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Abstract

Previous studies investigating the differences in olfactory processing and judgments between trained sommeliers
and controls have shown increased activations in brain regions involving higher level cognitive processes in som-
meliers. However, there is little information about the influence of expertise on causal connectivity and topolog-
ical properties of the connectivity networks between these regions. Therefore, the current study focuses on
addressing these questions in a functional magnetic resonance imaging (fMRI) study of olfactory perception
in Master Sommeliers. fMRI data were acquired from Master Sommeliers and control participants during differ-
ent olfactory and nonolfactory tasks. Mean time series were extracted from 90 different regions of interest (ROIs;
based on Automated Anatomical Labeling atlas). The underlying neuronal variables were extracted using blind
hemodynamic deconvolution and then input into a dynamic multivariate autoregressive model to obtain connec-
tivity between every pair of ROIs as a function of time. These connectivity values were then statistically com-
pared to obtain paths that were significantly different between the two groups. The obtained connectivity
matrices were further studied using graph theoretical methods. In sommeliers, significantly greater connectivity
was observed in connections involving the precuneus, caudate, putamen, and several frontal and temporal re-
gions. The controls showed increased connectivity from the left hippocampus to the frontal regions. Furthermore,
the sommeliers exhibited significantly higher small-world topology than the controls. These findings are signif-
icant, given that learning about neuroplasticity in adulthood in these regions may then have added clinical
importance in diseases such as Alzheimer’s and Parkinson’s where early neurodegeneration is isolated to regions
important in smell.
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Introduction

Functional and structural brain changes have been
reported in relation to training and expertise (experience-

dependent plasticity) (Kolb et al., 2013) in humans. The stud-
ies looking for distinct structural changes have investigated
diverse aspects of expertise, including juggling and associ-
ated motor and visual regions of the cortex, the hippocampal
volume changes associated with taxi driving and spatial nav-
igation training, cortical regions associated with language

learning in interpreters, structural changes (hippocampus
and auditory cortex) with extensive musical training, and as-
sociation of the frontal lobe olfactory regions with expertise
in perfume (Bermudez and Zatorre, 2005; Delon-Martin
et al., 2013; Oechslin et al., 2013; Valkanova et al., 2014).

Other studies have assessed the distinct pattern of func-
tional activation in experts. For example, neural correlates
of performance in archers (Kim et al., 2014), altered insula
activation in expert meditators (Lutz et al., 2013), distinct
patterns of olfactory regions and hippocampus activation in
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perfumers when imaging smell (Plailly et al., 2012) and, dur-
ing wine tasting, a functional magnetic resonance imaging
(fMRI) study showed that wine experts (sommeliers) showed
increased activation of the memory network (Pazart et al.,
2014).

While many studies investigated structural or activation
differences, there are few studies that examined the network-
based connectivity differences related to expertise. Func-
tional connectivity has been studied in musicians (Pinho
et al., 2014), creative writers (Lotze et al., 2014), functional
network organization in chess experts (Duan et al., 2014),
and olfactory memory (Meunier et al., 2014). These studies
investigate network-based functional connectivity. Despite
the insights gained from these studies, they lack vital infor-
mation related to the direction of the causal influence (effec-
tive connectivity). In high-level cognitive functioning and
areas of expertise that are complex in nature, understanding
information transfer among the brain regions involved in
these processes could supplement the structural and func-
tional findings and may provide valuable information about
the neural networks involved in diverse areas of expertise.

Effective connectivity refers to the influence one neural
system exerts over another, thus enabling us to find more in-
formation about how information flows between different
brain regions. As a result, effective connectivity findings
have added important information and yielded models of
cognitive function by highlighting the extremely dynamic
nature of the neural instantiations (McIntosh et al., 2010).
Some of the more frequently used effective connectivity
methods are dynamic causal modeling (DCM) (Friston
et al., 2004), structural equation modeling (SEM) (McIntosh
and Gozales-Lima, 1994), and Granger causality (GC) anal-
ysis (Abler et al., 2006; Deshpande et al., 2009; Roebroeck
et al., 2005).

Unlike the confirmatory methods such as DCM and SEM,
GC analysis is an exploratory technique that does not make
any prior assumptions about the underlying connectional ar-
chitecture and is capable of obtaining condition-specific
causal connectivity metrics between the larger number of
brain regions using relatively shorter time series. Some of
the earlier studies did examine causal connectivity differ-
ences related to learning using GC (Luo et al., 2012; Sathian
et al., 2013), but such studies are few, and, to our knowledge,
have not been completed on sommeliers (wine experts).

