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Abstract

Resting-state functional magnetic resonance imaging (RS-FMRI) has been widely used to map brain functional
connectivity, but it is unclear how to probe connectivity within and around lesions. In this study, we characterize
RS-FMRI signal time course properties and evaluate different seed placements within and around hemorrhagic
traumatic axonal injury (hTAI) lesions. RS-FMRI was performed on a 7 Tesla scanner in a patient who recovered
consciousness after traumatic coma and in three healthy controls. Eleven lesions in the patient were characterized
in terms of (1) temporal signal-to-noise ratio (tSNR); (2) physiological noise, through comparison of noise re-
gressors derived from the white matter (WM), cerebrospinal fluid (CSF), and gray matter (GM); and (3) seed-
based functional connectivity. Temporal SNR at the center of the lesions was 38.3% and 74.1% lower compared
with the same region in the contralesional hemisphere of the patient and in the ipsilesional hemispheres of the
controls, respectively. Within the lesions, WM noise was more prominent than CSF and GM noise. Lesional
seeds did not produce discernable networks, but seeds in the contralesional hemisphere revealed networks
whose nodes appeared to be shifted or obscured due to overlapping or nearby lesions. Single-voxel seed analysis
demonstrated that placing a seed within a lesion’s periphery was necessary to identify networks associated with
the lesion region. These findings provide evidence of resting-state network changes in the human brain after re-
covery from traumatic coma. Furthermore, we show that seed placement within a lesion’s periphery or in the
contralesional hemisphere may be necessary for network identification in patients with hTAI.
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Introduction

Hemorrhagic traumatic axonal injury (hTAI) is as-
sociated with disruption of neural networks and loss of

cognitive function in patients with severe traumatic brain in-
jury (TBI) (Bodien et al., 2017; Sharp et al., 2014). Yet, recent
evidence from longitudinal imaging studies and histo-
radiologic correlation studies suggests that hTAI lesions may
not invariably destroy axons (Edlow et al., 2013, 2016). Rather,
red blood cells may intercalate between partially injured ax-
ons, which have the potential to recover their structural in-
tegrity (Edlow et al., 2013). Functional connectivity derived
from resting-state functional magnetic resonance imaging

(RS-FMRI) enables investigation of how lesions disrupt
brain networks, and how networks may compensate for injury.
However, the optimal methodology for determining how hTAI
lesions affect brain networks using RS-FMRI is unknown.
Specifically, network maps may differ depending on whether
a seed region-of-interest (ROI) is placed within or at the pe-
riphery of an hTAI lesion.

When attempting to identify neural network disruptions
due to focal brain lesions, seed-based RS-FMRI (Biswal
et al., 1995; Di Martino et al., 2008; Fox et al., 2005; van
de Ven et al., 2004), as opposed to the data-driven indepen-
dent component analysis (ICA) approach (Chen et al., 2008;
McKeown et al., 2003; van de Ven et al., 2004), offers the
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opportunity for targeted studies of lesion-specific connectiv-
ity (or lack thereof). One potential challenge with the seed-
based approach is that the T2* values within hTAI lesions
tend to be shortened due to the presence of hemosiderin
(Gomori et al., 1985). As a result, the signal-to-noise ratio
(SNR) within a lesion may be too low to effectively identify
correlations between signal time courses in other regions of
the brain. Furthermore, loss of signal within a lesion may be
associated with a local image intensity gradient, resulting in
increased signal fluctuation due to dynamic partial volume
effects driven by head motion and tissue pulsatility.

In prior RS-FMRI studies of patients with moderate-to-
severe TBI, investigators typically placed seeds in well-
established nodes of resting-state networks (Hillary et al.,
2011; Palacios et al., 2013; Rigon et al., 2016; Venkatesan
et al., 2015). Additional studies focused on altered functional
connectivity within the default mode network (DMN) (Falletta
Caravasso et al., 2016; Li et al., 2017; Sharp et al., 2011), sa-
lience network (Ham et al., 2014; Li et al., 2017), and somato-
motor network (Falletta Caravasso et al., 2016). These studies
used ICA and/or seed-based analysis, but none placed seeds
within the lesion areas. Instead, prior studies applied ICA to
compare functional connectivity between patients and controls,
or performed ICA to identify network nodes that could be used
as seeds in subsequent seed-based analysis. Several studies
have also used a graph theory approach to analyze RS-FMRI
results in TBI patients (Caeyenberghs et al., 2012; Nakamura
et al., 2009; Pandit et al., 2013).

