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Abstract

Neuroimaging studies typically consider white matter as unchanging in different neural and metabolic states. However,
a recent study demonstrated that white matter signal regression (WMSR) produced a similar loss of neurometabolic
information to global (whole-brain) signal regression (GSR) in resting-state functional magnetic resonance imaging
(R-fMRI) data. This was unexpected as the loss of information would normally be attributed to neural activity within
gray matter correlating with the global R-fMRI signal. Indeed, WMSR has been suggested as an alternative to avoid
such pitfalls in GSR. To address these concerns about tissue-specific regression in R-fMRI data analysis, we performed
GSR, WMSR, and gray matter signal regression (GMSR) on R-fMRI data from the 1000 Functional Connectomes
Project. We describe several regional and motion-related differences between different types of regressions. However,
the overall effects of concern, particularly network-specific alteration of correlation coefficients, are present for all re-
gressions. This suggests that tissue-specific regression is not an adequate strategy to counter pitfalls of GSR. Con-
versely, if GSR is desired, but the studied disease state excludes either gray matter or white matter from analysis
(e.g., due to tissue atrophy), our results indicate that WMSR or GMSR may reproduce the gross effects of GSR.
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Introduction

It is an axiom in neuroimaging that researchers measure
brain activity from gray matter, whereas white matter is

of interest either anatomically or as a ‘‘non-signaling’’ con-
trol region. However, a recent study published (Thompson
et al., 2016) indicated that white matter shared signal-related
characteristics with gray matter both in resting-state func-
tional magnetic resonance imaging (R-fMRI) data and in flu-
orodeoxyglucose positron emission tomography (FDG-PET)
data. These authors examined the state change between eyes
open and eyes closed. They found that white matter showed
an increase in glucose uptake in the eyes open state (measured
by FDG-PET), similar to gray matter. This state change was
homologous to a state change in functional connectivity den-
sity, a measure of hypothetical neural communication hubs
calculated from R-fMRI (Tomasi and Volkow, 2011).

The authors of Thompson et al., 2016 observed that this
homology was lost if global signal regression (GSR), re-

moval of the mean from the whole brain, was used. Sur-
prisingly, regression of the mean white matter signal
caused a near-identical change to regression of the global
signal. This result was unexpected as the loss of neurome-
tabolic information within R-fMRI data due to regres-
sion would normally be attributed to the global signal
correlating with neural activity in gray matter (Schölvinck
et al., 2010).

As white matter signal regression (WMSR) has been sug-
gested as an alternative or addition to GSR by many studies
(Brown et al., 2014; Fox et al., 2005; Gotts et al., 2012; Patriat
et al., 2013; Satterthwaite et al., 2013) and may potentially
lack some of the GSR known drawbacks (Murphy et al.,
2009; Schölvinck et al., 2010), Thompson and associates’ ob-
servations [especially considering several recent studies sug-
gesting functional activation in white matter (Astafiev et al.,
2015; Ding et al., 2013, 2016; Gawryluk et al., 2014; Marus-
sich et al., 2017; Wu et al., 2016)] suggest that the underlying
assumption of white matter as nonsignaling may be incorrect.
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However, Thompson and associates were not able to address
this in detail and, in addition, they used a combined PET/MRI
scanner that may have influenced results.

To address this, we conducted a brief investigation into the
effects of tissue-specific regression, including GSR, WMSR,
and gray matter signal regression (GMSR), on several simple
parameters that reflect gross effects on R-fMRI results using
publicly available, standard R-fMRI data (Biswal et al.,
2010). Small but significant differences existed between re-
gressions regarding subject motion and intranetwork correla-
tion, and specific tissue types are differentially affected (as
expected). However, the gross effects of concern were omni-
present between GSR, WMSR, and GMSR. We thus suggest
that WMSR is not a sufficient alteration to standard R-fMRI
preprocessing to overcome known problems with GSR. We
also suggest that if GSR is still needed, but white matter data
are unusable (e.g., a clinical group is being studied where
white matter is disrupted), GMSR may be a viable alternative,
as long as the differences we discuss herein are considered.