GC is based on the principle that the causal influence of
one region X on another region Y can be obtained if past val-
ues of the time series from the region X help predict the pres-
ent and future values of the time series from the region Y
(Granger, 1969). This method is implemented using a multi-
variate autoregressive (MVAR) model. Several earlier stud-
ies have used these MVAR models based on the GC
framework to study the predictive relationship between
time series from different brain regions (Abler et al., 2006;
Deshpande et al., 2011; Krueger et al., 2011; Lacey et al.,
2011; Roebroeck et al., 2005).

However, it was shown that due to the effect of non-
neuronal spatial variability of the shape of hemodynamic re-
sponse functions (HRF) and slow sampling rate (Handwerker
et al., 2004), using raw fMRI time series in GC analysis
could lead to confounds in the estimation of causal connec-
tivity metrics (David et al., 2008; Deshpande et al.,
2010b). Consequently, recent studies have implemented an

improvised effective connectivity analysis framework. This
framework implements blind hemodynamic deconvolution
methods where in the underlying hidden neuronal variable
for the fMRI time series can be estimated, and the GC anal-
ysis is done in the latent neuronal space (Grant et al., 2015;
Hutcheson et al., 2015; Sathian et al., 2013).

The goals of this study are to investigate effective connec-
tivity between brain regions in Master Sommeliers (wine ex-
perts) and untrained participants (nonwine experts) during
olfactory tasks and study the global topological properties
of these networks. In particular, we investigate the associa-
tion between functional organization of the brain networks
and the difference in olfactory expertise. Master Sommeliers
undergo specialized training and have to pass a four-
examination process that takes several years. By the end of
their training, they have accumulated a wealth of knowledge
linked to the smell of the wines. In addition to the obvious
dependence on their sense of smell and taste, sommeliers
also learn to draw on their memory and use mental imagery
when judging wine. Therefore, we hypothesized that there
would be network differences in effective connectivity and
also the functional organization of the networks involving re-
gions involved in olfaction, memory, multimodal integra-
tion, and mental imagery between Master Sommeliers and
untrained controls. Furthermore, we also expected to see dif-
ferences in the small-world topology in the effective connec-
tivity networks in both groups.

In the current study, we explored the causal influences be-
tween different brain regions during olfactory fMRI tasks in
trained Master Sommeliers and novice controls. Furthermore,
the functional organization of the brain networks was studied
using graph theoretical approaches, and the differences be-
tween the two groups were further statistically evaluated.

Methodology

Effective connectivity

Blind deconvolution model. The first step in the effective
connectivity analysis is to deconvolve the HRF from the
fMRI time series to obtain underlying neuronal response.
In our article, we implement the blind deconvolution method
proposed by Havlicek and colleagues (2011).

Let p fMRI time series be represented as Y(t) = [y1(t)
y2(t) . yp(t)]. A dynamic state-space model formulated in
continuous time (discrete observation process) can be de-
scribed as follows.
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In the state equation [Eq. (1)], n, r, and h are the neuronal
state variables, the exogenous input, and the HRF parameter
variables respectively. The symbol f is the function that links
the current neuronal state to the previous state of n, r, and h.
The index G indicates continuous time, and L, K, and J are the
zero mean Gaussian state noise vectors. In the observation
equation [Eq. (2)], the function m links the state variables
and the measurement variables. The variables t and v repre-
sent the discrete time and measurement noise, respectively.
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The exogenous input r (i.e., experimental boxcar function)
and fMRI time series yp(t) are the inputs to the model. The
cubature Kalman filter (CKF) can be used to successfully es-
timate the hidden neuronal state variables and parameters.
Briefly, this method uses an efficient joint scheme, in
which the latent neuronal variables (n) and the parameters
corresponding to the HRF (h) are combined into a single
joint state vector and estimated together in a recursive man-
ner by inverting a dynamic state-space model [Eqs. (1) and
(2)]. For detailed explanation about this deconvolution
method, the reader is referred to Havlicek and colleagues
(2011).

Dynamic MVAR model. The neuronal state variables
np(t) can be input into the MVAR as follows

Order of the model (x) is determined by the Akaike/
Bayesian information criterion (Akaike, 1974; Schwarz,
1978), a are the model coefficients and d is the model
error. Note that a(0) and a(s), s = 1 . x represent the instan-
taneous influences between time series and causal influences
between time series, respectively. By modeling both these
terms in the model, the effect of instantaneous correlation
on causality can be minimized (Deshpande et al., 2010a).
By varying the model coefficients as a function of time,
the MVAR model can be made dynamic, as given below
[Eq. (4)].

