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Abstract

Sickle cell disease (SCD) is a vascular disorder that is often associated with recurrent ischemia-reperfusion in-
jury, anemia, vasculopathy, and strokes. These cerebral injuries are associated with neurological dysfunction,
limiting the full developing potential of the patient. However, recent large studies of SCD have demonstrated
that cognitive impairment occurs even in the absence of brain abnormalities on conventional magnetic resonance
imaging (MRI). These observations support an emerging consensus that brain injury in SCD is diffuse and that
conventional neuroimaging often underestimates the extent of injury. In this article, we postulated that alterations
in the cerebral connectivity may constitute a sensitive biomarker of SCD severity. Using functional MRI, a con-
nectivity study analyzing the SCD patients individually was performed. First, a robust learning scheme based on
graphical lasso model and Fréchet mean was used for estimating a consistent descriptor of healthy brain connec-
tivity. Then, we tested a statistical method that provides an individual index of similarity between this healthy
connectivity model and each SCD patient’s connectivity matrix. Our results demonstrated that the reference con-
nectivity model was not appropriate to model connectivity for only 4 out of 27 patients. After controlling for the
gender, two separate predictors of this individual similarity index were the anemia ( p = 0.02) and white matter
hyperintensities (WMH) (silent stroke) ( p = 0.03), so that patients with low hemoglobin level or with WMH have
the least similarity to the reference connectivity model. Further studies are required to determine whether the
resting-state connectivity changes reflect pathological changes or compensatory responses to chronic anemia.
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Introduction

S ickle cell disease (SCD) is a genetic disorder that is
characterized by a mutation in the beta hemoglobin

gene (Rees et al., 2010) that affects *90,000 people in the
United States, including more than 1000 babies born with
SCD every year (Epstein and Bunn, 1997). This mutation
causes hemoglobin to polymerize on deoxygenation, increas-
ing red blood cell rigidity and fragility, resulting in recurrent
ischemia-reperfusion injury, hemolytic anemia, and vascul-
opathy. It has been observed that cerebral blood flow
(CBF) is increased in patients with SCD (Bush et al.,
2016), compensating for compromised oxygen content, but
leaving the brain with inadequate vascular reserve to respond
to metabolic stressors (DeBaun and Kirkham, 2016).

Aggressive transcranial Doppler screening and more liberal
use of chronic transfusion therapy and hydroxyurea have low-

ered overt stroke dramatically, whereas silent strokes or white
matter hyperintensities (WMH) occur in more than 50% of pa-
tients by early adulthood (Kassim et al., 2016). These injuries
are associated with neurological dysfunction, limiting the full
developing potential of the child and adult (Mackin et al.,
2014). However, recent large studies of neurologically asymp-
tomatic children and adults with SCD have demonstrated that
cognitive impairment occurs even in the absence of brain ab-
normalities on conventional magnetic resonance imaging
(MRI) (Sun et al., 2012). These observations support an
emerging consensus that brain injury in SCD is diffuse and in-
sidious, and that conventional neuroimaging often underesti-
mates the extent of injury.

Previous MRI studies have reported a delayed volumetric
growth of brain gray matter (GM) in children with SCD
(Chen et al., 2015; Steen et al., 2005). Regional cortical
thickness abnormalities were found in the precuneus and the
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posterior cingulate, which are possible symptoms of chro-
nic hemodynamic complications and insufficient oxygen
delivery to watershed tissue (Kirk et al., 2009). This chro-
nic vascular disease also causes diffuse white matter (WM)
damage in major fiber pathways throughout the brain
(Balci et al., 2012; Kawadler et al., 2013). SCD patients
also present bilateral WM volume loss in comparison to
control (CTL) subjects in the cerebrum and frontal, parietal,
and temporal lobes while sparing the occipital lobe, that are
associated with low hemoglobin level and mean platelet
volume (Choi et al., 2017).

Cognitive deficiencies have also been reported, including
lower verbal intelligence quotient scores, poorer math perfor-
mance, and visuo-motor impairments with increasing age in
patients with SCD (Fowler et al., 1988; Wang et al., 2001;
Wasserman et al., 1991).

Given the global nature of brain volumetric changes, we
postulated that alterations in the cerebral connectivity in
SCD patients may constitute a sensitive biomarker of SCD
severity. Functional brain changes are believed to precede
structural brain changes and neurocognitive damage (Lampit
et al., 2015; Supekar et al., 2010; Vaessen et al., 2014).