In contrast to these prior studies that focused on uninjured
network nodes, our aim is to characterize RS-FMRI signal prop-
erties fromseed regions within and aroundhTAI lesions. Specif-
ically, we examine how signal time courses for ipsilesional and
contralesional ROIs correlate with those from white matter
(WM) and cerebrospinal fluid (CSF) regions, which are contam-
inated by physiological noise, as well as gray matter (GM). We
also study the connectivity patterns derived from different seed
placement strategies and compare with connectivity in the pa-

tient’s contralesional side, as well as to connectivity in healthy
controls. Ultimately, these investigations are intended to provide
insights into how to use and interpret RS-FMRI to detect connec-
tivity changes associated with hTAI.

Materials and Methods

Patient and healthy controls

All study procedures were approved by the local insti-
tutional review board, and written informed consent was
provided by all subjects. RS-FMRI was performed on a 27-
year-old man who recovered from traumatic coma and three
healthy controls (2F, 1 M, 25–26 years old). Six years and 7
months prior, the patient had experienced a severe TBI after
he was struck by a car while riding his bicycle. He was in a
coma for 14 days. A clinical MRI scan performed in the inten-
sive care unit revealed grade 3 diffuse axonal injury involving
the WM of the bilateral cerebral hemispheres, splenium of the
corpus callosum, and dorsolateral midbrain. After emergence
from coma, the patient underwent one and a half months of in-
patient rehabilitation, followed by 1 year of outpatient rehabil-
itation. At the time of our imaging study, 11 hTAI lesions
were still visible due to chronic hemosiderin deposition in
the cortical gray/white junction, periventricular WM, subcor-
tical GM, brainstem, and deep WM. Examples of hTAI lesions
are shown in Figure 1. All hTAI lesions in the patient are
shown in Supplementary Figure S1 (Supplementary Data are
available online at www.liebertpub.com/brain).

Acquisition

Data were acquired using a 7T Siemens MRI scanner (Sie-
mens Healthcare, Erlangen, Germany) equipped with a custom-
built 32-channel RF receive coil and birdcage transmit coil
(Keil et al., 2010). The BOLD-weighted acquisition consisted
of a single-shot gradient-echo echo planar imaging (EPI) pulse
sequence with echo time (TE)/repetition time (TR) = 25/

FIG. 1. T1-weighted im-
ages and susceptibility-
weighted imaging of a patient
with severe traumatic brain
injury based on the lesion
locations. Red arrows indi-
cate examples of lesions in
each of the anatomical cate-
gories: cortical gray/white
junction, periventricular
white matter, subcortical
gray matter, brainstem, and
deep white matter. SWI,
susceptibility-weighted
imaging. Color images
available online at www
.liebertpub.com/brain
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3560 msec, 1.5 mm isotropic voxels, field of view (FOV) =
19.2 cm · 19.2 cm, 60 slices, partial Fourier = 7/8, BW = 1776
Hz/pixel, R = 2 inplane acceleration, online Generalized
Autocalibrating Partially Parallel Acquisition (GRAPPA)
reconstruction (Griswold et al., 2002) using Fast Low-angle
Excitation EPI Technique (FLEET) autocalibration signal
(ACS) acquisition (Polimeni et al., 2013, 2016), echo spac-
ing = 0.33 msec, 180 time points, and total scan time = 11 min.
To assist with lesion identification and registration to Montreal
Neurological Institute (MNI) space, T1-weighted multiecho
magnetization-prepared rapid acquisition gradient echo
(ME-MPRAGE) images (van der Kouwe et al., 2008)
were acquired with TE1/TE2/TE3/TE4/TR/TI = 1.72/3.55/
5.38/7.21/2530/1100 msec, flip angle = 7�, 0.75 mm isotropic
voxels, FOV = 25.6 · 25.6 cm, 192 slices, full Fourier, R = 2
(GRAPPA), and BW = 696 Hz/pixel. Susceptibility-weighted
images (Haacke et al., 2004) were acquired with TE/TR = 21/
1830 msec, 0.3 · 0.3 · 1 mm resolution, FOV = 19.2 cm · 19.2
cm, 40 slices, GRAPPA R = 2, and BW = 30 Hz/pixel.