The model coefficients aij(s,t) were taken as the state vector
of a Kalman filter and adaptively estimated using the algo-
rithm proposed by Arnold and colleagues (1998). Dynamic
GC was then obtained as follows.

DGCij (t) = +
x

s =1

aij s, tð Þ
� �

(5)

In Equation (5), the model coefficients obtained are
summed over all orders of the model. This enables us to
infer net (effective) causality between the time series.

Graph theory analysis

The topological properties of functional networks were in-
vestigated by graph theoretical analysis. The causal connec-
tivity matrices obtained from the connectivity model were

used for the analysis. Each matrix was thresholded into a set
of weighted graphs (i.e., networks) by selecting the strongest
connections until the desired sparsity was reached. Connec-
tion sparsity (S; ratio of the existing edges to the maximum
possible number of edges in a network) was used as a thresh-
olding measure in the current study. The threshold was ap-
plied to ensure that the networks being compared had the
same number of nodes and edges to analyze between-group
differences in the network organization (Achard and Bull-
more, 2007). A threshold range of 0.10 < S < 0.50 with an in-
terval of 0.01 was applied to each connectivity matrix. This
range of sparsity was chosen as it is comparable to the range
indicated in prior studies (He et al., 2008; Rubinov and
Sporns, 2010). The following network analysis was repeat-
edly performed on this defined threshold range.

At each S, we obtained network characteristics, including
(1) small-world parameters and (2) network efficiency.
Small-world properties were originally proposed by Watts
and Strogatz (1998). It involved determination of weighted
clustering coefficient (C), weighted characteristic path length
(L), normalized weighted clustering coefficient (CN), and
normalized weighted characteristic path length (LN). The C
of a network quantifies the degree of local interconnectivity
in a network and is expressed as the average of clustering

coefficients across all nodes in the network: C = 1
N

+
i2N

Ci,

where N and Ci denote the number of nodes and the clus-

tering coefficient of node i, respectively. The clustering
coefficient of a node is defined as the likelihood that the
neighborhoods of node i are connected to each other and is
given by Equation (6)
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where ei is the number of edges connecting to node i
(degreein+out), wij is the connectivity value between node i
and node j, and aij is the connection status between the
nodes. The C quantifies the extent of local interconnectiv-
ity or cliquishness in network (Onnela et al., 2005; Watts
and Strogatz, 1998). The path length between node i and
node j was defined as the sum of edge length along this
path. The length of each edge was calculated as the
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reciprocal of edge weight (1/wij). The path length Lij was
defined as the length of the shortest path between node i

and node j: Lij = +
auv2gi!j

1
wuv

� �
, where gi!j is the shortest

weighted path between i and j. The weighted character-
istic path length (Rubinov and Sporns, 2010) is given by
Equation (7)

L =
1

N
+
i2N

+
j2N, j 6¼i

Lij

N � 1
(7)

A network is considered small world if it has similar path
length but higher local connectivity than random networks
(Watts and Strogatz, 1998). The small worldness of a net-
work can be expressed as s = CN/LN, which is typically larger
than 1 in the case of small-world organization (CN = C/
Crandom > 1 and LN = L/Lrandom* 1) (Achard et al., 2006;
Watts and Strogatz, 1998). The mean weighted clustering
coefficient and weighted characteristic path length of 100
matched random networks are given by Crandom and Lrandom.
The random networks are matched to preserve the same
number of nodes, edges, and degree distribution as the real
network.

To study the network efficiency, we obtained the local (Elocal)
and global efficiency (Eglobal) of the connectivity networks. The
efficiency is a measure of how well a network exchanges infor-
mation (Achard and Bullmore, 2007). Global efficiency quan-
tifies the exchange of information on a global scale in the
network and the local efficiency is a measure of how well
local subgraphs exchange information when the node under
consideration is eliminated. All of the above network measures
were calculated using the appropriate functions provided in the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010).

