limited or no antiretroviral treatment history exhibit sig-
nificantly altered measures of whole-brain connectivity rela-
tive to demographically similar HIV� controls. These data
suggest that alterations in whole-brain network disruption
are behaviorally relevant in the context of HIV.

Structural segregation refers to neural processing within
interconnected regions of the brain, whereas structural inte-
gration refers to the potential to rapidly combine specialized
information from distributed brain networks. The interplay
of segregation and integration in brain networks generates in-
formation that is simultaneously diversified and synthesized,
resulting in patterns of high complexity. Extensive research
indicates that the dynamic patterns generated by these net-

works provide the basis for cognition and perception (Bress-
ler and Kelso, 2001; Frackowiak, 2004; McIntosh, 1999;
Varela et al., 2001). Underlying these global properties is a
measure of connectivity between brain regions, which we ex-
amined with the average FBL of tractography curves. Over-
all lower structural segregation (clustering coefficient),
structural organization (characteristic path length and global
efficiency), and connection strength were observed, indicat-
ing that HIV is associated with abnormal whole-brain net-
work connectivity.

Neuroimaging studies have revealed consistent disrup-
tions to subcortical and cortical brain structures among indi-
viduals infected with HIV (Ances et al., 2012; Archibald
et al., 2004; Becker et al., 2011; Berger and Arendt, 2000;
Cohen et al., 2010; Heaps et al., 2012; Ragin et al., 2012;
Stout et al., 1998). Specifically, reduced volumes have
been observed within the thalamus, caudate, putamen, hippo-
campus, cortical white matter, and gray matter (Ances et al.,
2012; Holt et al., 2012; Ortega et al., 2013; Paul et al., 2008,
2016; Thompson et al., 2005). Individuals with more ad-
vanced disease exhibit reduced cortical thickness in primary
sensory and motor areas (Thompson et al., 2005), possibly
reflecting distal effects of basal ganglia damage. Results
from Jahanshad et al. (2012) revealed pronounced white mat-
ter network disruption in primary motor and sensory areas of
the parietal and frontal lobes of older HIV individuals on sta-
ble treatment. Our study extends previous work by revealing
global network disruption in younger HIV+ individuals with
immune suppression and limited or no treatment history.

DTI abnormalities observed using scalar metrics in fron-
tal, callosal, and deep white matter regions in HIV+ individ-
uals have been associated with poor cognitive performance
(Chang et al., 2008; Chen et al., 2009; Hoare et al., 2015; Jer-
nigan et al., 1993; Müller-Oehring et al., 2010; Ortega et al.,
2013; Pomara et al., 2001; reviewed in Hardy and Hinkin,
2002; Stout et al., 1998; Thurnher et al., 2005). Our results
reveal a strong association between cognitive dysfunction
and diffuse brain network disruption in HIV+ young adults.
Collapsed across HIV+ and HIV� participants, we observed
significant associations between both GDS and learning/
recall with structural integration (characteristic path length)
and connection strength, indicative of reduced information
transfer across networks (Latora and Marchiori, 2001) and
reduced FBL. Conversely, the most prominent relationships
in the HIV+ group were observed between structural segre-
gation (clustering coefficient) and both global neuropsycho-
logical impairment and learning/recall. This pattern of
structural abnormalities provides evidence of cognitive im-
pairment related to a measure of neural processing within
densely interconnected networks.

Inflammation is hypothesized to be one of many important
drivers of neuronal injury and loss in HIV. Inflammation oc-
curs soon after viral entry into the CNS and is associated with
the release of proinflammatory cytokines, chemokines, and
neurotoxic viral proteins in response to HIV-infected macro-
phages and microglia (Anthony et al., 2005; Harezlak et al.,
2011; Lentz et al., 2011; Sailasuta et al., 2012; Valcour et al.,
2012; Vera et al., 2016). In turn, these activate uninfected
macrophages and microglia to further release neurotoxic
substances that lead to compromised synaptodendritic con-
nections, damage to axonal and myelin integrity, and poten-
tially neuronal death (Conant et al., 1998; Raja et al., 1997).
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These injuries are distributed widely throughout the brain
and correspond to white matter damage (Ellis et al., 2007)
as well as cognitive impairment (Everall et al., 1999).

An advantage of our study is the tractography method
employed to quantify structural connectivity. Typically, a
major challenge of estimating whole-brain connectivity met-
rics is the presence of complex configurations of fiber bundle
anatomy such as fiber crossings. The diffusion tensor model
does not accurately represent voxels consisting of multiple
fiber populations, which limits the anatomical validity of net-
work models derived using single tensor models. More sophis-
ticated techniques that represent multiple fibers, such as
multicompartment and high angular resolution diffusion imag-
ing, offer greater anatomical accuracy and improved sensitivity
in detecting complex anatomical features related to white mat-
ter changes caused by disease (Tuch et al., 1999, 2002). We
used the ball-and-sticks multicompartment model (Behrens
et al., 2007) and a model-based estimation framework (Cabeen
et al., 2016) to improve the accuracy of connectivity mapping.
Importantly, although this approach is ideal for the single shell
data, more sophisticated microstructure models that utilize
multishell acquisitions may provide improved anatomical ac-
curacy and sensitivity to detect white matter changes. Future
studies may benefit by using neurite orientation dispersion
and density imaging to characterize changes in neurite density
and orientation dispersion (Zhang et al., 2012).

Several limitations are important to address. First, we did
not have sufficient number of male HIV+ participants to ex-
amine sex differences in brain network topology. Previous
research conducted in HIV� populations reveals sex differ-
ences in brain topology (Gong et al., 2009; Yan et al., 2011),
emphasizing the importance of examining sex differences in
future studies. In addition, future research is needed to deter-
mine whether treatment improves whole-brain connectivity
abnormalities. Lastly, we excluded participants with sub-
stance use disorder because of evidence that structural con-
nectivity is disrupted in substance users independent of
HIV (Bava et al., 2009; Kim et al., 2014). Our approach en-
sured that the observed effects were not confounded by sub-
stance use. However, our results may not generalize to the
population of HIV+ substance users. Despite these limita-
tions, our findings provide strong evidence for functionally
relevant disruptions to network organization in HIV.

Conclusions

This article extends the literature in three novel ways. First,
our cohort comprised young HIV+ adults. Second, our sample
was predominantly free of treatment confounds on brain con-
nectivity. Lastly, the present study included measures of cog-
nition that inform the functional relevance of the connectivity
measures. Collectively, the results support a model of diffuse
network changes in young HIV+ individuals with limited or
no treatment history and corresponding cognitive dysfunction.
The results provide further evidence of the utility of anatom-
ical brain connectivity as a noninvasive biomarker of white
matter disruption in HIV infection.
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