Data analysis

Network analyses were conducted in each subject’s na-
tive space. Preprocessing of the RS-FMRI data was per-
formed using tools from the FMRIB Software Library (FSL,
www.fmrib.ox.ac.uk/fsl) ( Jenkinson et al., 2012; Smith et al.,
2004; Woolrich et al., 2009). The preprocessing pipeline in-
cluded creating a mask of the brain using the Brain Extraction
Tool, regression of nuisance variables (WM, CSF, movement,
and global signal), temporal high-pass filtering with 0.01 Hz
cutoff using FMRIB Expert Analysis Tool (FEAT), motion
correction using MCFLIRT (Jenkinson et al., 2002), and spatial
smoothing with a 3 mm Gaussian kernel. The WM, CSF, and
GM masks were created by applying FMRIB’s Automated
Segmentation Tool (FAST) (Zhang et al., 2001) to EPI vol-
umes. To avoid effects of partial voluming, the WM, CSF, and
GM masks were eroded using a 3 · 3 · 3 kernel to zero any
nonzero voxels at the ROI boundaries. That is, whenever a zero
was detected in the kernel, all of the voxels within the kernel

were set to zero. To exclude lesional tissues in the WM, CSF,
and GM masks, all the lesion ROIs were subtracted from the
masks. WM and CSF masks were used to define regressors for
RS-FMRI preprocessing and only ventricular CSF was in-
cluded in the CSF regressor mask (no peripheral CSF). All the
three masks were used for signal characterization.

After testing connectivity maps with and without smooth-
ing (2 and 3 mm Gaussian kernel), a 3 mm Gaussian ker-
nel was selected because it provided increased sensitivity
without changing the connectivity patterns (Supplementary
Fig. S2). The first six image volumes were discarded to
avoid data acquired during the approach to steady-state mag-
netization. ICA was performed using FSL’s MELODIC.
Seed-based analysis was performed using the Analysis of
Functional NeuroImages (AFNI, https://afni.nimh.nih.gov/)
software package (Cox, 1996; Cox and Hyde, 1997; Gold
et al., 1998). Temporal SNR (tSNR) was derived from the
detrended, motion-corrected data and defined as the ratio of
time-series mean over time-series standard deviation.

For seed-based analysis, seed ROIs were created using two
approaches. First, a neurologist (B.L.E.) manually traced a
multivoxel seed for each lesion that covered the entire hTAI
lesion. All seeds were drawn directly on the EPI data set in na-
tive space, with reference to the susceptibility-weighted imag-
ing (SWI) and T1 ME-MPRAGE data sets for neuroanatomic
confirmation of lesion placement. Second, a series of single-
voxel seeds were created along a straight line that bisected
each multivoxel lesion in the axial plane. Each multivoxel
and single-voxel seed ROI was then transformed from the pa-
tient’s EPI data set to the healthy controls’ EPI data sets.
Image coregistration was performed using FMRIB’s Linear
Image Registration Tool (FLIRT) and FMRIB’s non-FLIRT.
EPI volumes were first warped to their respective T1-weighted
images and then to MNI space. Equivalent multivoxel seeds
were also generated in the contralesional hemisphere by per-
forming a right/left flip in MNI space and then warping the
contralesional seed back to native image space (i.e., the EPI
data). The spatial normalization process is shown in Figure 2
and registered ROIs in the patient and each control are shown

FIG. 2. A schematic diagram illustrating
the image space normalization process.
EPI, echo planar imaging; MNI, Montreal
Neurological Institute; ROI, region-of-
interest. Color images available online at
www.liebertpub.com/brain
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in Supplementary Figure S3. A neurologist (B.L.E.) blinded to
the RS-FMRI data confirmed the neuroanatomic accuracy
of the coregistrations and, if necessary, manually repositioned
the ROIs based on anatomic landmarks. Of note, lesion K
could not be identified on controls 2 and 3 due to distortions
in the inferoanterior temporal lobe.

Lesion signal characterization

To characterize the physiological noise properties of the
lesions, we calculated the square of the Pearson correlation
coefficient, R2, between each ROI and the WM, CSF, and
GM masks.