To evaluate the between-group differences in overall topo-
logical characteristics, we calculated the area under the curve
(AUC) over the whole range of thresholds. The AUC provi-
des a summarized scalar for topological characterization of
brain networks independent of single threshold selection
(Achard and Bullmore, 2007). The integrated AUC of net-
work metric Y, which was computed over the threshold
range of S1 = 0.1 and Sn = 0.50 with interval of DS = 0.01,
was expressed as follows [Eq. (8)]:

YAUC = +
n�1

l =1

Y Slð ÞþY Slþ1ð Þ½ �DS

2
(8)

Materials and Methods

Subjects

A total of 26 healthy adults participated in the study.
Thirteen Master Sommeliers (11 male, 2 female; age:
44.42 – 10.2 years; years as Master Sommelier: 8.92 – 7.4)
and 13 controls (11 male, 2 female; age: 34 – 5.8 years).
All methodology was reviewed and approved by the Cleve-
land Clinic Institutional Review Board (IRB) for the imaging
study. Informed consent was obtained from all participants
before taking part in the study.

Master Sommeliers were recruited from the Las Vegas re-
sort community and surrounding regions by S.J.B. with the
assistance of Jay James, a Master Sommelier extensively in-
volved in both training of sommeliers and in the local com-
munity. Control participants were recruited via advertising

and word of mouth from among the local professional and ac-
ademic community at the University of Nevada, Las Vegas. A
10-item multiple-choice wine quiz was developed to assess
the extent of wine knowledge in the controls. Controls who
scored 30–90% (mean of 64%) were included in the study
since they were not likely to have a higher level of wine-
related knowledge than most of the nonsommelier population
and less likely to be considered as a naive control group.

Overview of the olfactory imaging system

Before entering the scanner, subjects were fitted with a
modified medical-grade oxygen face mask. The custom
mask was modified to accommodate the placement of eight
polyurethane tubes immediately below the nose. A small
glass bottle was attached to the end of each of the tubes.
The bottles contained a small amount (4 mL) of either wine
(two red and two white wine bottles), or nonwine (three bot-
tles), or nothing (one bottle). Additional tubing from each of
these bottles connected them to the olfactometer. The olfac-
tometer is a computer-controlled pneumatic stimulator
(Institute for Biomagnetism and Biosignal analysis, Univer-
sity of Munster, Germany) that provides air pulses of well-
defined duration. The apparatus are depicted in Figure 1.

Experimental stimuli

The entire study consisted of 2 runs of 80 trials and lasted
*20 min. Two olfactory and two nonolfactory were presented
pseudorandomly in an event-related design. There was a 2-sec
visual cue at the beginning of each trial informing participants
which task to perform during the subsequent stimulus presen-
tation that lasted 4 sec. The fixation period between the trials
varied from 0 to 5500 ms. By using a pseudorandomized stim-
ulus presentation, we were able to ensure that there were suf-
ficient intervals between olfactory stimulus presentations to
allow for recovery of the olfactory system and to avoid the ef-
fects of habituation. Figure 2 illustrates the timing and tasks.

During the olfactory tasks, a single odorant was presented.
The participants were instructed to smell and were informed
as to which olfactory task to perform. Odorants were deliv-
ered for 4 sec. For one of the olfactory tasks, participants
reported whether the odorant was red or white wine, and for
the other, they reported if the odorant presented was a wine
or a nonwine. For the olfactory tasks, two white wines, two
red wines, and three nonwine mixtures (a blend of white ver-
jus with a small amount of vodka, and some combination of
fresh lemon juice and very dilute pear or apricot essence)
were chosen. Wines were opened, and nonwines mixed
fresh, for each imaging session, with a maximum of three par-
ticipants being run in a session.

One of the nonolfactory task was a motor task, where the
participants received a 4-sec stream of air through an olfac-
tometer channel that contained no odorant and were asked to
respond by arbitrarily pressing the left or right button. The
other nonolfactory task was a visual discrimination task dur-
ing which participants were randomly presented a pixelated
image of a fingerprint or zebra pattern and were asked
whether the image was a fingerprint or a zebra pattern.

Data acquisition

All images were acquired on a Siemens Verio 3 Tesla MRI
scanner with a birdcage head coil. A high-resolution
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(1 · 1 · 1.2 mm) structural image was acquired using a T1-
-weighted gradient echo 3D MP-RAGE sequence (repeti-
tion time [TR] = 2300 ms, echo time [TE] = 2.98 ms, flip
angle = 9�). The structural scan was of no importance to
the analysis in this study. Functional scans were acquired
using gradient echo T2*-weighted echo planar imaging
(EPI), optimized for BOLD (blood oxygen level dependent)
contrast. Imaging parameters were TR = 2500 ms, TE = 28
ms, flip angle = 80�, field of view = 256 mm; slice thickness
4 mm; in-plane resolution = 2 · 2 mm. A total of 240 volumes
were obtained during each of 2 trial sessions.

