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Abstract

It is well accepted that physiological noise (PN) obscures the detection of neural fluctuations in resting-state
functional connectivity (rsFC) magnetic resonance imaging. However, a clear consensus for an optimal PN cor-
rection (PNC) methodology and how it can impact the rsFC signal characteristics is still lacking. In this study, we
probe the impact of three PNC methods: RETROICOR: (Glover et al., 2000), ANATICOR: ( Jo et al., 2010), and
RVTMBPM: (Bianciardi et al., 2009). Using a reading network model, we systematically explore the effects of
PNC optimization on sensitivity, specificity, and reproducibility of rsFC signals. In terms of specificity, ANA-
TICOR was found to be effective in removing local white matter (WM) fluctuations and also resulted in aggres-
sive removal of expected cortical-to-subcortical functional connections. The ability of RETROICOR to remove
PN was equivalent to removal of simulated random PN such that it artificially inflated the connection strength,
thereby decreasing sensitivity. RVTMBPM maintained specificity and sensitivity by balanced removal of vaso-
dilatory PN and local WM nuisance edges. Another aspect of this work was exploring the effects of PNC on iden-
tifying reading group differences. Most PNC methods accounted for between-subject PN variability resulting in
reduced intersession reproducibility. This effect facilitated the detection of the most consistent group differences.
RVTMBPM was most effective in detecting significant group differences due to its inherent sensitivity to remov-
ing spatially structured and temporally repeating PN arising from dense vasculature. Finally, results suggest that
combining all three PNC resulted in ‘‘overcorrection’’ by removing signal along with noise.
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Introduction

Resting-state functional connectivity (rsFC) mag-
netic resonance imaging (MRI) has emerged as a pow-

erful tool to investigate brain networks of subject populations
that have altered connectivity due to disease (Fox, 2013;
Wise et al., 2004; Wowk et al., 1997) or cognitive disability
(Panerai et al., 2000). rsFC is agnostic to task bias as it does
not require subjects to perform a task and is simple to acquire

(Biswal et al., 1995), which can be critical when dealing with
high-risk or disabled populations not able to easily perform
standard functional MRI (fMRI) tasks. However, its practical
use in the clinical setting requires improved reproducibility of
rsFC MRI signals (Birn et al., 2014), especially as the tech-
nique relies on the vascular blood oxygen-level-dependent
(BOLD) signal, which is only indirectly sensitive to neuronal
activity (Bandettini et al., 1992; Kwong et al., 1992; Ogawa
et al., 1992).
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Among several sources of noise, physiological noise (PN)
from cardiac pulsations and respiratory cycles affects the re-
liable quantification of rsFC MRI signals (Bianciardi et al.,
2009). For example, it has been shown that cardiac pulsa-
tions are directly observed in BOLD fMRI time series (Bhat-
tacharyya and Lowe, 2004). These cardiac pulsations cause
displacement of tissue adjacent to large arteries, as well as
blood volume changes in precapillary vessels (Greitz, 1993),
which results in fMRI signal changes due to partial volume ef-
fects rather than neuronal function. It has also been shown that
effects from cardiac pulsatility are consistently found in areas
proximal to arteries, veins, and the ventricles (Glover et al.,
2000), and significant cardiac-related signal changes have
been observed in 28% of brain voxels (Dagli et al., 1999).

The breathing cycle causes additional unwanted signals to
occur in areas adjacent to cardiac artifacts (Windischberger
et al., 2002). Local respiratory signal changes have been at-
tributed to vasodilation from fluctuations in arterial carbon
dioxide (CO2) (Panerai et al., 2000) occurring at a rate within
the frequency band investigated in rsFC MRI (Wise et al.,
2004). Global breathing cycle effects on BOLD images
have been attributed to movement of the chest and associated
magnetic field changes, as well as intrathoracic pressure
changes, ventricular filling, cardiac output, and heart rate
(Wowk et al., 1997). Thus, both cardiac and respiratory cy-
cles have pronounced effects on the BOLD fMRI time course
and should be removed from images to improve reproduc-
ibility and interpretability.

Several groups have developed methodologies to retro-
spectively address the influence of such PN on rsFC MRI
(Bianciardi et al., 2009; Birn et al., 2006; Biswal et al., 1996;
Chang and Glover, 2009; Chang et al., 2009; Glover and
Lai, 1998; Glover et al., 2000; Hu and Kim, 1994; Hu
et al., 1995; Jo et al., 2010; Shmueli et al., 2007; Wowk
et al., 1997), and have shown promising improvements in
the interpretability of resting-state BOLD data. In particular,
we study the effects of three different PN correction (PNC)
methods (and their combination) on the rsFC MRI sig-
nal: RETROICOR, ANATICOR, and RVTMBPM. RETRO-
ICOR has been shown to account for distal pulsatile vessel
PN by removing respiratory and cardiac waveforms time-
locked with the rsFC MRI signal (Glover et al., 2000). ANA-
TICOR has the potential to remove white matter (WM)
BOLD fluctuations by fitting local WM waveforms to the
rsFC time course, and removing these WM fitted contribu-
tions ( Jo et al., 2010). RVTMBPM is thought to account
for low-frequency vasodilatory BOLD-like fluctuations by
accounting for changes in the respiratory and cardiac cycles
during the rsFC MRI scan (Bianciardi et al., 2009). Although
these PNC methodologies have shown promise in removing
PN from rsFC MRI, there is still no consensus for their effec-
tiveness in terms of temporal signal-to-noise ratio (tSNR),
sensitivity, specificity, and reproducibility.