Materials and Methods

Data acquisition

Datasets for this experiment were downloaded from the
1000 Functional Human Connectomes Project (Biswal et al.,
2010). The datasets used herein were selected such that
there was a spread of scanning parameters (e.g., gender and
field strength) as shown in Table 1. To avoid possible compar-
ison artifacts, datasets were also only used if the average root
mean square of the percentage change of raw global signal
was between 0 and 1. Only the first 20 subjects were used
for the Beijing-Zang dataset, only the female subjects were
used in the Saint Louis dataset, and only the first functional
sessions were used from the New Haven B dataset. Subjects
were excluded if any abnormalities were mentioned in the
documentation (Ontario: two subjects missing anatomical
scans). One subject (Saint Louis) was excluded because regis-
tration failed.

Data analysis

Standard R-fMRI preprocessing (for details, see Supple-
mentary Data for Thompson et al., 2016; Supplementary

Data are available online at www.liebertpub.com/brain)
was performed, but the preprocessing was stopped after
region-specific regression. This was done to prevent inter-
action effects between regression and further preprocessing
steps. A summary of preprocessing follows.

All R-fMRI datasets except for Ontario were slice-time cor-
rected, and all datasets were motion corrected using SPM8
(Statistical Parametric Mapping, The FIL Methods group,
2009, www.fil.ion.ucl.ac.uk/spm/software/spm8/). Ontario was
not slice-time corrected as it used spiral acquisition. In SPM8,
individual subjects’ data were segmented to produce masks of
gray matter, white matter, cerebrospinal fluid, and the whole
brain. R-fMRI data were registered to each subject’s gray matter
mask. The data in anatomical space were registered to the
Montreal Neurological Institute (MNI) template (2 mm, iso-
tropic) using BioImage Suite (Yale School of Medicine, 2001,
http://bioimagesuite.yale.edu/) and blurred with a Gaussian
filter (full-width half-maximum 8 mm, kernel size 6 mm).
Regression signals were calculated by averaging the time-
series within a whole-brain mask for GSR, a gray matter
mask for GMSR, or an eroded white matter mask for WMSR.
The white matter erosion removed all voxels with at least
one side facing a non-white matter voxel, thereby reducing the
number of partial volume voxels. Regression signals were
extracted from non-blurred data to avoid partial volume effects
within our regression signals. All regressions were performed
with a multivariate multiple least-squares linear regression.
Experiments were done both with and without temporal fil-
tering and motion parameter regression. Where applicable, a
bandpass Fourier filter (0.01–0.08 Hz) was applied simulta-
neously with nuisance signal regression (Hallquist et al., 2013).

Blurred (not regressed) R-fMRI data in MNI space of all sub-
jects in all datasets (also including two datasets that were not
included herein due to root mean square of the percentage signal
change of the raw signal exceeding 1) and the Group ICA of
fMRI toolbox (GIFT; mialab.mrn.org/software/gift/) (Correa
et al., 2007) were used to generate 20 networks. Two of the net-
works, the default mode network (DMN) (Binder et al., 1999)
and task-positive network (TPN), were identified by visual in-
spection, comparing with Fox and associates (2005).

All significance testing presented in the results was cor-
rected for multiple comparisons by holding the false discov-
ery rate (FDR) under 5% (Benjamini and Hochberg, 1995).

Table 1. Details of All 1000 Functional Connectomes Project Datasets Used

Dataset Magnet N Sex
Age

range TR
Time
points Eyes open vs. closed

Slice, acquisition
order Handedness

Beijing (Zang),
China

3 T 20 11 F 18–26 2 225 Closed Interleaved Right-handed
Ascending

New Haven (B) 3 T 16 8 F 18–42 1.5 181 Open, no projection Interleaved Right-handed
Ascending

Saint Louis 3 T 16 16 F 21–29 2.5 127 Open, fixation Interleaved Right-handed
Ascending

Ontario, Canada 4 T 9 y y 3 105 Closed Segmented Mixed
Spiral, 2-shot
Interleaved,

descending
Orangeburg 1.5 T 19 4 F 20–55 2 165 Closed Interleaved Mixed

Ascending

A ‘‘y’’denotes missing data. Sample sizes were calculated after subject exclusions.
TR, repetition time.
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All data processing was performed with MATLAB (ver-
sion 9.0, The Mathworks, Inc., Natick, MA, USA).