Connectivity maps from multivoxel seeds

Connectivity maps were derived for all ipsilesional and
contralesional multivoxel seed ROIs. Each map was evalu-
ated in terms of (1) identifiable networks, (2) the presence
of distinct clusters/nodes, (3) similarity of ipsilesionally
and contralesionally seeded maps, and (4) symmetry of con-
nectivity maps. For connectivity maps generated using the
contralesional seed, we looked for network nodes that were
potentially displaced or shifted on the lesional side. For
each potentially affected node that was identified, we calcu-
lated a distance associated with the shift by thresholding,
clustering, and binarizing the left and right nodes in question
and then performing a right/left flip in the MNI space to re-
flect the contralesional node onto the lesional node. The distance
between the centroid of the lesional node and the contralesional
node (reflected onto the lesional node) was then calculated.

Connectivity maps from single-voxel seeds

To evaluate how connectivity maps change in relation to
the proximity of a seed voxel to the lesion ROI, we derived
connectivity maps for seven separate single-voxel seeds
placed along a straight line oriented medial/laterally through
the center of lesion A in the axial plane. Temporal SNR was
determined for each of the seven seed voxels. The seven
single-voxel seed positions were placed from lateral to me-
dial across the lesion as follows: #1: two voxels away from
the lesion edge in the lateral direction, #2: one voxel away
from the lesion edge in the lateral direction, #3: at the lateral
edge of the lesion, #4: at the center of the lesion, #5: at the
medial edge of the lesion, #6: one voxel away from the lesion
edge in the medial direction, and #7: two voxels away from
the lesion edge in the medial direction. Due to the different
shapes and sizes of lesion ROIs after mapping them into
each subject’s native space, the distance between seed voxels
#3, 4, and 5 varied across subjects. For example, a larger le-
sion diameter causes a greater distance between the center
and edges of the lesion (i.e., the distances between seed vox-
els #3 and #4 and between #4 and #5). Across all of the lesion
ROIs, the resulting distance between the center and edge le-
sion seed voxels varied between one and three voxels.

Results

Lesion signal characterization

Table 1 reports R2 values between the ipsilesional and con-
tralesional ROI correlations with the WM, CSF, and GM
masks. On average across all lesions, the R2 value between
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the lesion signal and the signal within WM, CSF, and GM masks
was 141.2% higher, 85.1% higher, and 52.9% lower compared
with the same regions on the contralesional side. Therefore, this
provides some evidence that WM noise is more prevalent within
the lesion than CSF or GM noise in our patient. We explored the
WM noise component of the lesions by performing a principal
component analysis (Behzadi et al., 2007) on the WM signal
to generate the top 10 components of the WM signal. We cal-
culated R2 value between the ten WM component signals and
each of the lesions. The top two components of the WM signal
showed significant correlations. The first WM component
explained a substantial (R2 = 0.17–0.60) component of the vari-
ance for all but two lesions (i.e., lesions C and G). The second
WM component explained a significant (R2 = 0.14–0.41) com-
ponent of the variance for 7 of the 11 lesions (i.e., not lesions
E, F, H, or J). Changes in WM, CSF, and GM correlations, com-
pared with the equivalent contralesional regions, varied substan-
tially for different lesions. No trends in noise properties were
found for lesions with similar anatomical locations. Signal
time courses for the lesions and the WM, CSF and GM signals
were plotted in an attempt to gain additional insight from their
visualization. Unfortunately, the correlations, while meaningful,
proved too small to provide additional insight by eye.