Functional magnetic resonance imaging (fMRI) is an indi-
rect measure of neural activity in the human brain, correlat-
ing the latter with local changes in blood flow and oxygen
consumption. Non-neuronal contributions to the blood oxy-
gen level-dependent (BOLD) signal include signal changes
due to motion, cardiac pulsations, respiratory-induced mod-
ulations, blood flow changes coupled to end-tidal CO2, and
vasomotion (Behzadi et al., 2007; Murphy et al., 2013).
After correcting for source of physiological noise through
linear regression, the brain’s functional connections are in-
ferred by exploiting temporal similarity between low-
frequency BOLD fluctuations of different regions. As is
the case in other studies, we will use resting-state fMRI
for this inference; see, for example, the human connect-
ome project (Smith et al., 2013).

Functional connectivity (Biswal et al., 1995) has recently
found applications in clinical settings (Fox and Greicius,
2010). In particular, a core set of more than ten networks
have been consistently identified across subjects (Damoi-
seaux, 2012; Fox et al., 2005): the primary sensorimotor net-
work, the primary visual and extra-striate visual network, the
bilateral temporal/insular, and anterior cingulate cortex re-
gions, as well as the left and right lateralized networks con-
sisting of superior parietal and superior frontal regions. In
resting conditions, the default mode network (DMN; com-
prising mainly the posterior cingulate cortex, the precuneus,
the medial prefrontal cortex, and the angular/lateral parietal
cortex) is the dominant network detected (Raichle et al.,
2001); however, its role remains the subject of speculations.

Recently, graph theoretical approaches have proved to
provide a powerful framework for evaluating fMRI brain
networks, that is, functional connectivity. These techniques
model the brain as a complex network where nodes are asso-
ciated with regions of interest (ROIs) and an edge strength
represents the degree of functional connectivity between a
pair of regions. Functional connectivity can be computed
by using partial correlations (Hampson et al., 2002; Phlypo
et al., 2014; Smith et al., 2011), which provides a much better
characterization of brain connectivity than simple correlation
analysis. This is because partial correlation relates to the di-

rect connectivity between two nodes, by measuring the cor-
relation between a pair after having regressed out the effects
from all other nodes in the network. If the partial correlation
between a pair of regions vanishes, these two regions are
considered conditionally independent given the activity of
other brain areas (Hastie et al., 2005).

Estimation of functional networks using partial correlations
is an ill-defined problem when the number of possible connec-
tions involved in the analysis is large compared with the num-
ber of regions considered. Therefore, one often applies sparse
regularization of the network connections via an L1 penalty
(Friedman et al., 2008), commonly referred to as graph(ical)
lasso (least absolute shrinkage and selection operator). An ad-
ditional advantage of the so-obtained sparse network solutions
lies in the fact that these are helpful in interpreting the esti-
mated networks from a functional point of view.

An extension to graphical lasso estimates an intra-subject
brain connectivity model (Rosa et al., 2015), imposing the
same functional structure on all subjects’ connectivity net-
works (Ng et al., 2013; Varoquaux et al., 2010). This
network-centric perspective has allowed fundamental in-
sights into the organization of the healthy and diseased
brain, which could lead to the identification of potential dis-
ease biomarkers. It has been utilized to investigate Alz-
heimer’s disease (Huang et al., 2010) and thalassemia
(Coloigner et al., 2016). An implementation of the optimiza-
tion program that is used in this article can be found in
NiLearn (Abraham et al., 2014).

In this article, we propose a robust learning scheme based
on an intra-subject graphical lasso model estimate for the
CTL subjects against which we test inferred graphical mod-
els of the SCD patients. Our goal is to detect subject-specific
deviations from this intra-subject model, as such revealing
potential biomarkers of early-stage SCD. Hyper parameters
of our model are set within a cross-validation scheme, yield-
ing a robust model of healthy brain connectivity. Under our
null hypothesis, the connectivity model learned on CTL is
perfectly adequate to describe every single SCD network
model. A permutation test was used to assess model fitness
for every patient and to provide an individual index of sim-
ilarity in resting-state connectivity between remaining SCD
patients and CTL subjects. Further, the relationships between
the similarity index and blood measurements such as CBF
and hematocrit were investigated.

Materials and Methods

Participants

Patients were recruited at the Children’s Hospital Los
Angeles (CHLA) between January 2012 and January 2016.
The institutional review board of CHLA approved the proto-
col (CCI-11-00083), and written informed consent was
obtained from all subjects. The diagnosis of SCD was con-
firmed by hemoglobin electrophoresis on cellulose acetate.
The population sample consists of 27 SCD patients (24 pa-
tients with SS hemoglobin, 1 patient with Sb0 hemoglobin,
and 2 patients with SC hemoglobin) and 21 CTL subjects
(12 subjects with AA hemoglobin and 9 subjects with SA
hemoglobin). For each subject, demographic data such as
age, gender, and educational level as well as standard labora-
tory parameters, including hemoglobin concentration, per-
cent of hemoglobin S or F, and hematocrit, were collected.
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Thirteen SCD patients were receiving blood transfusions
regularly. Indications for transfusion were abnormal trans-
cranial Doppler examination (N = 9), acute chest syndrome
(N = 2), renal failure (N = 1), and unknown (N = 1). For
these chronically transfused patients, the study was per-
formed immediately before their scheduled blood transfu-
sion, when their hemoglobin levels were comparable to
those of the nontransfused patients. SCD patients had been
transfused for 7.4 – 2.9 years (range 3.5–13.6 years). All pa-
tients receiving chronic transfusions were maintained on
iron chelation with deferasirox.