Data analysis

FMRI data were preprocessed using SPM12. All the sta-
tistical analyses were performed using MATLAB 2015a.
EPI data were input into a standard preprocessing pipeline
that performed slice time correction, realignment, coregis-
tration, and normalization to the Montreal Neurological
Institute (MNI) 2 mm template. Finally, data were smoothed
with an 8 mm Gaussian kernel. Ninety different cortical re-
gions of interest (ROIs; excluding cerebellum) were identi-
fied based on the Automated Anatomical Labeling atlas

FIG. 2. Example of two stimulus presentations showing an olfactory stimulus (red or white wine) and a visual stimulus
(fingerprint or zebra).

FIG. 1. Apparatus during scanning. Medical-grade air enters the olfactometer, which controls release of air into one of
eight channels, opened when instructed by the presentation program. The air then travelled in a tube to one of eight bottles,
seven of which included either wine or nonwine liquid. The other was empty. The air then went in a different tube to the mask
attached to the face of the participant.
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(Tzourio-Mazoyer et al., 2002). No global signal regression
was performed (Aguirre et al., 1998; Glasser et al., 2013;
Murphy et al., 2009). Average time series were extracted
from these regions for all participants. These average time
series were standardized and then the latent neuronal state

variables were obtained by hemodynamic deconvolution
of the fMRI time series using the CKF. A boxcar function
corresponding to the input stimulus was used as the exoge-
nous input to the deconvolution model along with normal-
ized fMRI time series from previously identified activated

FIG. 3. Schematic displaying the processing pipeline for the connectivity analysis. The dot indicates the connection or path
between two regions. The black lines that cross this dot point to the regions on the x and y axis. The dashed arrow is pointing
to the window displaying the dynamic causality values (connectivity over time) for the connection. Color images available
online at www.liebertpub.com/brain
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ROI. The hidden neuronal variables obtained after deconvo-
lution were input into a dynamic MVAR model (model
order 4) to obtain dynamic effective connectivity between
every pair of ROI for all the participants. Samples of task-
specific connectivity were then obtained for each participant
by populating the absolute causality values at the time point
corresponding to wine or nonwine and the fingerprint or
zebra pattern conditions. These were averaged within sub-
ject and task-specific connectivity values were then obtained
for all participants (Fig. 3 middle panel).

Two-sample t-tests were performed between these sam-
ples (within each group) and paths that were significantly
( p < 0.05) greater during the wine/nonwine task, when com-
pared to the fingerprint/zebra task, were identified. The fin-
gerprint/zebra task was chosen as the control or baseline
condition because (1) visual judgment skill differences are
minimal between the two groups; (2) comparing the olfac-
tory task and the complex visual discrimination task enables

us to study the processes involving olfactory ability of the
sommeliers rather than perceptual judgment in general.

For the paths identified above, the connectivity values dur-
ing the wine/nonwine task were obtained for the two groups
and then compared (between the groups) using a two-sample
t-test (controlling for age and gender) to identify the causal
connections that were significantly different between somme-
liers and controls. The schematic of the data analysis pipeline
is shown in Figure 3. We performed a linear regression anal-
ysis between the mean connectivity value of all the paths that
were greater in sommelier during olfaction and their experi-
ence (years as Sommelier) and reaction time (RT; during
the wine/nonwine task) with gender and age as covariates.

Graph theory analysis

The connectivity matrices obtained from the MVAR
model were further used to calculate the small worldness

FIG. 4. Schematic displaying the
processing pipeline for the graph
theory analysis. The paths that had
wine/nonwine connectivity < finger-
print zebra connectivity were left
out at the decision step. Color
images available online at www
.liebertpub.com/brain
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FIG. 5. Paths significantly greater in the sommeliers when compared to controls during the wine/nonwine task. (a) Shows a
glass brain representation of the paths visualized using BrainNet Viewer (Xia et al., 2013) and (b) shows a circle plot dis-
playing the paths. The color of the connections indicate least significant (red; 0) to most significant (yellow; 1). The purple
node has the highest out degree (5) and the green nodes have the second highest out degree (4). The other nodes have out
degree <4. Color images available online at www.liebertpub.com/brain
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and global and local efficiencies of the network for all the
participants. These graph theory measures were obtained at
different sparsity levels. A difference matrix was obtained
for each subject by subtracting the fingerprint/zebra task con-
nectivity values from the wine/nonwine task connectivity
values. One-sample t-tests (right tailed) were used on these
new connectivity values (wine/nonwine connectivity—finger-
print zebra connectivity) and the t-values were obtained. This
t-value was used as a threshold to choose the strongest causal
connections until a desired sparsity was reached. As mentioned
earlier, a sparsity threshold range of 0.1 < S < 0.50 with an inter-
val of 0.01 was applied to each connectivity matrix. Figure 4
shows a schematic of the graph theory analysis pipeline. The
integrated AUC graph theory metrics over the different sparsity
thresholds for the two groups were obtained. The samples were
then compared using t-test (controlling for age and gender) to
obtain the between-group differences in network topology.