Independent component analysis

ICA applied to the RS-FMRI data revealed all of the net-
works shown in the FIND Lab atlas (Shirer et al., 2012)
except for the basal ganglia network. Table 2 shows specif-
ically which networks were found in which subject. The
only three networks from the FIND Lab atlas (Shirer et al.,
2012) that were not found in the patient were the left execu-
tive control network (ECN) and the anterior and posterior sa-
lience networks. However, the salience networks were not
identified consistently in the controls. Specifically, the ante-
rior salience network was not found in controls 1 and 3 and
the posterior salience network was not found in controls 2
and 3. Identification of the posterior salience network in con-
trol 1 was only possible by increasing the smoothing level to
6 mm FWHM. Additional networks that could only be iden-
tified with an increased smoothing level of 6 mm FWHM in-
clude visuospatial (patient) and left ECN (control 2),
auditory (control 2) and precuneus (control 1 and 2). Lesion
A is the only lesion in the patient that overlaps with a known
network node (the dorsolateral prefrontal cortex [DLPFC]
node of the right ECN, Fig. 3), although several lesions are
close to other network node boundaries (i.e., lesion D is
very close to left parahippocampal DMN and lesion E is
close to posterior salience network). Qualitatively, the ICA
maps did not show any decrease in connectivity within lesion
A compared to the surrounding tissue in the DLPFC node. Of
the networks that were identified, no qualitative differences
were observed between the patient and controls. Maps of
the right ECN from the patient and controls, registered to
MNI space, are shown in Figure 3 with the location of lesion
A indicated in blue. Lesion A overlaps with the DLPFC node
of the ECN from the atlas and in the ECN of controls 1 and 2.
For control 3, the right ECN is not well demarcated. In the
patient’s coronal plane, it appears that the DLPFC node is
located at a more inferior position compared with the lo-
cation of the same node in the atlas or in the networks of
controls 1 or 2.

Connectivity maps from multivoxel seeds

A summary of the connectivity map results is presented in
Table 3. Connectivity maps from lesion ROIs do not show
recognizable network nodes. Even lesion A, located within
the DLPFC node of the right ECN, did not produce the
expected identifiable network (i.e., the right ECN). However,
multivoxel seeds placed in the lesion-equivalent region
within the contralesional hemisphere did produce a node lo-
cated adjacent to lesion A and nodes in the left and right tem-
poral lobe. Furthermore, the connectivity clusters/nodes
found for contralesional multivoxel seeds for lesions A, D,
and G were visibly different between the patient and con-
trols. The differences between the patient and controls for
connectivity maps derived from contralesional multivoxel
seeds for lesions A, D, and G are summarized as follows.
The lesion A seed showed weaker correlations and smaller
clusters in the patient compared with controls (Fig. 4a) and
the DLPFC node of the ECN on the ipsilesional side of
the patient is smaller and centered more inferolateral com-
pared with the contralesional side or compared with controls
(Fig. 4e). The lesion D seed produced similar connectivity
maps for patient and controls with the exception of a node
near the inferior part of the brain on the ipsilesional side
that appeared shifted superiorly in the patient (Fig. 4m).
The lesion G seed showed similar connectivity patterns for
the patient and the controls, but overall smaller clusters
(Fig. 4u). Figure 5 displays the nodes that were potentially
shifted or obscured on the lesional side compared with the
reflected contralesional node. Specifically, the right DLPFC
appears to be partially obscured by lesion A (Fig. 5a) and
the left parahippocampal DMN node appears to be shifted su-
periorly (Fig. 5b). For lesion A, the distance between the cen-
troid of the right (lesional) DLPFC node and the reflected left
(contralesional) DLPFC node is 18 mm and for lesion D, the
distance between the centroid of the left (lesional) parahippo-
campal DMN node and the reflected right (contralesional) par-
ahippocampal DMN node is 8 mm.

Connectivity maps from single-voxel seeds

The connectivity maps and tSNR values for the single-
voxel seeds within and surrounding lesion A and ipsilesional
and contralesional hemispheres are shown in Figure 6. For
the patient, the tSNR for the voxel at the center of lesion A
is 38.3% lower compared with the contralesional side and
74.1% – 8.3% [mean – SD] lower compared with controls.
For the three controls, the ECN appears for all voxel posi-
tions through lesion A. For the patient, the voxel at the center
of the lesion ROI (voxel #4) shows only a few small, nonde-
script clusters, whereas voxel #1 located two voxels laterally
shifted from the lesion boundary shows the ECN most reli-
ably. Contralesional connectivity maps in the patient show
the ECN for voxel #4, #5, #6, and #7. The average tSNR
across all seven ipsilesional voxel positions in the patient
is 18.9% lower compared with the contralesional side and
47.8 – 20.5 [mean – SD] lower compared with the controls.
Of note, the same single-voxel analysis was tested along
straight lines running along other orientations (diagonal)
and similar connectivity patterns were found. We also note
that the whole-brain nonlesional tissue within the patient
had a lower mean tSNR (92.3) compared with the three con-
trols (120.2, 149.9, and 144.6).
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Discussion

In this study, we investigated brain network functional
connectivity in a patient who recovered from traumatic
coma and compared these results with those of three healthy
controls. We evaluated the effects of seed placement, the
signal time course properties within lesions, and the poten-

tial for detecting network changes. Our results reveal several
important considerations for lesion-specific RS-FMRI ana-
lyses.