Quality control

To ensure data quality, we assessed cross-modal registra-
tion by calculating the overlap of the whole-brain masks of
T1 images and blood oxygenation level-dependent (BOLD)
images (see Thompson et al., 2016, Supplementary Data for
details). Mean overlap of all datasets exceeded 99% and data-
sets did not differ on their overlap (one-way ANOVA,
p > 0.05). All white matter masks were visually inspected to
confirm accurate segmentation.

Ethics statement

All data used in this study were anonymized before their
uploading to the 1000 Functional Connectomes database. No
identifying data were requested, and all data used are publicly
available through the 1000 Functional Connectomes website
[www.nitrc.org/projects/fcon_1000/ (Biswal et al., 2010)].

Results

Signal alteration due to regression

Regression methods are inherently designed to remove
part of the signal. To estimate the amount of signal removed
by a regression, the time-courses of a single representative
subject (New Haven dataset) were brought to a similar
scale by setting the signal’s arbitrary mean to 1 and they sub-
sequently represent the spontaneous BOLD signal fluctua-
tions as fractional change (Fig. 1). After all regressions, a
large drop in signal intensity occurs when compared with

nonregressed (NR) signals, indicating that functional con-
nectivity (after regression) is based on a relatively small
part of the R-fMRI signal. For example, using GSR, the
BOLD signal amplitude in gray matter drops by approxima-
tely a factor of 8, and using WMSR, the BOLD signal ampli-
tude drops by approximately a factor of 2. While (relative to
the white matter signal) the gray matter signal explains a
larger part of variance of the global signal (Table 2), the var-
iance explained of both signals is generally high across all
sites (median >0.65), indicating that these signals, and by ex-
tension their regressions, may be quite similar to GSR. Filter-
ing the data does not change this pattern (Table 2).

Correlation maps with the DMN were created by calculat-
ing the average time course within the DMN for each subject.
The DMN time-course was Pearson correlated with the time-
courses of all voxels of the same subject. Pearson correla-
tions were converted to z values with a Fisher transformation.
z Values of the same voxels were averaged across subjects
within the same dataset. While regressions remove a large
part of the signal, the resulting correlation maps are similar
across all experiment sites (Fig. 2), although as expected,
WMSR removes white matter correlations more consistently
leaving GSR and GMSR appearing more washed-out across
the brain. Despite their local differences, all regressions re-
duce correlations across the brain and generate correlation
maps with comparable spatial distributions. The Ontario
data set seems to be an exception, with its GSR and GMSR
producing correlations throughout the brain rather than a
DMN map. This may be due to a site-specific effect most
likely arising from spiral acquisition, which could differen-
tially affect the white and gray matter signals. Filtering the
data does not change this pattern (Supplementary Fig. S1).

FIG. 1. Effects of tissue-specific regression on BOLD signal amplitude. Data from a single subject (New Haven dataset).
Averaged BOLD signal time courses in the (left to right) global signal (whole brain), gray matter signal, white matter signal,
DMN signal, and TPN signal. The BOLD signal time courses shown are NR data before regression (first row), after GSR
(second row), after GMSR (third row), and after WMSR (fourth row). The horizontal bar denotes 60 sec. All signals are
scaled to represent fractional change (see the Results section), that is, vertical scales are arbitrary, but identical. Asterisks
denote that these signals are expected to be flat because these were the regional signals that were regressed. BOLD, blood
oxygenation level-dependent; DMN, default mode network; GMSR, gray matter signal regression; GSR, global signal regres-
sion; NR, nonregressed; TPN, task-positive network; WMSR, white matter signal regression.
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Effect on intranetwork correlation

The strength of correlation within resting-state networks has
frequently been used as a biomarker of disease states and to
predict performance in healthy individuals (Magnuson et al.,
2015; Van Den Heuvel and Pol, 2010). Regression will always
reduce intranetwork correlation, but the amount of reduction
between GSR, WMSR, and GMSR has not been systemically
tested. Thus, reduction of correlation within the DMN and
TPN networks is used here as a basic measure of regression’s
effect on such biomarkers and performance indicators.