In this study, we explore the methodological impact of
how different PNC methodologies affect rsFC signal qual-
ity, sensitivity, specificity, and reproducibility, and show
their impact on connectivity laterality and group differences.
How the various PNC methodologies affect identified group
differences in rsFC has not been previously explored, and
will provide a sense of detection impact of PNC. The rele-
vant question is: Can PNC corrected rsFC MRI methods
help better identify and distinguish two different groups of

interest in our sample (typical and struggling readers)? In
summary, this study’s primary focus is to evaluate the effec-
tiveness of various model-based PNC approaches in improv-
ing the estimation of rsFC MRI metrics (cross-correlation),
and then to evaluate such correction’s ability to identify
the targeted ‘‘reading network’’ (the signal), even in those
reading disabled subjects who frequently show atypical
networks.

Materials and Methods

General procedures

Sixteen adults from low socioeconomic backgrounds (age
39 – 13, 6 male, 10 female) were recruited from the Adult
Literacy Research Center (http://education.gsu.edu/research/
research-centers/adult-literacy-research-center/alrc-home)
representing a wide range of reading abilities. Subjects were
read the informed consent to ensure an open dialogue about
the nature of the experiment, and shown a video made for
this study portraying the MRI scanning environment and
experimental procedures. The protocol was approved by the
joint Georgia Institute of Technology and Georgia State
University Center for Advanced Brain Imaging Institutional
Review Board.

The study protocol involved three separate sessions. In
the first, behavioral testing was administered, including the
Woodcock Johnson III (WJ3) to assess reading. The other
two sessions involved MRI scans and were scheduled 2–4
weeks apart to assess intersession reproducibility of rsFC
MRI measures. Within this cohort we could identify two sub-
groups based on reading skill levels: eight typical (age = 35 –
12, 2 male, 6 female) and eight struggling (age = 44 – 13,
4 male, 4 female) readers. The two subgroups were identified
based on their WJ3 Basic Standard Scores that fell within the
typical or average reader range (WJ3 Basic Standard Score
‡90), or those that fell in the below average or struggling
reader range (WJ3 Basic Standard Score £85). This latter
group’s reading abilities were all below the 15%ile com-
pared to the age peer norms.

MRI acquisition

MRI scans were acquired on a Siemens 3T Tim Trio MRI
scanner (Erlangen, Germany) using the body coil for radio
frequency (RF) transmission and a 12-channel phased-array
head coil for RF receiving. The subjects were instructed to
keep their eyes open and blink at a normal rate, not to fall
asleep, to remain motionless, and to remain calm and relaxed
while gazing at a white fixation cross on a black background.

The rsFC MRI time course was acquired with a single-
shot gradient recalled echo planar imaging (EPI) sequence
(FoV = 220 · 220 mm2, matrix = 64 · 64, 32 slices, slice
thickness = 4 mm, TR = 2000 msec, TE = 30 msec, FA = 77�,
147 measurements + 3 discards). A high-resolution T1-weighted
anatomical image for spatial normalization to MNI tem-
plate space was acquired with MPRAGE sequence (TR =
2250 msec, TE = 4.18 msec, TI = 900 msec, FA = 9�, isotropic
resolution = 1 · 1 · mm3). A B0 field map was acquired with
a dual-echo gradient recalled echo sequence to estimate the
amount of EPI distortions in the rsFC MRI images (TR =
488 msec, TE1 = 4.92 msec, TE2 = 7.38 msec, FA = 60�).The
subject’s heart rate signals were acquired using a pulse oximeter
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placed on the subject’s left index finger, and the respiratory cy-
cles were captured with a pneumatic respiratory belt placed
around the chest. Both types of physiological data were auto-
matically time synced with the rsFC MRI scan.

Physiological data preprocessing

The physiological data were processed in MATLAB
(MathWorks, Inc., Natick, MA) to extract low-frequency
vasodilatory BOLD-like fluctuations via respiratory volume
per time (RVT) and mean beats per minute (MBPM) (Bian-
ciardi et al., 2009; Birn et al., 2006). The RVT time course
was shifted by �24 to 20 sec in steps of 4 sec (2 TRs), and
the MBPM was shifted by �12 to 12 sec in steps of 4 sec
(Bianciardi et al., 2009) to account for lag effects (Shmueli
et al., 2007) of vasodilatory BOLD-like fluctuations.