First, single-voxel seeds demonstrated the importance of
probing the periphery of a lesion and the equivalent region
in the contralesional hemisphere to identify lesion-specific
networks. This observation is likely attributable to the low

Table 2. Networks Found in the Patient and Controls Using Independent Component Analysis

Network Patient Control 1 Control 2 Control 3

Left ECN X V 6 mm V
Right ECN V V V V
Dorsal DMN V V V V
Visuospatial 6 mm V V V
Ventral DMN V V V V
Auditory V V 6 mm V
Precuneus V 6 mm 6 mm X
Higher visual V V V V
Motor V V V V
Primary visual V V V V
Anterior salience X X V X
Posterior salience X 6 mm X X
Language V V V V

Total number of networks found 10 12 12 10

In the table, ‘‘V’’ indicates that the network is found in both 6 and 3 mm smoothed data, ‘‘6 mm’’ indicates that the network is found only in
6 mm smoothed data, and ‘‘X’’ indicates that the network is not found in the data.

DMN, default mode network; ECN, executive control network.

FIG. 3. Right ECN of the patient and
controls from ICA. Right ECN from the
FIND Lab atlas and those of the patient
and controls obtained from ICA (red-
yellow color) are superimposed on top of
MNI space. Blue label represents lesion A
ROI. ICA, independent component anal-
ysis; ECN, executive control network.
Color images available online at
www.liebertpub.com/brain
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Table 3. A Summary of the Seed-Based Connectivity Results

Lesion ID A B C D E

Location Right frontal
Left splenium

corpus callosum Body corpus callosum Left hippocampus Right thalamus

Category
Cortical gray/
white junction

Periventricular
white matter

Periventricular
white matter

Cortical gray/
white junction

Subcortical
gray matter

Size of ROI (no. of
voxels)

156 121 96 124 24

Connectivity using
ipsilesional ROI

Smaller cluster and
not symmetric

No network nodes No network nodes No network nodes No network
nodes

Connectivity using
contralesional ROI

Shifted connectivity No network nodes — Shifted connectivity
and not symmetric

No network
nodes

Lesion ID F G H I J

Location
Right cerebral

peduncle
Left uncinate

fasciculus
Left midbrain

tegmentum Left frontal
Right external

capsule

Category Brainstem Deep white matter Brainstem
Cortical gray/
white junction

Deep white
matter

Size of ROI (no. of
voxels)

8 29 19 11 28

Connectivity using
ipsilesional ROI

No network nodes Not symmetric No network nodes Smaller cluster and
not symmetric

No network
nodes

Connectivity using
contralesional ROI

No network nodes Smaller cluster and
not symmetric

No network nodes Not symmetric Not symmetric

Each lesion’s location and anatomic category are listed and the characteristics of the connectivity map of the patient using ipsilesional
and contralesional ROIs are described compared with controls. Since lesion C is in the middle of brain, there is no contralesional ROI. ‘‘No
network nodes’’ indicates that there are no visible clusters of connectivity in the patient nor in the controls; ‘‘Not symmetric’’ indicates that
maps of controls show symmetric patterns, however, the corresponding map in the patient does not.

ROI, region-of-interest.

FIG. 4. Connectivity maps
for the patient and controls
from the multivoxel seed
ROIs covering the entirety of
lesions A (a–d), D (i–l), and
G (q–t) and the equivalent
contralesional regions A
(e–h), D (m–p), and G (u–x).
Maps are thresholded at
p < 0.05. The color bar repre-
sents the Pearson correlation
coefficient R. Arrows high-
light differences between the
contra- and ipsilesional ROI-
derived maps for lesions A
and D and between patient
and controls for lesion G.
Color images available
online at www.liebert
pub.com/brain

294



tSNR at the lesion center, which was 38.3% and 74.1% lower
compared with the contralesional hemisphere in the patient
and ipsilesional hemisphere in controls, respectively.