Results

The results of this study are summarized as follows: (1)
there were 28 effective connectivity paths that were signifi-
cantly different between sommeliers and controls and (2)
there were enhanced small-world organization and signifi-
cantly greater clustering coefficient and smaller path length
in the sommeliers when compared to untrained participants.

The first set of results is associated with the identification
of important effective connectivity paths that are different
between the Master Sommeliers and the untrained partici-
pants. The results show 28 significantly different paths be-
tween the 2 groups during the olfactory task. Twenty-two
of these paths were significantly greater ( p < 0.05, Cohen’s
d [effect size] > 0.7) in sommeliers during the wine/nonwine
task and six of the connections were greater in controls. The

results were visualized using BrainNet Viewer (Xia et al.,
2013, www.nitrc.org/projects/bnv/). Figure 5 and Table 1
show the effective connectivity paths to be significantly
greater in the sommeliers compared to untrained controls.
We see significantly greater connectivity in sommeliers,
mainly comprising connections involving the precuneus,
caudate, putamen, and several frontal and temporal regions
( p < 0.05, Cohen’s d [effect size] > 0.7, Fig. 5 and Table 1).

Figure 6 and Table 2 show paths that were significantly
greater in untrained participants when compared to the somme-
liers, which primarily involve connections from the left hippo-
campus to the frontal regions ( p < 0.05, effect size > 0.7).

Second, the graph theory analysis results showed that both
the sommeliers and the control group represented a small-
world organization for the defined range of sparsity thresholds
(S). Furthermore, comparing the integrated AUC values, we
found that the sommeliers had significantly greater small
worldness (r; p = 7.54 · 10�5) and normalized weighted clus-
tering coefficient (c; p = 1.69 · 10�11) when compared to the
untrained controls (Fig. 7). There were no significant differ-
ences in the normalized weighted characteristic path length
(k), global efficiency (Eglob), and the local efficiency (Eloc).

There were no statistically significant findings when
assessing relationship between connectivity and years of ex-
perience as a sommelier or RT during the wine/nonwine task.
However, these findings did exhibit expected trends with
connectivity, showing a positive relationship with experi-
ence and an inverse relationship with RT with a moderate ef-
fect size (Cohen’s d > 0.6) (Fig. 8).

Discussion

To our knowledge, this is the first study to use causal con-
nectivity measures to investigate the high-level cognition

Table 1. Paths Significantly Greater in the Sommeliers Than Controls During

the Wine/Nonwine Task with Their Corresponding p-Values and Effect Size

Source Sink p Effect size

Sommeliers > controls

Rectus L > Heschl R 0.049 0.75
Insula L > Precuneus R 0.049 0.75
Parahippocampal R > Amygdala R 0.041 0.80
Amygdala R > Amygdala L 0.013 1.04
Cuneus R > Precentral R 0.009 1.13
Cuneus R > Putamen R 0.025 0.91
Occipital superior R > Cingulum mid R 0.047 0.76
Postcentral R > Pallidum L 0.046 0.77
Precuneus R > Insula L 0.007 1.17
Precuneus R > Cingulum anterior L 0.024 0.91
Precuneus R > Amygdala L 0.027 0.89
Precuneus R > Fusiform L 0.005 1.23
Precuneus R > Putamen L 0.023 0.93
Caudate R > Frontal superior orbital R 0.038 0.82
Caudate R > Rolandic operculum R 0.041 0.80
Caudate R > Olfactory R 0.002 1.39
Caudate R > Rectus R 0.011 1.09
Putamen R > Frontal mid L 0.043 0.79
Putamen R > Frontal superior medial L 0.001 1.60
Putamen R > Precuneus L 0.028 0.88
Putamen R > Temporal superior L 0.033 0.85
Temporal Superior R > Parietal superior L 0.039 0.81

L, left; R, right.
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FIG. 6. Paths significantly greater in the controls when compared to sommeliers during the wine/nonwine task. (a) Shows a
glass brain representation of the paths visualized using BrainNet Viewer (Xia et al., 2013) and (b) shows a circle plot dis-
playing the paths. The color of the connections indicate least significant (red; 0) to most significant (yellow; 1). The purple
node has the highest out degree (4). Color images available online at www.liebertpub.com/brain
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during olfaction in sommeliers. The findings of this study
were (1) sommeliers showed significantly increased connec-
tivity involving the precuneus, caudate, putamen, and several
frontal and temporal regions, while there was an increased
connectivity in paths primarily involving connections from
the left hippocampus to the frontal regions in controls and
(2) the sommeliers showed significantly greater small world-
ness when compared to the controls.