Image preprocessing

The MRI images were processed systematically with a
combination of AFNI, FSL, and ITK Snap software pack-
ages, and MATLAB in-house scripts. The B0 field map
was used to calculate the calibrated field map in rad/sec
based on the measured phase evolution between the two
echoes. The rsFC MRI time course was processed by first
applying RETROICOR (Glover et al., 2000) to remove time-
locked cardiac and respiratory effects in the images, fol-
lowed by corrections for slice-timing, global head motion,
and EPI distortions using the processed B0 field map. Spatial
normalization to MNI template space was performed in con-
junction with the MPRAGE using nonlinear transforms.
From the motion parameters captured during the global head
motion correction, frame-to-frame displacement was com-
puted (Power et al., 2014), and time points from the rsFC
time series were censored at a threshold of 0.3 mm.

After spatial normalization, additional PNC was applied
to the rsFC time course by detrending the shifted RVT and
MBPM vectors together in one nuisance regression as de-
scribed in Bianciardi et al. (2009) for a combined RVTMBPM
correction step. We chose to perform RVTMBPM correction
in MNI space because this is the space of final interpretation
of the results, and (unlike RETROICOR) the technique is
less sensitive to signal interpolation due to the use of multi-
ple lags. The final PNC step involved regressing local WM
signals using ANATICOR ( Jo et al., 2010), and was used
to account for any additional sources of variability not in-
cluded in the RETROICOR or RVTMBPM processing steps.

To reduce influence from cerebrospinal fluid pulsatility
and resulting partial volume effects near the edge of the ven-
tricles, we masked the ventricles in the rsFC MRI time
course. The rsFC MRI time course was then low-pass filtered
using a Chebyshev II filter with cutoff frequency of 0.1 Hz
(Krishnamurthy et al., 2015), and smoothed with a 6 mm
full-width-half-maximum Gaussian filter. We intentionally
did not carry out global signal regression (GSR) as GSR
does not substitute for PNC (Birn et al., 2014), and artifactu-
ally centers the cross correlation (CC) distribution, resulting
in more anticorrelations (Murphy et al., 2009).

PNC methods

To assess the influence from different PNC techniques and
determine which combination of methodologies would result

in the highest data sensitivity and specificity, we prepro-
cessed the images in seven different ways:

(1) RETROICOR only
(2) RVTMBPM only
(3) ANATICOR only
(4) RETROICOR+RVTMBPM
(5) RETROICOR+ANATICOR
(6) RVTMBPM+ANATICOR
(7) RETROICOR+RVTMBPM+ANATICOR (most strin-

gent PNC)

In the Preprocessing section above, we described the RET-
ROICOR+RVTMBPM+ANATICOR analysis for generality.
The other methods do not differ from the described process-
ing pipeline order, other than that the ‘‘missing’’ PNC tech-
niques are omitted. For example, the ANATICOR-only
processing pipeline would start with slice-timing correction,
and the ANATICOR processing step would occur immedi-
ately after spatial normalization to MNI space.

Seed-based rsFC analysis

We chose the seeds (Fig. 1A, Supplementary Table S1;
Supplementary Data are available online at www.liebertpub
.com/brain) based on a priori knowledge of left-hemisphere
(LH) brain areas involved in reading (Pugh et al., 2010), as
well as their right-hemisphere (RH) homologues. A sphere
(5 mm radius) centered at the seed MNI coordinates
(Krishnamurthy et al., 2015) was utilized to generate an av-
erage seed time course to cross-correlate with the time courses
of all other voxels. The Fisher z-transform was applied to
the cross-correlation values to normalize the distribution.

Quantifying tSNR, sensitivity, specificity,
and reproducibility to define the optimal methodology

To understand the effects of the seven PNC methods on
the fMRI time course, we evaluated the tSNR of the LH
seed time courses (Equation-1) defined as the ratio of the
mean signal of the rsFC seed time series (S) and the standard
deviation of the seed time series (rN) (Welvaert and Rosseel,
2013).

tSNR =
S

rN

(1)

We then systematically investigated the effects of the PNC
methodologies by comparing the removal of subject-specific
PN versus simulated noise regressors (NR) unrelated to the
data. The NR vectors were generated from eight additional
subjects that were initially scanned with the same protocol,
but are not included in the present cohort of interest due to
the lack of their replication scan. A detailed description of
the NR construction can be found in the Seed Locations sec-
tion in Supplementary Materials and Methods.

To determine the amount of variance in the signal
accounted for by each PNC methodology across the entire
brain, we evaluated the R2, as given in Equation-2 (Birn
et al., 2014):

R2 = 1� r2
PNC

r2
NoCorrection

(2)

where R2 is the fractional reduction in signal variance, rPNC
2

is the variance in the PNC methodology time course, and
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rNoCorrection
2 is the variance in the time course that did not

undergo PNC.
To understand the effects of the PNC methods on connec-

tion sensitivity, we chose to inspect the connection strength
between left superior temporal gyrus (L-STG) seed and the
following regions: right superior temporal gyrus (R-STG)
(an expected connection), brain stem (BS; a region of mini-
mal connection), and left anterior later ventricle (L-Vent; a
region of no connection). The use of connectivity to areas
weakly or unconnected to the seed region has been used pre-
viously to evaluate different preprocessing choices (Weis-
senbacher et al. 2009), and can be conceptually related to
control comparisons. To inspect the connectivity with the
ventricle, the connectivity profile was reprocessed on the
unmasked data set for this analysis only. We also modeled
the influence of tSNR on Z(CC), as described in the Supple-
mentary Materials and Methods section.