Pearson correlations of all voxels within the DMN and TPN
with their respective averaged network signal were calculated
after each regression. These correlations were converted to z
values and averaged, separately for each network and regres-
sion, within subjects. One-tailed t-tests of the differences in z
values were done in both directions for each network, site,
and regression. Resulting p values in the same tail side of
the same network and regression method were combined
using Fisher’s method and the combined p values were used
to test for significance ( p < 0.05, FDR corrected). All regres-

sions reduce correlations within the DMN and TPN with
their respective averaged time course (Fig. 3). While there
are significant differences between regressions in both the
DMN and TPN (DMN: NR>WMSR>GMSR>GSR; TPN:
NR>WMSR&GMSR>GSR), these differences are small com-
pared with the difference between no regression and any other
regression (Table 3A and B). Regressing motion signals, filter-
ing the data, or both only changed results in the TPN
(NR>WMSR>GMSR>GSR) (filtered data results shown in
Supplementary Fig. S2 and Supplementary Table S1).

Spatial differences between regressions

Figure 4 shows correlation between signals resulting from
different regressions, spatially across the brain.

First, as would be expected, sites that have a greater reduc-
tion in intranetwork correlation (Fig. 3) have less similarity
between NR and any other regression. This is seen not
only in gray matter, but in white matter as well. Second,
WMSR and GMSR reduce correlation within their respective
tissue type more than the alternative. This is likely due to

Table 2. Median Variance Explained of the Global Signal by the Gray Matter Signal

and White Matter Signal With and Without Temporal Filtering

Without temporal filter With temporal filter

Median
GMS variance

explained of GS

Median
WMS variance

explained of GS

Median
GMS variance

explained of GS

Median
WMS variance

explained of GS

Beijing (Zang) 0.98 0.78 0.98 0.62
New Haven (B) 0.98 0.69 0.99 0.78
Saint Louis 0.95 0.73 0.97 0.80
Ontario 0.97 0.76 0.98 0.76
Orangeburg 0.96 0.65 0.97 0.70

Generally, both signals explain a substantial amount of the GS, but the GMS variance explained is consistently higher than the WMS var-
iance explained.

GS, global signal; GMS, gray matter signal; WMS, white matter signal.

FIG. 2. Effects of tissue-specific re-
gression on appearance of negative func-
tional connectivity. Single transverse slice
is shown, nose up. Pearson correlations
(expressed in z value) of all voxels’ time-
series with the DMN averaged signal are
shown for all experimental sites (columns)
in the NR data (first row) and after GSR
(second row), after GMSR (third row),
and after WMSR (fourth row). All z values
are averaged across subjects for each
dataset. Signal regressions reveal correla-
tion and anticorrelation patterns across the
five datasets. These observations shown
for one slice are typical for all slices in the
brain. Color images available online at
www.liebertpub.com/brain
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differences in variance between gray matter and white matter
being consistent across each tissue type. As expected from
the similarity between the global and gray matter signals
(Table 2), GSR and GMSR appear very similar, and when re-
sults are compared, GSR and GMSR are always the most cor-
related when compared with each other.

When comparing WMSR with GSR or GMSR, data are al-
ways more correlated in gray matter and less correlated in
white matter than in WMSR versus NR. This suggests that
there is some consistent variance within white matter that
does not covary with gray matter. The Orangeburg site is
an outlier here, possibly as regression had little effect on
intranetwork correlation (Fig. 3), so WMSR, GMSR, and
GSR are all highly correlated.

The Ontario data set appears to have small lines of high
correlation tracing the innermost part of white matter and
CSF regions, making it look visibly different from the
other sites. This difference could be due to a site-specific ar-

tifact or due to the spiral acquisition altering sensitivity in the
center of the brain.

However, despite these visible differences, GSR, GMSR,
and WMSR in general are highly correlated, suggesting that
gross effects are maintained across regression types (range of
median Fisher z values = 1.72–3.44 across sites, corresponding
r values = 0.94–1.0), whereas they are generally less correlated
with NR (range of median Fisher z values = 1.36–2.31 across
sites, corresponding r values = 0.88–0.98).