Seven out of the 13 nontransfused SCD patients were pre-
scribed hydroxyurea. Four out of the seven patients on hy-
droxyurea had increased mean corpuscular volume and
hemoglobin F percent, suggesting good hydroxyurea re-
sponse. Hemoglobin F was increased in the nontransfused
SCD population (because of hydroxyurea usage), but it
was not significantly increased in any of the chronically
transfused patients. Patients with any history of neurologic
injury, overt stroke, or imaging findings were excluded.

Patients with chronic disorder (e.g., epilepsy, diabetes,
chronic lung disease) or evidence of acute chest or pain crisis
hospitalization within 1 month were also excluded. All pa-
tients were, thus, in their steady state. Study subjects were
not evaluated by a neurologist, but no focal neurologic defi-
cits were documented in the medical record. Nontransfused
patients reported 0–2 pain crises in the previous year but
none in the past month. Most of the patients receiving regular
transfusion therapy did not have any pain crises.

African American CTL subjects with HbAA or HbSA on
electrophoresis and a normal hemoglobin level (>12 g/dL for
women, >13.5 g/dL for men) were recruited primarily from
relatives and family friends of the patients to better match
the genetic and socioeconomic background. CTL subjects’
exclusion criteria were seizures, developmental delay, diabe-
tes, or uncontrolled hypertension.

MRI acquisition

All participants underwent a magnetic resonance imag-
ing study at CHLA using a 3T Philips Achieva and an eight-
element head coil. A whole brain, 3D T1-weighted image
was acquired (160 sagittal slices) with repetition time (TR) =
8.2 sec, echo time (TE) = 3.8 msec, flip angle = 8�, in-plane res-
olution = 1 · 1 mm, field-of-view (FOV) = 256 · 224 mm, and
thickness/gap = 1.0/0 mm. To localize the silent strokes, the
3D T2-weighted image was obtained with TR = 4.8 sec, TE =
255 msec, flip angle = 90�, in-plane resolution = 1 · 1 mm,
FOV = 256 · 256 mm, and thickness/gap = 1.3/0 mm. A cere-
bral magnetic resonance angiography using three-dimensional
time-of-flight angiography of the circle of Willis was acquired
by using TR = 23 msec, TE = 3.5 msec, 150 slices, 0.7 mm
thickness, and a directional field of view of 10.5 cm.

During resting-state fMRI scanning, subjects were instructed
to close their eyes, remain still as much as possible, not to think
of anything systematically, and not to fall asleep. The func-
tional images were acquired with the following parameters:
TR = 2000 msec, TE = 50 msec, flip angle = 90�, in-plane reso-
lution = 2.3 · 2.3 mm, FOV = 220 · 220 mm, 26 axial slices,
and thickness/gap = 5/0 mm. A total of 240 volumes were col-
lected in 8 min. The echo time was chosen to maximize
contrast-to-noise ratio of the BOLD signal across the entire

brain; this occurs when TE is near T2* (*50 msec at 3T)
(Krüger et al., 2001). We wanted to optimize T2* contrast be-
cause SCD patients are quite anemic and blunted fMRI re-
sponse has been previously described in this population (Zou
et al., 2011).

To measure CBF, a phase-contrast (PC) MRI was also
obtained, positioned just above the carotid bifurcation:
TR = 1286 msec, TE = 77 msec, resolution = 1.2 · 1.2 mm,
FOV = 220 · 220 mm, velocity encoding gradient = 200 mm/
sec, and slice thickness = 5 mm.

Analysis of anatomic and PC images

Angiography, 3D T1 and 3D T2 images were analyzed by
a single board-certified radiologist.

T1-weighted images were processed by using BrainSuite14
(brainsuite.org) in a semi-automated fashion, to extract, clas-
sify tissue types (GM, WM, and cerebrospinal fluid), and ren-
der 3D surfaces of the inner and pial cortices (Shattuck et al.,
2001). On the basis of previously published studies (Mackin
et al., 2014) on the SCD brain, brain volumes as well as cor-
tical thickness and pial measures were calculated in the fron-
tal, temporal, parietal, and occipital lobes.

Angiographic images were scored according to a segmen-
tal scoring system developed for SCD patients (Helton et al.,
2014).