To assess the effects of PNC on the specificity of the net-
work, we evaluated the number of significant edges ( p < 0.001,
cluster size = 40, family wise error [FWE] corrected) con-
nected to WM when seeded from pOP, as well as the number
of significant edges connected to regions with known struc-
tural connectivity [pOP-to-putamen and pOP-to-thalamus
(Ford et al. 2013)]. The number of WM nuisance edges repre-
sents false-positive connections, whereas expected gray matter
(GM) edges to putamen and thalamus represent true-positive
connections. Note that the above steps were carried out on sig-
nificant group maps generated from repeated ANOVA. To quan-
titatively determine the number of nuisance WM edges and
expected GM edges, we apply the regions of interest (ROIs) in
Figure 4B to each PNC method. ‘‘Improved’’ sensitivity is
denoted by minimizing the number of WM edges, and maximiz-
ing the number of functional cortico-striatal and cortico-
thalamic connections. The results are represented as a fractional
number of edges for each PNC method as well as No Correction.

To investigate the reproducibility of connection strength
for the seed regions significantly connected to each seed,
we computed the intersession ICC(3,1) (Shrout and Fleiss,
1979) for each LH seed and each PNC method. We fur-
ther explored the within-subject (MSw) and between-subject
(MSb) variability for each PNC methodology within the
thresholded network ( p < 0.001, clust = 40, FWE corrected)
when seeded from L-STG.

Group-level analysis

Connectivity laterality maps. It has previously been
shown that rsFC has the sensitivity to detect hemispheric dif-
ferences in connectivity profiles (Di et al., 2014; Doucet
et al., 2015). The reading network for the entire cohort was
assessed for both LH and RH seeds using repeated-measures
ANOVA, and the R-L difference in connectivity profile was
investigated for each PNC method in angular gyrus (AG)
( p = 0.001, cluster = 20, FWE corrected).

Between group. Regions of significant group differences
were determined using a repeated three-factor ANOVA on
all seeds for each PNC method (level 1: typical and strug-
gling reader group, level 2: LH and RH seed, level 3: random
individual subjects). LH and RH group differences were
determined by thresholding the resulting difference maps
( p = 0.01, cluster size = 20, FWE corrected).

Within group. A within-group analysis used the optimal
PNC method to establish a network of reproducible and
highly connected brain regions for each subgroup. A mask
of significantly connected regions was constructed for each
rsFC session, and within the overlapping voxels, the voxel-
wise ICC was computed and thresholded at >0.65 since
this represents ‘‘good’’ reproducibility (Guo et al., 2012).
For each subgroup, and each LH and RH seed, maps of
highly reproducible and connected regions within the read-
ing network were created.

Results

Effects of PNC on tSNR

The tSNR was quantified for each LH seed time course
and plotted in order of increasing tSNR (Fig. 1B). All seed
regions showed similar tSNR profiles. The lowest tSNR
resulted from RETROICOR only and systematically in-
creased across the PNC methods in order: ANATICOR
only, RETROICOR + ANATICOR, RVTMBPM only,
RETROICOR + RVTMBPM, RVTMBPM + ANATICOR,
and RETROICOR + RVTMBPM + ANATICOR.

To determine if RETROICOR only, ANATICOR only, or
RVTMBPM only accounted for unique, subject-specific var-
iance, we compared the seed tSNR after removing simulated
NRs to the subject-specific PNC (Fig. 1C). The tSNR for
RETROICOR only and ANATICOR only was not different
when accounting for the subject’s specific physiology com-
pared to NR. The RVTMBPM-only methodology showed
significant (two-tailed paired t-test, p < 0.05) increases in
tSNR when using the subject-specific physiology. When
further assessing the most stringent PNC, the use of subject-
specific PNC accounted for more variance than NR. How-
ever, the difference between tSNR from subject-specific
and simulated NR had a smaller significant difference than
RVTMBPM only.

Effects of PNC on R2

Since tSNR measures only the PNC effects on the seed, we
further quantified the variance accounted for by each PNC
method resulting in a whole-brain voxel-wise scale using
Equation-2. The R2 for each subject-specific PNC method in-
creases in the same order as the seed tSNR (Fig. 2). For the
most stringent PNC, 60% of the fractional variance is
accounted for. The application of subject-specific physiology
and simulated NR leads to similar variance accounted for
in both RETROICOR-only and ANATICOR-only methodol-
ogies. Alternatively, inspection of the RVTMBPM-only
R2 maps indicates that subject-specific physiology accounts
for more variance than simulated NR, which is in line with
the tSNR results. Interestingly, the R2 of simulated NR
using RETROICOR + RVTMBPM + ANATICOR is similar
to NR of RVTMBPM only, indicating that the fractional
explained variance did not improve beyond RVTMBPM
only.