Effect on correlation with motion

GSR is claimed as advantageous as the global signal hypo-
thetically conceals underlying neuroanatomical relationships
(Fox et al., 2009). For example, subject motion in R-fMRI
can add global correlation that is unrelated to underlying
neural connections, altering measured functional connectiv-
ity (Power et al., 2014). Thus, GSR, WMSR, and GMSR

FIG. 3. Change in voxels’ correlation with their own network after regression. Pearson correlations (expressed in z value)
of voxels in the DMN and the TPN with their respective averaged network signal are shown. Data are shown for the NR signal
and for the signals after GSR, after GMSR, and after WMSR. Error bars represent standard deviation across subjects. Any
regression reduces correlations by approximately a factor of 2. Small statistically significant differences exist (DMN:
NR>WMSR>GMSR>GSR; TPN: NR>WMSR=GMSR>GSR). These differences are shown in Table 3A and B.

Table 3. Effect of Signal Regression on (A and B) Intranetwork Correlation in the Default Mode

Network and the Task-Positive Network and (C) Correlation with Motion Parameters

A Default mode network B Task-positive network

NR GSR GMSR WMSR NR GSR GMSR WMSR
NR 226% 204% 184% NR 196% 178% 184%

GSR &0* 90% 81% GSR &0* 91% 94%

GMSR &0* 0.0009* 90% GMSR &0* 0.0002* 103%

WMSR &0* &0* 0.0037* WMSR &0* 0.0008* 0.1277

C Motion correction

Raw GSR GMSR WMSR
Raw 356% 284% 490%

GSR &0* 80% 138%

GMSR &0* 0.0028* 172%

WMSR &0* 0.0131* 0.0008*

(A, B) The lower triangular half shows the lowest p value of the one-tailed two-sample t-tests between regressions. The upper triangular
half shows the percentage difference between the z valued intranetwork correlations of all voxels within the network with the network’s av-
eraged signal. z Values were averaged over subjects within site first, and then across sites. (C) The lower triangular half shows the lowest p
value of the one-tailed two-sample t-tests between motion parameters and all voxels’ signals. The upper triangular half shows the percentage
difference between the z valued correlations between motion parameters and all voxels’ signals. Percentages in all tables are expressed as row
variable divided by column variable. The differences between the raw correlations and any of the regressed correlations are far larger than
any other difference. Asterisks denote significant p values after multiple comparison correction. ‘‘&0’’ indicates smaller than resolvable by
MATLAB.

GMSR, gray matter signal regression; GSR, global signal regression; NR, nonregressed; WMSR, white matter signal regression.
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were compared in terms of reducing the correlation between
the R-fMRI signal and motion.

Correlation was calculated between six motion parameters
and all voxels’ time-series (Fig. 5). Motion parameters were
three translations in mm (right, forward, and up) and three ro-
tations in radians (pitch, roll, and yaw), calculated as deviation
from the temporally central volume (e.g., for 300 sec of scan-
ning, deviation from the volume at 150 sec) by SPM8. Time
courses of all brain voxels after each regression method
were correlated with all motion parameters. These correlations
were converted to z values and averaged across voxels. Abso-
lute z values of all motion parameters were averaged within
subjects. One-tailed two-sample t-tests were performed for
all pairs of regression methods in each experimental site and
in both directions. p Values across experimental sites in the
same tail side were averaged with Fisher’s method. All regres-
sions significantly reduced the averaged correlation of voxel
time series with all motion parameters, and statistical differ-
ences between regressions exist (NR>GMSR>GSR>WMSR,
p < 0.05, FDR corrected). However, the differences between
regressions are small compared with the difference between
no regression and any regression (Table 3C). Filtering the data
(Supplementary Fig. S3 and Supplementary Table S1) reduced
correlation with motion in all conditions and changed the signif-

icance of correlations substantially (NR>WMSR>GMSR>GSR,
p < 0.05, FDR corrected). This may indicate that a temporal
filter removes some motion artifacts that are differentially
removed by regressions. Regressing the motion parame-
ters left only a significant difference between GSR and
WMSR (WMSR>GSR) and any regression versus no re-
gression. Filtering and motion regressing the data removed
all significant differences between tissue-specific regres-
sions (NR>GMSR&WMSR&GSR), indicating that for pur-
poses of motion correction, the effect of regressing motion
parameters is far larger than the effect of nuisance regres-
sion (note that in the case of motion regression, we regress
the same motion parameters that we correlate with, so all
correlations are expected to approach 0).