Second, we found that WM noise was more strongly ele-
vated within the lesions than CSF and GM noise. This ob-
servation is consistent with prior studies suggesting that
lesions are more strongly influenced by cardiac pulsatility
than they are by breathing effects (Van de Moortele et al.,
2002; van Gelderen et al., 2007). Pulsatile movement of
brain tissue may cause the lesions to move slightly, and
since lesions typically have lower signal intensity compared
to surrounding tissue, a sharp lesion boundary could cause
temporal signal modulation due to dynamic partial volume
effects. When grouping lesions according to their anatomi-
cal locations, CSF noise was more strongly elevated within
lesions located at the cortical GM-WM junction and within
periventricular WM and deep WM, whereas WM noise was
more strongly elevated within lesions in the subcortical GM
and brainstem. There was, however, in some cases, signifi-
cant variation in noise properties for lesions within similar
anatomical locations.

Third, when evaluating the ability to detect network
changes, our data show that aside from the ECN, connectivity
maps derived from ICA did not demonstrate a difference in
the number or qualitative appearance of identified brain net-
works in the patient versus the controls. However, our seed-
based analysis did reveal potential changes of brain networks.
For example, the right DLPFC node appears to have been

FIG. 5. Coronal images in MNI space depicting the loca-
tion of lesions (yellow), ipsilesional nodes (red), and con-
tralesional nodes reflected back onto the lesional
hemisphere (green). Lesion A, which overlaps with the
right dorsolateral prefrontal cortex of the ECN, is shown in
(a) and lesion D, which is close to the left parahippocampal
node of the default mode network, is shown in (b). Color
images available online at www.liebertpub.com/brain

FIG. 6. Connectivity maps
for patients and controls from
single-voxel seeds. The red
voxels in the first column
represent the lesion A ROI
for patient and controls and
ipsilesional and contrale-
sional sides. Each number
superimposed on lesion A in
the first column corresponds
to single-voxel seed place-
ments across the ROIs and
subsequent columns show
corresponding connectivity
maps thresholded at p < 0.05.
The number above each
image is the temporal signal-
to-noise ratio at the seed
voxel position. Color bars
represent the correlation co-
efficient. Color images
available online at www
.liebertpub.com/brain
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partially obscured by lesion A (i.e., only the lower portion of
the node, inferior to the lesion, is present). Furthermore, a net-
work node near the hippocampus was potentially shifted to a
slightly superior location due to lesion D (Fig. 5).

Our results offer new insight into the potential utility of
RS-FMRI as a marker of brain function, and possibly brain
plasticity, in patients who recover from traumatic coma.
Prior RS-FMRI studies of patients with TBI have attempted
to elucidate recovery mechanisms but have focused on ICA
or seed-based analysis using nonlesion areas as seeds. For
example, Hillary et al. (2011) observed increased resting-
state connectivity in the DMN during the first 6 months of re-
covery in patients with moderate-to-severe TBI. However, in
contrast to our study, these prior lesion connectivity studies
did not specifically investigate connectivity between the le-
sion area and other parts of the brain. Rather, many RS-
FMRI studies of patients with brain injuries have masked
and eliminated the lesion area before identifying functional
networks (Hayes et al., 2012; van Meer et al., 2010). Other
studies included visible lesion areas as a small part of a
much larger seed-ROI (Alstott et al., 2009; Zhang et al.,
2009). Alstott et al. (2009) simulated the effect of lesions
on brain functional connectivity as measured by RS-FMRI
and found that the modeled lesions altered brain functional
connectivity in both the ipsilateral and contralateral hemi-
spheres. Along similar lines, Zhang et al. (2009) studied sen-
sorimotor mapping in brain tumor patients. The Zhang et al.
(2009) study placed seeds in the hemisphere contralateral to
the tumor and found that in the hemisphere ipsilateral to the
tumor, the equivalent network node was displaced anteriorly
and laterally to the tumor. In our study, we observed two in-
stances of recognizable network nodes (the DLPFC node and
the parahippocampal DMN node) that were potentially spa-
tially shifted or obscured due to lesions (Figs. 4e, m, and
5). Our use of seeds within the contralesional hemisphere
to identify this potential remapping of a network node aligns
well with the Zhang et al. study. However, our study is fur-
ther complicated by the fact that there are many lesions
spread across both hemispheres that could be impacting the
spatial location of network nodes. Furthermore, it is impor-
tant to note that not all brain regions have a functional con-
tralateral homologue and this is a fundamental limitation of
our approach of seeding in the contralesional hemisphere.
Even for lateralized function, however, there is the possibil-
ity of cross-hemispheric plasticity. Therefore, consideration
of the lesion location is critically important for interpreting
the lesion connectivity results. Furthermore, it is unclear
why the patient’s nonlesional tissue had a lower mean
tSNR compared with the controls and this may have de-
creased our sensitivity to some measures of connectivity in
the patient compared with the controls.