Effects of PNC on sensitivity to real connections

In Figure 3A, the L-STG to R-STG connections showed
high connection strength with No Correction analysis,
which reduced significantly with the application of most
PNC, particularly RVTMBPM only ( p < 0.00001). Reductions
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in Z(CC) with PNC are found for L-STG to BS, and L-STG
to L-Vent for most methods, except for RETROICOR only.
In Figure 3B, the No Correction and RVTMBPM-only L-
STG to R-STG Z(CC) is significantly described by the nonlin-
ear relationship with tSNR (A = 1.3344, B =�1.2260,
C =�1.0992, D = 1.4449, full-model F = 231, p < 0.00001).

The relationship between L-STG to BS (F = 20) and L-
STG to L-Vent (F = 23) is also significantly described by
the model. In line with Figure 3A, the modeling results in
3B show that the No Correction Z(CC) is higher than
RVTMBPM only, which is, in part, due to the increased var-
iance from PN causing the tSNR to remain low.

FIG. 1. (A) Location of the reading network seeds across frontal (green), temporal (blue), and parietal (red) brain areas. (B)
The seed tSNR for each of the seven PNC methodologies and eight LH reading network seeds. (C) Comparison of tSNR after
processing the rsFC magnetic resonance imaging time course using simulated NR or subject-specific PN. Note: the bar plots
represent mean – standard error across subjects. PN, physiological noise; PNC, PN correction; NR, noise regressors; tSNR,
temporal signal-to-noise ratio; LH, left-hemisphere; rsFC, resting-state functional connectivity.

FIG. 2. R2 maps in MNI space
representing the amount of variance
accounted for by each PNC meth-
odology. Both subject-specific PN
and simulated NR effects on R2

are displayed.
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Effects of PNC on specificity of connections

We display a single slice of significantly connected re-
gions seeded from L-pOP (Fig. 4A). The fractional number
of WM edges is highest in RETROICOR only and lowest

in the most stringent PNC. The fractional number of WM
edges is lower in RVTMBPM only than ANATICOR only.
When using ANATICOR by itself, or in combination with
any methodology, the expected cortico-thalamic connection
drops out. Thus, RVTMBPM only provides gray matter-to-

FIG. 3. Effect of PNC methods on sensitivity to an expected strong connection (L-STG to R-STG), weak connection (L-
STG to BS), and expected nonconnection (L-STG to L-Vent). (A) The connection strength Z(CC) (mean – standard error
across subjects) for each of the methodologies and types of connections. (B) Modeling results of tSNR influence on
Z(CC). Each subject has two data points, one from each session. The model results are represented as a 3D mesh. BS,
brain stem; L-STG, left superior temporal gyrus; R-STG, right superior temporal gyrus.

FIG. 4. (A) Group average sig-
nificant cross-correlation maps
seeded in L-pOP ( p < 0.001, cluster
size = 40, family wise error [FWE]
corrected) for each PNC method in
MNI space. The hotness of the color
indicates the magnitude of Z(CC).
(B) Segmented WM, putamen, and
thalamus regions of interest from
standard MNI brain used to calcu-
late network specificity. Red color
indicates the location of the mask.
(C) Fractional number of WM,
putamen, and thalamus edges for
each of the PNC methodologies by
applying the ROIs in (B) to the
maps in (A). ROI, region of
interest; WM, white matter.
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white matter ratio increases of 34% (thalamus) and 78%
(putamen) compared to No Correction.

Effects of PNC on reproducibility of connections

Figure 5 shows the effects of reproducibility on the seed
(5A), and reading network seeded from L-STG (5B). As
seen in Figure 5A, on average, ANATICOR only resulted
in the highest seed ICC, and RVTMBPM + ANATICOR
resulted in the lowest seed ICC. Figure 5B shows that
MSb>MSw for most of the methodologies except RETROI-

COR only and RETROICOR + RVTMBPM. When consider-
ing the uncombined methodologies, the variance of ICC
(Fig. 5C) across seed regions was highest for No Correction,
followed, in order of reducing variance, by RETROICOR
only, ANATICOR only, and RVTMBPM only.

Effects of PNC on connectivity laterality

The R-L difference maps for different PNC methods are
shown in Figure 6. Seeding in AG, the LH dominant ventral
path of the reading network is enhanced, whereas the RH has

FIG. 5. (A) Effect of PNC
on ICC for each LH seed. (B)
The effects of PNC on MSb
and MSw obtained from the
L-STG network (the corre-
sponding ICC is on the right
in (A). (C) The variance of
ICC across each of the LH
seed region for different PNC
methodologies. PNC, physi-
ological noise correction;
ICC, intraclass correlation;
LH, left hemisphere; MSb,
mean square for between
group; MSw, mean square for
within group; L-STG, left
superior temporal gyrus.