Discussion

Tissue-specific regression

While we were able to characterize key differences between
GSR, GMSR, and WMSR (discussed in detail in the next sec-
tion), in the context of prior work (Murphy et al., 2009; Power
et al., 2012; Thompson et al., 2016), WMSR and GMSR pro-
duce similar global effects of concern as GSR (Table 3).
While (as expected) tissue-specific differences exist, WMSR

FIG. 4. Spatial correlation of tissue-
specific regressions. Single transverse
slice is shown, nose up. Pearson correla-
tions (expressed in z value, averaged
across subjects for each dataset) of all
voxels’ time-series across regression pairs
are shown for all experimental sites (col-
umns) and all regression pairs. Median
whole-brain z values are shown beneath
each slice. Correlation is consistently
positive and high (median z value >1.36),
but in general, WMSR has a greater effect
on white matter, while GSR and GMSR
have a greater effect on gray matter.
Color images available online at www
.liebertpub.com/brain
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and GMSR still produce patterns of correlation and anticorre-
lation as GSR does (Fig. 2), which are held as physiologically
relevant (Fox et al., 2009), although work beyond the present
study is needed to establish the link between the BOLD signal
and physiology. The global reduction in correlations observed
in GSR by Murphy and associates (2009) was also observed
here in WMSR and GMSR (Fig. 3). The reduction of motion
effects through GSR observed by Power and associates (2012)
was also observed here in WMSR and GMSR (Fig. 5).

These overall similarities between GSR, WMSR, and
GMSR suggest that the use of WMSR instead of GSR is not
a sufficient modification of the regression protocol to counter
problems observed with GSR (Murphy et al., 2009; Saad
et al., 2012; Schölvinck et al., 2010). This suggests that
Thompson and associates’ observation of WMSR removing
neurometabolic information (Thompson et al., 2016) was
not an artifact of the combined PET/MRI scanner, but is in-
stead likely to translate to other studies that have used WMSR.

Despite the drawbacks, in many situations, researchers
will wish to use GSR for its desirable effects, for example,
Thompson and associates (2016) observed that performing
regression improved network versus network differentiation
for many R-fMRI metrics and Power and associates (2014)
observed that GSR reduces motion-related signal changes.
However, differences between white matter and gray matter
in a disease of interest could preclude using particular re-
gression techniques. The similarity of gross effects between
GSR, WMSR, and GMSR we observed suggests that a re-
gression method could thus be chosen based on such tissue-
specific limitations. However, further validation of nuisance
regressions in a disease population such as presymptomatic
Huntington’s disease, where the white matter signal may be

altered (Ciarmiello et al., 2006), is needed to confirm this (in
consideration of differences between regressions that we
also characterized).

Advantages and disadvantages
of each tissue-specific regression

While gross results are largely similar for any regression
versus no regression (Table 3), there are important differ-
ences between regressions.

The most obvious difference observed was that tissue-
specific regression creates a greater difference from NR
within the specific tissue type regressed (Fig. 4). GSR, in
this case, performs most similarly to GMSR probably due
to the large number of high signal intensity gray matter vox-
els (Fig. 1) driving the global signal and the fact that gray
matter contains networks of similarly behaving voxels.

WMSR reduced correlation with motion the most, GMSR
the least. This is likely due to BOLD amplitudes being higher
in gray matter than in white matter (Yu-Feng et al., 2007), thus
if nonphysiological artifacts (e.g., motion) are uniformly added
to both tissue types, it will differentially have a greater effect
on white matter and a lesser effect on gray matter. Comparing
regressions also suggests a small amount of variance that is
specific to white matter itself (Fig. 4), which could also be
linked to motion. When motion parameters are included in
the nuisance signal regression, the motion-related difference
becomes insignificant. Moreover, gray matter correlates higher
with the cardiac rate time course than white matter (Shmueli
et al., 2007), indicating that cardiac artifacts may conceal mo-
tion artifacts more in gray matter than white matter. GSR,
using both white and gray matter, has an in-between effect.

FIG. 5. Regressions correct for motion artifacts. Absolute Pearson correlations (expressed in z value) of all voxels’ time
series with rigid body motion parameters were averaged across subjects. Error bars represent standard deviations across sub-
jects. Correlations between motion parameters and voxels’ time series in the NR data are consistently larger than those after
GSR, GMSR, and WMSR. Statistically significant differences between regressions exist (NR>GMSR>GSR>WMSR), shown
in Table 3C, but are small compared with the difference between no regression and any other regression, indicating that for
the purpose of motion correction, these regressions produce comparable results.
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Overall, the relative amounts of observed correlation reduc-
tions mirror what was observed in a previous study that com-
pared WMSR and GSR (Weissenbacher et al., 2009).