The WMH were classified as ‡3 mm lesions on 3D T2-
weighted images observed in two orthogonal planes, with
or without corresponding changes on T1. Since patients
with known strokes were excluded, WMH were considered
‘‘silent’’ irrespective of neurocognitive testing results. Since
isolated WMH are relatively common in children (Nelson
et al., 2000) and increase in frequency with age (Neema
et al., 2009; Postma et al., 2016), more than one lesion per de-
cade of age was required to be considered pathological.

PC images were analyzed by using custom MATLAB rou-
tines as previously described (Borzage et al., 2016; Bush et al.,
2016). Briefly, an operator placed a single point within each of
the four major cerebral vessels. Boundaries were automati-
cally segmented from the complex difference images by
using a Canny edge detector, grown by a single voxel, and
thresholded at values three times greater than the noise
floor. All contours were confirmed by the operator and manu-
ally traced in the event of automatic algorithm failure (<5%).

Resting-state fMRI preprocessing

To avoid T1 equilibration effects, the first two volumes of
our fMRI time series were discarded. A correction was applied
to rectify slice acquisition timing differences within volumes.

Then, the fMRI preprocessing procedure was led as illus-
trated in Figure 1: First, a motion correction step was applied,
which consists of realigning linearly all other volumes to the
central one with MCFLIRT algorithm of FMRIB Software
Library (FSL) to compensate for subject motion and to ensure
voxel-to-voxel correspondence across time. Second, two reg-
istration steps were used to transform the functional data into
the Montreal Neurological Institute (MNI) template space.
The mean fMRI image was co-registered (six rigid body pa-
rameters) with the structural image; the structural image was
nonlinearly transformed to the MNI template space, using
the linear and nonlinear FSL registration algorithms. The pa-
rameters generated from these two co-registration steps were
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then concatenated and used for the normalization of each
fMRI volume.

Third, a regression smoothing method based on a general
fMRI data linear model analysis was used to remove the re-
sidual noise and motion in each voxel as a function of 17 re-
gressors. The first five noise regressors were derived by
conducting an initial model fit to determine principal compo-
nents from noisy regions of non-interest, namely white matter,
cerebral spinal fluid, and matter outside the brain by the Comp-
Cor method T1 weighted as implemented in Nilearn (http://
nilearn.github.io) (Abraham et al., 2014). The 12 remain-
ing regressors were composed of the parameters estimated
by the motion correction algorithm, as well as their deriv-
atives, computed by backward differences.

Finally, the resting-state data were parcellated into 39 re-
gions considered as nodes to construct the brain network by
using a multi-subject probabilistic atlas (Varoquaux et al.,
2011). Regional mean time-series were estimated by averaging
the fMRI signals over all voxels within each region. Edges of
the brain network were defined as functional connectivity of all
pairs of atlas regions by using the partial correlation coefficient
as estimated per our graphical lasso framework.

Connectivity analysis

The fMRI connectivity analysis steps are illustrated in Fig-
ure 2. A robust sparse modeling framework was employed, as-
sociated with a cross-validation scheme to yield a descriptor of
the reference functional connectivity structure for CTL, as
proposed in Coloigner et al. (2016). Based on the empirical
covariance matrix of each CTL subject, partial correlation—
and hence a sparse network structure—was first estimated
individually by using the graphical lasso. As described in
Figure 2A, the resulting sparse functional brain networks
were combined by group-averaging the individual network
structures over the space of symmetric positive definite ma-
trices by means of a Fréchet mean (Varoquaux et al., 2010).
The resulting average network defines the reference connec-

tivity model (Coloigner et al., 2016). For every patient, the ref-
erence SCD connectivity model was estimated by the same
procedure from the remaining SCD connectivity matrices.

Then, the reference and SCD connectivity models deter-
mined earlier, respectively LCTL and LSCD, were applied to
every SCD patient by using a likelihood ratio. We then com-
puted RSCD/CTL, the log of the likelihood ratio of the individual
connectivity matrix under the group model for SCD with re-
spect to CTL.

As shown in Figure 2B, permutation tests were used to as-
sess the p-value of every patient: Data were permuted by
shuffling the subjects’ labels (CTL or SCD), and then calculat-
ing the same logarithm of the ratio of likelihoods between per-
muted models. Finally, the p-value, called the index of
similarity, was calculated for every SCD patient as the fraction
of log-ratios that was at least as high as the original (nonper-
muted) log-ratios statistic, which was derived from the cor-
rectly labeled data. Ultimately, this index of similarity
reflects the degree of correspondence between each SCD pa-
tients’ model and the reference connectivity model, with a
p-value <5% indicating that the reference model is not appro-
priate to represent the connectivity of this SCD patient.