FIG. 6. The R-L difference
of Z(CC) maps ( p < 0.01,
cluster size = 20, FWE cor-
rected) in MNI space for each
PNC methodology. Note:
Both L-AG and R-AG were
used as the seeds; blue indi-
cates that L-AG has higher
connection strength, and red
indicates that R-AG has
higher connection strength.
AG, angular gyrus.
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a greater connection to PCC and L-cerebellum. The laterality
differences change slightly with the application of different
PNC methodologies.

Group differences

It is clear that the group differences vary with PNC meth-
odology, with typical>struggling readers for most seeds
(Fig. 7). Some methodologies (RETROICOR only and
RETROICOR + RVTMBPM) flip these results across several
temporal and frontal seed regions. Regardless of chosen
methodology, the RH connectivity seems to be more im-
pacted in struggling readers than LH connectivity.

Reading network of typical and struggling readers

Using RVTMBPM only, the typical readers had more re-
producible connections for both RH and LH seeds (Fig. 8),
although there were some notable exceptions: L- and R-
AG, L-pTR, and R-pOB had more reproducible connections
for the struggling readers. The typical readers also had a
higher number of interhemispheric connections than the strug-
gling readers. Some seed regions in low signal to noise ratio
(SNR) regions (open circles in Fig. 8) were not reproducible
(e.g., pOB and pTR). Some areas of connectivity were shared
among the typical and struggling readers (pink circles), but
have differences in connectivity strength (as detailed by dotted
lines, e.g., L-FG to R-FG). More details on the connections can
be seen in Supplementary Tables S2 and S3.

Discussion

In this study, it was shown that systematic PNC during the
preprocessing of rsFC MRI data significantly increases the
tSNR (Fig. 1B). Using simulated NR, we explored the impact
of removing subject-specific PN versus a regressor that was
unrelated to the data. Surprisingly, the RETROICOR and
ANATICOR methodologies did not show advantage com-
pared to the subject-specific PN, such that the tSNR increase
was a by-product of the signal processing step and did not
necessarily reflect an ‘‘improvement’’ in the signal iden-
tification. RETROICOR accounts for PN influences from
distant pulsatile blood vessels (Circle of Willis), and we
modeled ANATICOR to account for local WM BOLD sig-
nal. From the R2 maps, it is evident that these methods had
minimal effects on our data possibly because the chosen
seed locations were relatively distant from both of these sour-
ces. Thus, the tSNR and R2 results suggest that RETROICOR
and ANATICOR are equivalent to removing random noise.
On the contrary, RVTMBPM showed significant improve-
ment in tSNR and R2 when subject-specific physiological in-
dices were utilized within the model, In effect, RVTMBPM
appears to be removing structured and temporally repeating
PN arising from the dense vasculature. The most strin-
gent PNC methodology showed tSNR increases by utilizing
subject-specific physiology compared with simulated noise
(Fig. 1C), but these differences were not as significant as
the RVTMBPM results (red box, Fig. 1C), suggesting that

FIG. 7. Repeatable group differences for different PNC methods across LH and RH seeds. Images in MNI space ( p < 0.01,
cluster size = 20, FWE corrected). The differences are displayed on axial midslice, as it covers both left and right reading
areas. RH, right hemisphere

IMPACT OF PHYSIOLOGICAL NOISE CORRECTION ON RSFC MRI 101



combining the RVTMBPM method with RETROICOR or
ANATICOR can overcorrect the signal. It has previously
been shown that adding too many NRs in such analyses
can remove both structured noise and structured signal
(Bright and Murphy, 2015). It should also be acknowledged
that tSNR is limited in its ability to assess the quality of rsFC
since variability in neural fluctuations contributes to the tem-
poral standard deviation of the measured BOLD signal.

Improving the signal quality with PNC has direct effects
on the sensitivity to connection strength. In Figure 3A, we
probed the connection between L-STG and L-Vent, expect-
ing zero connection since there are no neurons in the anterior
horn of the lateral ventricle. The application of RETROI-
COR causes an increase in Z(CC) compared to No Correc-
tion, indicating that this processing step has reduced the
sensitivity to true connection strength. Other PNC methodol-
ogies resulted in lower Z(CC) than No Correction, particu-
larly the most stringent PNC removed all connections to
the ventricles. This would be ideal, except that this comes
at a loss of sensitivity to expected connections (as seen in
the L-STG to R-STG). The BS is an expected weak connec-
tion, but methods that contain ANATICOR appear to be too
aggressive in this area of mixed white and gray matter. Over-
all, RVTMBPM provides a conservative balance of sensitiv-
ity by maintaining expected strong and weak connections
(including R-STG and BS), while minimizing expected non-
connections (L-Vent). Although utilized in the framework of
PNC, the modeled nonlinear relationship between Z(CC) and
tSNR (Fig. 3B) may be informative when optimizing rsFC
MRI sequences to minimize the effects of PN.