Filtering is expected to reduce motion correlation as the
strongest temporal correlation between BOLD signals is
expected to be under 0.1 Hz (Cordes et al., 2000), whereas
most of the motion artifacts will fall outside this range.
Indeed, a temporal filter reduced correlation with motion
across all conditions (Supplementary Fig. S3). Simultaneous
filtering and WMSR reduces correlation with motion the least
and simultaneous filtering and GSR the most, suggesting that
motion artifacts are still present within the 0.01–0.08 Hz fre-
quency range. The differences between regression techniques
may be because specific noise frequencies are more promi-
nent in certain tissue types. Indeed, if part of the nonfiltered
white matter signal represents motion outside the 0.01–
0.08 Hz frequency band, then one would expect a reduced ef-
fect of WMSR on motion correlation when using filtered data.

GSR reduced intranetwork correlation the most. This may
be because GSR includes the greatest number of voxels and
thus was able to result in the greatest shift from positive to
negative correlations (Murphy et al., 2009). Eroded white
matter maps had the fewest voxels and thus had the smallest
effect, with gray matter maps somewhere in-between.

Regardless of alterations to correlation coefficients, it
should also be noted that regression removes a significant
part of the spontaneous BOLD signal amplitude in every tis-
sue type, but more so in gray versus white matter (Fig. 1).

Limitations and future work

Widely different groups of subjects were selected to dem-
onstrate that the effects we observed were not due to being in
a particular state (e.g., eyes closed vs. open) or being in a par-
ticular group (e.g., male vs. female subjects). However, this
could obscure effects that only occur within one group or
only occur within groups that have relatively low signal-to-
noise ratio in the R-fMRI data. Furthermore, as the selected
datasets sampled their functional data at relatively large
voxel sizes (35–65 mm3), some partial volume effects may
have occurred in our nuisance signal regression that may
be prevented with modern high-resolution imaging.

Differences could exist between the effects of specific re-
gressions on specific R-fMRI signal frequencies. While we
have considered a standard temporal filter of 0.01–0.08 Hz
and found a difference in motion correction, addressing the
interaction between specific frequencies and regression
methods was beyond the scope of this research. Future
work can address this, in particular, if infraslow electrical re-
cording is done to identify coherent frequency bands of R-
fMRI data (Pan et al., 2013). As simultaneous recordings
of infraslow electroencephalography and R-fMRI are now
possible (Hiltunen et al., 2014), in the near future, it may
be possible, noninvasively, to study the physiological basis
of the spontaneous BOLD signal in human subjects.

While reductions in BOLD signal amplitude upon fMRI
signal regression are within prior expectations (Hyder and
Rothman, 2010), the metabolic and physiologic bases of
the remaining fraction remain to be studied in further detail.
To this end, a combination of fMRI and optical imaging
methods (Sanganahalli et al., 2016) covering large swathes
of the brain may prove useful.

Conclusion

GSR, WMSR, and GMSR all have similar effects in reduc-
ing BOLD amplitude, creating a pattern of correlations and
anticorrelations, reducing intranetwork correlation and, reduc-
ing correlation with motion. Overall, our results suggest that
WMSR, GMSR, and GSR affect R-fMRI time series in a sim-
ilar, although not identical, manner. Thus, the use of tissue-
specific regression is not recommended as an alternative to
GSR if a researcher wants to avoid the undesired effects of
GSR. However, if regression is to be used regardless of
these effects, the gross similarity between regressions may
be advantageous, and our work provides a characterization
of the differences between regressions to expect. For example,
if due to a study’s constraints, white matter is unusable for re-
gression (precluding GSR and WMSR), then GMSR might
provide a reliable alternative.

Note

In an earlier version of this work, we assessed the effects
of nuisance signal extraction before and after blurring the
data without a temporal filter. We found that the spatial
blur did not change the significance of any of our findings.
Therefore, we expect our findings to extend to preprocessing
pipelines that extract nuisance signals after spatial blurring.
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