It is important to consider that the results from one patient
who recovered from coma cannot be generalized to the entire
population of patients with traumatic coma, and the rele-
vance of our chronic lesion mapping approach to patients
with acute lesions remains to be determined. Nevertheless,
the patient in our study provided a unique opportunity to
study the functional connectivity of multiple lesions located
in different brain regions and to generate patient-specific
brain network connectivity maps. This individualized ap-
proach to brain mapping is especially relevant to patients
with traumatic coma, since hTAI lesions vary in their num-

ber and neuroanatomic locations between patients. Further-
more, a prior study that correlated histopathologic and
structural connectivity data in a patient who died after trau-
matic coma showed that even hTAI lesions within the same
brain may have different effects on tissue microstructure
(Edlow et al., 2013). A recent review article by Aerts et al.
(2016) highlighted that lesion effects on brain connectivity
depend critically on lesion location, with lesions located in
network hubs causing the most significant alterations. This
may be why prior studies such as Roy et al. (2017) have
not found measures of total lesion burden to be predictive
of network changes. Automated or semiautomated lesion de-
tection would likely enhance the translational potential of
our methods and possibly also increase their reliability for
patient-specific analysis. Lesion detection software is contin-
ually improving and recent efforts have focused specifically
on detection of TBI lesions (Roy et al., 2017; van den Heuvel
et al., 2016).

A strength of this study is that the patient was scanned 6 years
and 7 months postinjury, and therefore, his brain structure and
function were not confounded by the acute effects of edema.
Our study also benefits from data acquired with state-of-the art
equipment and acquisition technology, including a 7T MRI scan-
ner equipped with a 32-channel coil and an acquisition that uti-
lized GRAPPA with FLEET-ACS to control motion sensitivity
of the parallel imaging calibration data acquisition (Polimeni
et al., 2013, 2016). The use of a 7T scanner benefits our study
in two key ways. First, lesion identification is enhanced on
SWI, T1-weighted and T2-weighted images at 7T compared
with 3T (Madai et al., 2012; Moenninghoff et al., 2015). We
illustrate an example of this in Supplementary Figure S4. All
lesions can be visualized on the 3T data set, but they can be
identified more clearly on the 7T images. Second, RS-FMRI
measurements are more sensitive at 7T compared with 3T
(De Martino et al., 2011; Yacoub et al., 2001). We point out,
however, that the performance of our 7T protocol was far
from the limits of the 7T scanner and similar protocols can
be achieved with modern 3T scanners. In addition, advanced
RF array coils can provide additional sensitivity at 3T. Develop-
ment of a 3T RS-FMRI protocol that could be translated to clin-
ical MRI scanners is therefore likely feasible within the near
future. Last, the implementation of 7T scanners has accelerated
in recent years and the recent Food and Drug Administration
approval of 7T MRI for clinical use may also make 7T imaging
more accessible in the near future.

In conclusion, we show that RS-FMRI may detect func-
tional connectivity related to hTAI lesion areas. We also
show that RS-FMRI may enable identification of network
nodes that have been shifted or obscured as a result of an
hTAI lesion overlapping with that node. Finally, we demon-
strate the importance of seeding in the contralesional hemi-
sphere or a larger perilesional region or systematically
shifting ROI placement to the lesion periphery to identify
network changes. This lesion-specific approach represents
a new way to assess brain function and plasticity in traumatic
coma patients and may provide important diagnostic and
prognostic information to clinicians and families.
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