Results

Demographic and clinical characteristics

Demographic and clinical variables among SCD and CTL
patients are given in Table 1. No significant differences be-
tween SCD and CTL participants were observed regarding
age, gender, and education. The mean age of the entire sam-
ple was 22.1 – 9.1, with participants ranging from 11.7 to
38.1 years old; 53% were female participants, and 82%
had completed 12 or more years of education. In the CTL
group, there was an insignificant gender imbalance (5 men,
16 women). Thirteen of the SCD patients were regularly re-
ceiving blood transfusions. Hemoglobin levels were
10.1 – 2.0 in the nontransfused SCD patients, 9.3 – 0.9 in

FIG. 1. Resting-state fMRI preprocessing. fMRI functional data signal of interest is extracted and transformed from patient
space to MNI template space; see text for details. Thirty-nine regions are used as nodes to construct the connectivity matrix
for every patient. fMRI, functional magnetic resonance imaging; MNI, Montreal Neurological Institute.
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the transfused SCD patients, and 13.9 – 1.2 in the CTL pa-
tients. The median hemoglobin S percentage was 70.2% in
the nontransfused SCD group, whereas this quantity was re-
duced to 28.5% in the transfused SCD group.

The SCD patients had higher CBF values (range: 57.1–
123.5 mL/min/100 g, 25% < 73.6 mL/min/100 g, and 75% >
109.3 mL/min/100 g), compared with CTL subjects (range:
43.1–78.1 mL/min/100 g, 25% < 53.0, median = 63.3 mL/min/
100 g, and 75% > 69.2 mL/min/100 g), consistent with previ-
ous reports (Bush et al., 2016). Quartiles of hematocrit were
as follows: 24.4%, 26.9%, and 30% in SCD and 37.8%,
39.9%, and 42.4% in CTL.

Structural results

All 27 subjects had normal MR angiograms other than
mild tortuosity in some of the older subjects. Regional
changes in brain volume are summarized in Table 1. After
adjusting for age, sex, and education level, most of the
brain structures in the SCD group had reduced WM and
GM volumes (i.e., negative t-score); however, none of the
GM volume differences reached statistical significance The
structures with significant WM loss ( p < 0.05) were distrib-

uted across the entire brain, primary in frontal, parietal, and
temporal lobes. Paradoxically, a small increase in WM vol-
ume was observed in the insula ( p = 0.017). Total pial surface
area was slightly decreased in SCD patients; on segmental
analysis, only the parietal lobe remained significant. Cortical
thickness was not different either globally or regionally.

Abnormal WMH were documented in 2 out of 21 CTL pa-
tients and in 7 out of 27 SCD patients. The number of lesions
ranged from 3 to 18, and none of them were larger than
5 mm. Lesions were more common in the fronto-parietal
white matter, consistent with previous descriptions (Ohene-
Frempong et al., 1998).

Functional analysis

First, the healthy brain functional connectivity model was
estimated from the 18 CTL subjects (three other CTL sub-
jects are included into a separate test set) by using the robust
learning scheme based on a graphical lasso model whose
hyperparameter is fixed within a cross-validation scheme.
Figure 3A displays the partial correlation model, giving a
descriptor of reference functional connectivity. Compared
with the empirical covariance matrices of the subjects, we

FIG. 2. Overview of the
method. (A) Similarity of
SCD patient’s connectivity
matrix to the reference func-
tional connectivity model.
(B) Statistical test of the pa-
tients based on permutation
test. SCD, sickle cell disease.
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observed that the reference connectivity model is sparser, as
expected. Indeed, only direct connections between two ROIs
are represented in the inverse covariance matrix. Some well-
defined networks were activated, such as the default mode
network, executive CTL network, visuospatial network, vi-
sual networks, and salience network.

A graphical representation of the connections for the atlas-
based ROIs is shown in Figure 3B. It shows strong contralat-
eral functional links between homologous areas across the
entire brain: Each region tends to be functionally connected
with its corresponding region in the opposite hemisphere.
We also observed a dorsal stream network linking the me-
dial prefrontal cortex (called frontal DMN in MSDL atlas)
with the cingulate cortex. Indeed, the sagittal view of the
Figure 3B shows the connections between the dorsolateral
prefrontal cortex and the posterior parietal cortex, impli-
cated, in particular, in the default mode network. The analy-
sis also revealed a ventral stream linking the precuneus with

the right tempoparietal junction (R TPJ as defined in MSDL
atlas) and the inferior temporal cortex.

This estimated model was applied to the connectivity
maps of 27 SCD patients and 3 healthy subjects (Fig. 4).
Four patients had a similarity index ( p-value) <5%, leading
to the conclusion that the reference brain connectivity learned
on CTL subjects was not adequate to describe these patients.
Their connectivity maps were visually inspected to identify
some differences, which could explain these results. Unfor-
tunately, their connectivity patterns appeared similar. This
suggests that the main network such as the default mode
network, executive CTL network, visuospatial network, vi-
sual networks, and salience network are activated but with
altered connectivity strengths.