To further understand the effects of PNC on rsFC signal,
we quantified the specificity of the connected regions using
the pOP seed (Fig. 4). The goal was to determine which
PNC methodology provided the greatest number of expected
gray matter edges (true positive), while minimizing the num-
ber of WM nuisance edges (false positives). There were three
basic assumptions made in this analysis: (1) structural con-

nections described in the literature (pOP-to-putamen and
pOP-to-thalamus) exist across most subjects, (2) this struc-
tural connectivity gives rise to functional connectivity
(Honey et al., 2009), and (3) WM metabolic activity does
not fluctuate coherently with cortical activity. Since RET-
ROICOR is modeled to correct for distal pulsatile vessel
PN, our results suggest that it has difficulty removing WM
nuisance edges. In this study, we modeled ANATICOR to
account for WM BOLD fluctuations. Although it was effec-
tive in minimizing WM nuisance edges, it also resulted in
reducing specificity to the expected cortico-thalamic func-
tional connections (Fig. 4C). In effect, our implementation
of ANATICOR after spatial normalization removed WM
edges (false positives), but also appeared to remove expected
GM connections (true positive), thereby reducing specificity.
However, RVTMBPM optimally indexed specificity by min-
imizing WM edges and retaining expected GM connections.
This appears to be related to the fact that WM tissue con-
tains small vessels supporting the metabolic activity of axo-
nal tracts, although not as dense as GM ( Jochimsen et al.,
2010). Thus, based on these results, RVTMBPM appears to
be best in the removal of vasodilatory PN and local WM nui-
sance edges. It should be noted that these results are specific
to the cortical/subcortical connections in the context of the
reading model, and may differ for other models.

The concepts of sensitivity and specificity are both use-
ful in accurately defining brain networks. Specificity helps
in determining which GM edges should remain in the net-
work (see Fig. 5A, which retains the expected GM cortico-
thalamic connections by minimizing nuisance WM edges).
Once specificity of the network is accomplished, the next
question is how accurate is the strength of the detected
GM edges? In this context, sensitivity helps because the re-
sults from Figure 3 show that PN can artificially inflate
the strength of expected connections and expected noncon-
nections. Since there is no gold standard for determin-
ing the reading-specific neural network, we were unable to

FIG. 8. Reproducible con-
nections found within sixteen
seed regions of the reading
network. If the seed was re-
producible within the net-
work, it is assigned a green
circle; otherwise, it is dis-
played as an open circle. All
other regions are highly re-
producible. Regions that are
shared across typical and
struggling readers are indi-
cated in pink; all other con-
nected regions are in blue. All
connections are indicated
with a narrow black line, ex-
cept for the strongest con-
nection, which is indicated by
a thick black line. The con-
nected regions shared be-
tween typical and struggling
readers are indicated as a
dashed line when the con-
nection is weaker.
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objectively quantify the balance between specificity and
sensitivity. Such an endeavor should be undertaken in fu-
ture studies.

From a clinical intervention perspective, the concept of
signal reproducibility is very important. It is notable from
Figure 5A that the ICC of No Correction is high, in some in-
stances higher than all PNC methodologies. However, based
on the sensitivity (Fig. 3) and specificity (Fig. 4) results, we
know that the No Correction data contain significant amounts
of noise, having a unique subject-specific signature that does
not change across sessions ( p < 0.63). This suggests that it is
the highly reproducible structure of the individual’s PN that
is generating the high ICC in the No Correction analysis,
rather than the signal itself. We agree with Birn et al. that
a reduction in ICC with the application of PNC is not a neg-
ative finding (Birn et al., 2014), and Figure 5B shows that
MSb changes more with PNC application than MSw. Since
subject-specific physiology (RVT [p < 0.11] and MBPM
[p < 0.63]) does not change across sessions, application of
PNC should not affect MSw to a great degree. Thus, we be-
lieve that change in ICC is driven by changes in MSb, which
removes the between-subject PN variability, thereby sensi-
tizing it to group differences. This is important because
even though the cardiovascular physiology between typical
and struggling readers is not different (RVT [p < 0.71];
MBPM [p < 0.41]), its impact on cerebrovascular physiol-
ogy, functional connectivity, or both is different between
the two groups (Fig. 7). Thus, the removal of PN allows
for more reproducible group-specific connections (Fig. 8).
Furthermore, the application of PNC reduces the variabil-
ity of ICC across the seed regions (Fig. 5C), such that the
connectivity values across different brain regions can be
accessed on the same reliability scale. RVTMBPM produces
the greatest amount of ICC homogeneity across the reading
network seeds, increasing the sensitivity and reliability of
rsFC profiles. However, it should be pointed out that a homo-
geneous ICC does not mean a ‘‘better’’ reliability, only one
that is more stable across the brain.