Effective connectivity differences between
sommeliers and controls

There were 28 effective connectivity paths that were sig-
nificantly different (after controlling for age and gender)
between the 2 groups, with 22 paths showing increased con-
nectivity in sommeliers and 6 paths in untrained controls. In
the untrained participants, majority of the connections were
from the left hippocampus to the frontal regions. This partic-
ular finding that the major node of connectivity in untrained
participants was located in the left hippocampus is perhaps
surprising in view of previous work indicating the role of
left hippocampus for context-dependent memory (Frisk and
Milner, 1990). It is well known that the hippocampus is es-
sential for learning and memory retrieval in humans (Miller
and D’Esposito, 2012). Specifically, in olfaction, the hippo-
campus plays a role in creation of mental images of odors,
memory, and the formation of complex sensory associations
(Royet et al., 2013; Saive et al., 2014). However, as previ-
ously noted by Royet and colleagues (2013), olfactory ex-

perts showed lesser involvement of the hippocampus and
other key regions involved in olfaction and odor-specific
memory or associations with a greater level of expertise.
Hence, we assume that in the absence of any formal training,
the control participants responded based on their past expe-
rience thus recruiting the left hippocampus as a major node
in their connectivity network.

In sommeliers, increased connectivity was observed in paths
and regions that are found to be part of the olfactory network.
Several nodes, such as the olfactory cortex, insula, amygdala,
parahippocampal gyrus, operculum, and putamen, have been
associated with processing odor identification and gustatory
and sensory networks in earlier studies (Castriota-Scanderbeg
et al., 2005; Pazart et al., 2014; Royet et al., 2013). Our results
also include significant functional alterations in brain regions
(precuneus, caudate, and putamen) involved in high-level cog-
nition network (e.g., attention, mental imagery, working mem-
ory). These three regions were the major connectivity nodes in
the sommeliers (Fig. 5 and Table 1).

Given our study and the nature of task (odor recognition and
discrimination), the identification of paths involving these re-
gions is consistent with earlier studies that have shown their
involvement in executive functioning and working memory.
The dorsal striatum (putamen and caudate) contribute directly
to decision-making by integrating sensorimotor, cognitive,
and emotional information (Balleine et al., 2007). The other
major node, the right precuneus, is shown to be involved in ep-
isodic memory retrieval, mental imagery recall, and retrieval
independent of imagery (Lundstrom et al., 2005).

FIG. 7. Between-group
differences in graph theory
metrics during the wine/
nonwine task. The bar plots
indicate the statistical differ-
ence of integrated AUC over
a range of sparsity thresholds
(S) between the sommeliers
and the untrained controls.
AUC, area under the curve.

Table 2. Paths Significantly Greater in the Controls Than Sommeliers During

the Wine/Nonwine Task with Their Corresponding p-Values and Effect Size

Source Sink p Effect size

Controls > sommeliers

Frontal inferior orbital R > Frontal inferior triangularis R 0.046 0.77
Hippocampus L > Frontal inferior operculumsss L 0.009 1.12
Hippocampus L > Frontal inferior triangularis L 0.034 0.84
Hippocampus L > Rolandic operculum L 0.004 1.28
Hippocampus L > Postcentral L 0.043 0.78
Pallidum L > Frontal inferior orbital R 0.018 0.98
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Moreover, specific to olfactory functions, Savic and col-
leagues (2000) studied cerebral activations with positron
emission tomography during five different olfactory tasks
(each with varied levels of cognitive demands corresponding
to odor perception, discrimination, and recognition memory)
and showed involvement of different sets of brain regions. In
that study, the authors showed involvement of the putamen
and caudate in odor identification, the caudate also played
a role in odor quality discrimination, and the precuneus
was one of the regions that showed increased activation in
odor recognition memory, supporting the findings of this
study (Fig. 5).