Moreover, the result of the permutation test suggested that
the model learned on CTL subjects is no less adequate (in
the maximum likelihood sense) to describe most SCD patients
as is the group template of SCD patients, with a high p-value

Table 1. Demographic and Clinical Variables Among Healthy Controls

and Patients with Sickle Cell Disease

CTL SCD p

N 21 27 NS
Age (years) 22.3 – 7.0 23.0 – 9.0 0.74
Sex (M/F) 16F 5M 15F 12M 0.22
Genotype (AA, AS, SS, SC, Sb0) 12 AA 9AS 24 SS 2 SC 1 Sb0 <0.001
Education 3.8 – 2.2 4.0 – 1.7 0.4
Height (cm) 165 – 7 165 – 10 0.90
Weight (kg) 61.5 – 13.3 61.4 – 14.3 0.99
BSA (m2) 1.67 – 0.19 1.67 – 0.21 0.93
BMI (kg/m2) 22.5 – 4.4 22.6 – 5.4 0.91
SBP (torr) 115 – 8 110 – 11 0.09
DBP (torr) 66 – 8 62 – 7 0.05
HR (bpm) 73 – 19 83 – 10 0.04
O2sat (%) 99.4 – 0.9 97.2 – 2.6 0.0002
Hb (g/dL) 13.7 – 1.3 9.5 – 1.3 <0.0001
Retic (%) 1.4 – 0.7 11.8 – 6.1 <0.0001
WBC (103/lL) 6.1 – 1.8 11.0 – 4.7 <0001
Platelets (103/lL) 246 – 56 310 – 101 0.007
Cell-free Hb (mg/dL) 6.3 – 4.3 21.5 – 20.2 0.0007
Hb S% 15 – 19 53 – 30 <0.0001
Hb F% 0.7 – 2.6 6.5 – 7.6 0.0008
WMH abnormal 2/21 7/27 0.26
CBF (mL/100 g/min) 61.2 – 9.6 95.0 – 17.6 <0.0001
Cerebral volume 1110.9 – 97.8 1087.7 – 104.1 0.024
Total WM volume 508.4 – 51.0 481.0 – 51.4 0.0093

Frontal lobe 147.4 – 18.4 139.0 – 18.5 0.020
Parietal lobe 88.7 – 11.6 82.1 – 9.7 0.0064
Temporal lobe 75.2 – 8.6 70.8 – 9.2 0.014
Occipital lobe 43.0 – 6.9 41.6 – 5.8 0.12
Insula 1.8 – 3.3 2.1 – 5.9 0.017
Gray central 61.3 – 7.0 58.0 – 7.2 0.040

Total GM volume 606.6 – 68.9 602.5 – 66.7 0.12
Parietal lobe 108.5 – 12.7 107.5 – 13.4 0.057

Total pial 197.8 – 17.3 195.7 – 17.6 0.041
Parietal lobe 47.4 – 4.3 46.2 – 4.1 0.0074

All results except gender are given as mean – SD. The Chi-square test was used for gender (M for male and F for female) and genotype
(AA, AS, SS, and SC). Other demographic and laboratory parameters were compared by using Student’s test. Bold text indicates a statis-
tically significant difference. Maternal educational attainment was assessed by asking patients to choose their highest educational level com-
pleted from the following choices: 1 = less than high school; 2 = high school or General Educational Development completed; 3 = some
college or technical school; 4 = college graduate; and 5 = graduate school.

BMI, body mass index; BSA, body surface area; BSP, systolic blood pressure; CBF, cerebral blood flow; CTL, control; DBP, Diastolic
blood pressure; GM, gray matter; HR, heart rate; SCD, sickle cell disease; SD, standard deviation; WM, white matter; WMH, white matter
hyperintensities.
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( p = 0.35 using a Fisher test). Three healthy subjects are also in-
cluded into our test set. We obtain p values equal to 0.58, 0.49,
and 0.65 [log(RSCD/CTL) =�0.07 – 0.017, log(RSCD/CTL) =
�0.13 – 0.04 and log(RSCD/CTL) =�0.03 – 0.05]; hence, the
reference model learned on the other CTL subjects seems

to be slightly more adequate to describe these healthy sub-
jects. Finally, as displayed in Figure 5, the individual similar-
ity index of the connectivity analysis for the SCD patients
showed significant gender-related differences (0.32 – 0.28
for the women vs. 0.63 – 0.28 for the men, p = 0.01).