Left–right asymmetry is a well-documented finding in
the language and reading fields. From that perspective, our
methodology was not only sensitive to capture laterality dif-
ferences, highlighting the dorsal or ventral stream of the
reading network, but also sheds light on slight regional var-
iations in vascular physiology between homologue brain
areas (Fig. 6). This information may be useful to probe changes
in treatment-induced lateralization of language and reading
functions.

In addition to laterality differences, one of the major high-
lights of this work is to investigate the impact of PNC on
group differences. We showed that the group differences be-
tween typical and struggling readers change depending on
the applied PNC methodology (Fig. 7). If the connectivity
strength were artificially inflated due to PN by the same
amount in each group, then PN should subtract out in the
group difference maps. However, this is not the case. The
fact that the pattern of results depends on the signal process-
ing steps applied to the data is important, because it rein-
forces two points: (1) that preprocessing methodology should
be chosen carefully, and (2) physiological data should be
acquired and used for correction.

From Figure 7, it is unclear which PNC methodology pro-
vides the most accurate group difference, but combining the

information from across study results provides a basis for
choosing the most appropriate methodology. As discussed
previously, the No Correction analysis has considerable
amounts of PN that bury group differences. Unlike other
methodologies, RETROICOR has a striking group differ-
ence result where struggling>typical readers. Based on the
low network specificity (Fig. 4C) and decreased sensitivity
(Fig. 3) results for RETROICOR, the group difference result
for RETROICOR and RETROICOR + RVTMBPM is possi-
bly a processing artifact. From the R2 maps (Fig. 2), it is clear
that the ANATICOR methodology removes signal of interest
from subcortical structures (Fig. 4), and could be why analy-
ses containing ANATICOR did not give rise to group differ-
ences in the subcortical regions, whereas other methods do.
As discussed previously, RVTMBPM corrects the signal
based on subject-specific physiology better than simulated
NR, and improves sensitivity and provides the highest spec-
ificity. However, when RVTMBPM is combined with other
methodologies, it appears that too much variance is removed.
This is particularly striking in the most stringent PNC meth-
odology, where 60% of the variance is accounted for across
the entire brain, and hence is likely removing a combination
of signal and noise. Based on this composite view of results,
we recommend the use of RVTMBPM only to extract the
most replicable and potentially meaningful group differ-
ences. However, it is still possible that PN corrected signal
may not be optimally tuned to interrogate all underlying
brain connectivity differences.

By defining subgroups within the cohort, it was found that
the connectivity profile of reproducible connections (ICC
>0.65) was remarkably different between typical and strug-
gling readers (Fig. 8), as was expected based on task-fMRI
studies. In rsFC data, there is a possibility that the subject’s
dynamic cognitive states (Buckner et al., 2013) can interact
with physiology. Future work should address these factors
to more accurately detect group differences.

The question of how PNC affects resting-state fMRI met-
rics was also recently undertaken by another group (Goles-
tani et al., 2017). Although both studies adapted different
PNC strategies (with the exception that our RVTMBPM is
similar to their CRV+RVT), and tested different networks
(we chose multiple nodes in the reading network, they
chose motor network and DMN), there are some overlapping
conclusions that can be drawn. As Golestani et al. (2017)
points out, there is variability in the impact of PNC on dif-
ferent brain regions, which we also observe in this study
across different nodes of the reading network. Furthermore,
we agree with Golestani et al. (2017) that multiple quality as-
sessments (e.g., ICC, sensitivity, specificity) must be used to
choose the appropriate PNC scheme. One major difference
between these two studies was the subject cohort. Golestani
et al. (2017) applied their paradigm on young healthy sub-
jects, whereas our study examined groups of typical and
struggling readers. This allowed us to investigate the effects
of PNC on group differences, with evidence that choice of
PNC impacts detected group differences (Fig. 7). Thus, our
study adds value in terms of translation of rsFC to a real-
world application: to more accurately detect PNC-sensitized
group differences in a cohort of cognitive disability. Thus,
we expand on Golestani et al. (2017) and recommend that
future investigations of resting- state fMRI processing
methodologies should also account for detectability of
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hypothesis-driven group differences in a neurological dis-
ease or cognitive disability model.

Conclusion

The core goal of this study was to quantitatively identify
the optimized methodology to remove unwanted cardiac
and respiratory fluctuations from rsFC data to improve the
identification and description of the reading network. We
evaluated the effect of PNC on sensitivity, specificity, and re-
producibility, and further assessed if expected differences in
the rsFC networks could be identified between groups of typ-
ical and struggling adult readers. We identified RVTMBPM
to be the methodology that provided the highest sensitiv-
ity, greatest specificity, and reproducibility across the com-
ponents of the reading network in this sample of adults.
Using RVTMBPM only, we identified highly connected
and highly reproducible rsFC reading network-related con-
nectivity profiles, and found that struggling readers, as
expected, had fewer intra- and interhemispheric connections.
Future research will need to further validate this methodo-
logical approach to PNC so that rsFC MRI paradigms can
be more reliably and validly used to predict changes in read-
ing development and provide potential targets for treatments.
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