Although olfactory functions involve many other regions
such as the olfactory cortex, amygdala/piriform cortex,
right orbitofrontal cortex, and insular/peri-insular cortex
(Savic et al., 2000), we did not see connectivity differences
in many of these brain regions involved in olfactory process-
ing between the two groups. One possible explanation for
this is, activities that sommeliers practice throughout their
learning and work depend on regions involved in high-
level cognition such as mental imagery, sensory integration,
and working memory systems to identify wines. Therefore,
significant differences were seen in regions involved in mul-
tisensory integration and higher order cognitive processes
rather than the primary olfactory regions.

Difference in small worldness in sommeliers and controls

Previous studies have shown that the functional connec-
tions of the brain networks are structured in an extremely
well-organized small-world manner (Achard et al., 2006;
Sporns et al., 2004; Van den Heuvel et al., 2008). This
small-world organization is characterized by a high level of
local interconnectivity or local clustering, which is responsi-
ble for efficient local information processing, as well as exis-
tence of efficient long-distance connections (with a short
average path between nodes) that ensure a high level of global
communication efficiency and integration of information
within the overall network (Bullmore and Sporns, 2009;
Watts and Strogatz, 1998). In other words, we could say
that a small-world organization reflects an optimized net-
work organization, which could be in turn associated with
difference in cognition.

Our results show that both the sommeliers and the controls
have an efficient small-world organization of the brain net-
work (r > 1), but the Master Sommeliers have a significantly
greater small-world index (r) and normalized clustering co-
efficient (c) when compared to untrained controls. Studies
have shown that training and expertise enhance the network
characteristics (Duan et al., 2014; Van den Heuvel et al.,
2009; Voss et al., 2010). Therefore, we attribute this en-
hancement in network organization to the rigorous learning
experienced by the Master Sommeliers. The graph theory
findings of this study suggest reorganization of the brain net-
works in Master Sommeliers during olfaction, which may be
attributed to the expertise.

This study is unique because we investigated effective con-
nectivity and topological properties of brain organization in
Master Sommeliers, a population of experts who have a dis-
tinctive skill set and the population is small. There are 230
professionals (147 Master Sommeliers in America’s chapter)
worldwide who have received the title of Master Sommelier
since the organization’s inception (www.mastersommeliers
.org/about#). By including only individuals with this dis-
tinction, we could be assured that we were assessing true
experts. Although we were able to recruit all the Master
Sommeliers from the Las Vegas resort community and sur-
rounding regions, the sample size is still small due to the rare
profession. Despite working with a limited sample, our re-
sults show a large effect size, therefore upholding the sta-
tistical significance of our findings. Given the restrictions in
the size of the expert population, future studies might need to
be multisite in nature to gain access to a larger pool of Master
Sommeliers. This may allow the detection of significant re-
lationship between connectivity and behavior that were not
observed in the current data set.

Another important aspect of olfactory research is that most,
if not all, odorants activate both the olfactory and the trigemi-
nal system (Doty et al., 1978; Frasnelli et al., 2011). Investigat-
ing this overlap of activation between the olfactory and
trigeminal system is not within the scope of the current
study. However, by including alcohol in the nonwine mixtures,
we ensured that there was similar trigeminal stimulation across
olfactory stimulus so that the difference in connectivity could
be attributed to olfactory judgment and not to the degree of ac-
tivation of either (olfactory or trigeminal) of these systems.

FIG. 8. Plots showing the interaction between mean connectivity values of all paths greater in sommelier during olfaction
and experience (years as Master Sommelier) and RT during the wine/nonwine task. The y-axis represents connectivity values
after regressing out the age and gender. RT, reaction time.
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Conclusions

The current study used fMRI to investigate differences in
effective connectivity and network topology between a
group of trained Master Sommeliers and untrained control
participants during olfactory tasks. Master Sommeliers
showed stronger connectivity originating from regions of
the brain involved in higher level cognitive processes, when
compared to untrained controls. There was also increased
small-world topology in the sommeliers. This increase in con-
nectivity and enhanced network reorganization can be attrib-
uted to the rigorous learning undertaken by the Master
Sommeliers. Our findings provide unique insights into the
neuroplasticity of the brain in adulthood and further the un-
derstanding related to influence of higher level cognitive
learning on efficient organization of functional networks in
the brain. These findings may have added clinical importance
in diseases such as Alzheimer’s and Parkinson’s, where the
earlier neurodegeneration is isolated to regions important in
smell and early interventions to alter these networks could
help slow the disease.
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