Relationship with structural measurements
and laboratory data

To probe for physiologic predictors of the network analy-
sis, correlation analysis was performed between connectivity
results and structural and blood measurements. The similar-
ity index was independent of hemolysis markers, white blood
cells, platelets, hemoglobin S%, or hemoglobin F%. Hemo-
globin (and hematocrit) did correlate with similarity after
correction for sex differences (Fig. 5B). Patients with the
lowest hemoglobin level exhibited the least similarity to
the reference connectivity model.

Second, the importance of WMH in the SCD patients,
which are a bio-marker of the pathology, translated into sig-
nificant similarity index differences. Indeed, after control-
ling for gender, patients with WMH have a significantly
lower similarity index ( p-value = 0.03). Despite the large
differences in WM volume between the SCD and CTL sub-
jects, the similarity index was independent of white mat-
ter volume (with or without age/sex correction). However,
white matter volume and WMH were statistically indepen-
dent of one another. After controlling for gender, patients
with WMH demonstrated a significantly lower similarity
index ( p-value = 0.03).

Although SCD patients did not have statistically signifi-
cant differences in GM or total brain volume, the similarity

FIG. 3. Reference connectivity model: (A) The model gives a descriptor of reference brain activation, computed by using
the robust learning scheme, based on graphical lasso and Fréchet mean. The whole brain was parcellated into 39 regions
according to MSDL atlas with R and L Aud, right and left auditory; Striate, extrastriate cortex; L, med, front and R DMN,
left, medial, frontal, and right parts of the default-mode network; Occ post, occipital posterior; Motor, motor cortex; R and
L DLPFC, right and left dorsolateral prefrontal cortex; R and L front pole, right and left frontal pole; R and L par, right
and left parietal cortex; R Post Temp, right posterior temporal lobe; Basal, basal ganglia; R and L IPS, right and left intra-
parietal sulsus; R and L LOC, right and left lateral occipital complex; Vis, visual network; D and V ACC, dorsal and ventral
anterior cingulate cortex; R A Ins, right anterior insula; L and R STS, R and L TPJ, right and left tempoparietal junction; Broca,
Broca’s area; Sup Front S, superior frontal sulcus; R Pars Op, right pars opercularis; Cereb, cerebellum; Dors PCC, dorsal
posterior cingulate cortex; Cing, cingulate cortex; R and L ins, right and left insula; R and L Ant IPS, right and left anterior
intraparietal sulsus. (B) Graphical representation of the connections for the atlas-based ROI. ROI, region of interest.

FIG. 4. Boxplot of the ratio of log-likelihood for each pa-
tient with SCD. Each box visually represents the mean and
standard deviation of the log-likelihood between the individ-
ual connectivity matrix and both SCD/CTL models, obtained
for all permutations. The original (nonpermuted) log-ratio
statistics, which were derived from the correctly labeled
data, are shown in red. CTL, control.
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index was positively correlated with both these parameters
( p = 0.0091 for total volume and p = 0.0048 for GM volume).
However, these differences were inextricably linked to gen-
der (r2 = 0.32 for GM volume, 0.28 for gender); inclusion of
either parameter was mutually exclusive of the other.

Discussion

To our knowledge, this is the first resting connectivity
study analyzing SCD patients as individuals and linking
their brain connectivity with blood markers of disease sever-
ity. A graphical lasso method was used for estimating partial
correlations between brain regions, thereby inferring func-
tional networks in fMRI data. Using L1-norm regularization
provides sparse solutions and, hence, facilitates the interpre-
tation of the estimated networks. This method identified
physiologically plausible connectivity graphs in the CTL and
SCD groups, consistent with previously published network
models (Belilovsky et al., 2015; Varoquaux and Craddock,
2013; Varoquaux et al., 2011). A descriptor of reference
brain connectivity was estimated by group-averaging the con-
nectivity matrices of the CTL subjects by using a Fréchet
mean.

Given the increased brain blood flow, high prevalence of
white matter damage, and neurocognitive deficits observed
in SCD patients, we postulated that these patients would
manifest differences in resting connectivity patterns. By
using permutation analysis, we assessed the accuracy of ref-
erence brain connectivity learned on the CTL group for every
patient. Only 4 out of 27 patients were not appropriately de-
scribed by the reference connectivity model (at p < 0.05),
which was not statistically significant for the group. This
suggests that despite the early onset of neurologic stressors
and damage, the fundamental functional brain ‘‘wiring’’ in
SCD is not disrupted.

Nonetheless, the individual index of similarity index had
two correlates, hemoglobin and gender, which may have im-
portant physiologic underpinnings. Patients with SCD com-
pensate for their anemia by increasing their resting brain
blood flow, thereby maintaining normal oxygen delivery at
rest (Bush et al., 2016). However, high resting CBF impairs
cerebrovascular reserve (Prohovnik et al., 2009), leaving the
brain vulnerable to ischemic brain injury during common

stressors such as hemoglobin desaturation (Hollocks et al.,
2012; Kirkham et al., 2001; Quinn et al., 2009) (e.g., sleep
apnea), decreased hemoglobin (e.g., bleeding or acute hemo-
lysis), and increased cerebral metabolic rate (e.g., fever, sei-
zure). Thus, severity of anemia represents a risk factor for
brain damage (DeBaun et al., 2012) and, thus, it is not sur-
prising that low hemoglobin correlated with dissimilar
resting-state network connectivity, regardless of gender. In
fact, low hemoglobin has previously been reported to be a
strong biomarker for disease severity and death in SCD (Leb-
ensburger et al., 2012; Miller et al., 2000).

Unlike the hemoglobin association, the large gender dif-
ference in individual similarity index was unexpected, par-
ticularly since women made up a larger fraction of the
CTL group. Further, the direction of the effect was opposite
of what we expected. Men with SCD typically have more se-
vere white matter disease (Land et al., 2016), impaired neu-
rocognitive function (Land et al., 2015), and death (Platt
et al., 1994). We speculate that the differences may reflect
a differential vulnerability to early ischemic events. Male
and female brains mature differently in adolescence with re-
spect to timing, location, and amount of synaptic pruning
(Herting et al., 2015; Vijayakumar et al., 2016; Willing
and Juraska, 2015). In women, the process begins signifi-
cantly earlier than for men (Lim et al., 2015), which in-
creases the likelihood that chronic anemia and ischemic
insults could modify synapse consolidation in the developing
brain. Although SCD patients are anemic their whole lives,
their cerebral metabolic demands, resting CBF, and stroke
risk are highest in the school aged years, peaking at 6–10
years of age when cerebral vascular reserve is at its nadir
(Ohene-Frempong et al., 1998; Prohovnik et al., 1989).
Thus, women initiate synaptic pruning at a time of greatest
cerebral vulnerability. In the presence of a known stressor
(anemia), the greater dissimilarity from controls found in fe-
male brains could represent more damage to the ‘‘standard’’
connections, compensatory promotion of alternative connec-
tions, or both.

After controlling for gender differences, similarity index
was lower in patients having WMH, suggesting a plausible
link between brain damage and disrupted resting-state con-
nectivity. WMH, also known as silent strokes, are lesions be-
tween 3 and 10 mm in size observed on T2-weighted imaging

FIG. 5. Similarity index results. (A) Significant connectivity difference ( p = 0.01) between SCD female and male patients
and (B) significant correlation of the similarity index with hemoglobin concentration ( p = 0.009 and R2 = 0.35) after control-
ling for gender differences.
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and lack overt neurological symptoms. However, they are as-
sociated with an increased risk of neurocognitive deficits, de-
mentia, and death (Debette and Markus, 2010). The
frequency and distribution of WMH in our study were com-
parable to previous reports (Moser et al., 1996). A significant
difference of hemoglobin level between SCD patients with
and without WMH confirms that the more anemic patients
have a higher risk for silent strokes. After removing the ef-
fect of the hemoglobin, no significant difference was ob-
served between the similarity index of SCD patients with
and without WMH. Indeed, due to this existing correlation,
it is not possible to separate the effect of these two con-
founded predictors.

The study has some important limitations. The study co-
hort size is modest, limiting our ability to detect subtle con-
nectivity differences. Our study includes teenagers and
young adults in whom natural brain maturation is occurring.
Although our cohorts were age matched, we are underpow-
ered to investigate the impact of normal age effects. Another
investigation will be needed to determine whether connectiv-
ity changes are associated with poorer neurocognitive perfor-
mance. Even though we observe plausible associations with
similarity index, it is impossible to make direct causal infer-
ences between similarity index and structural, blood, or func-
tional measures. Nevertheless, our observations provide
insights for future studies and suggest a novel metric to
study response to therapies.

Conclusion

In this article, the effect of SCD on resting-state connec-
tivity was quantified by using robust learning schemes. The
study is unique in characterizing network similarity across
individuals and linking connectivity metrics with structural
and blood measurements. Reference brain networks were
not appropriate to model resting-state activity from only
15% of patients, indicating that most of the SCD subjects
do not differ in terms of connectivity from CTLs. After con-
trolling for the gender, two separate predictors of this indi-
vidual similarity index were the anemia and WMH (silent
stroke). Patients having WMH have the least similarity to
the reference connectivity model, suggesting a plausible
link between brain damage and disrupted resting-state con-
nectivity. Moreover, a significant difference of hemoglobin
level between SCD patients with and without WMH confirms
that the more anemic patients have a higher risk for silent
strokes, leading to network dissimilarities. Based on these re-
sults, the dissimilarities found by the proposed method could
reflect pathological changes, compensatory mechanisms to
chronic anemia, or a combination of the two.
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